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Financial Instruments Toolbox Product Description
Design, price, and hedge complex financial instruments

Financial Instruments Toolbox provides functions for pricing, modeling, and analyzing
fixed-income, credit, and equity instrument portfolios. You can use the toolbox to perform
cash-flow modeling and yield curve fitting analysis, compute prices and sensitivities, view
price evolutions, and perform hedging analyses using common equity and fixed-income
modeling methods. The toolbox lets you create new financial instrument types, fit yield
curves to market data using parametric fitting models and bootstrapping, and construct
dual curve-based pricing models.

You can price and analyze fixed-income and equity instruments. For fixed-income
modeling, you can calculate price, yield, spread, and sensitivity values for several types of
securities and derivatives, including convertible bonds, mortgage-backed securities,
treasury bills, bonds, swaps, caps, floors, and floating-rate notes. For equities, you can
compute price, implied volatility, and greek values of vanilla options and several exotic
derivatives.

Financial Instruments Toolbox contains functions to model counterparty credit risk and
CVA exposure. For credit derivatives, the toolbox includes credit default swap pricing and
default probability curve modeling functions. For energy derivatives, you can model exotic
and vanilla options. The toolbox also provides connectivity to Numerix® CrossAsset
Integration Layer.

Key Features
• Yield curve fitting with bootstrapping and parametric fitting models, and term-

structure analysis with dual curve construction and pricing of swaps, caps, floors, and
swaptions (using LIBOR-OIS and other curves)

• Black Scholes, Black, Garman-Kohlhagen, Roll-Geske-Whaley, Bjerksund-Stensland,
Nengjiu Ju, Stulz, Levy jump diffusion, Longstaff-Schwartz, SABR, and tree models and
Monte Carlo simulation

• Fixed-income and equity derivative calculations for price, yield, discount rate, cash-
flow schedule, spread, implied volatility, option adjusted spread (OAS), and greeks

• Counterparty credit risk, CVA modeling, and credit instruments for mortgage pools,
balloon mortgages, and credit default swaps

• Interest-rate instruments: bonds, stepped-coupon bonds, futures, vanilla options,
Bermudan options, bonds with embedded options, vanilla swaps, forward swaps,
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amortizing swaps, swaptions, caps, floors, range notes, floating-rate notes, and
collared floating-rate notes

• Equity instruments: stocks, vanilla options, Bermudan options, Asian options, lookback
options, barrier options, digital options, rainbow options, basket options, compound
options, and chooser options

• Energy and commodity instruments: Asian options, Bermudan options, lookback
options, swing options, spread options, and vanilla European/American options

 Financial Instruments Toolbox Product Description
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Interest-Rate-Based Derivatives
The toolbox provides functionality that supports the creation on page 1-8 and
management on page 1-20 of these interest-rate-based instruments:

• Bonds
• Bond options (puts and calls)
• Bond with embedded options
• Caps
• Convertible bonds
• Fixed-rate notes
• Floating-rate notes
• Floors
• Swaps
• Swaption

Additionally, the toolbox provides functions to create arbitrary cash flow instruments. The
toolbox provides pricing and sensitivity routines for these instruments. For more
information, see “Pricing Using Interest-Rate Term Structure” on page 2-72,“Pricing
Using Interest-Rate Tree Models” on page 2-99, and“Interest-Rate Derivatives Using
Closed-Form Solutions” on page 2-121.

See Also
instbond | instcap | instcbond | instcf | instfixed | instfloat | instfloor |
instoptbnd | instoptembnd | instoptemfloat | instoptfloat | instrangefloat
| instswap | instswaption

Related Examples
• “Creating Instruments or Properties” on page 1-21

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
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• “Supported Energy Derivatives” on page 3-43

 See Also

1-5



Equity-Based Derivatives
The toolbox also provides functions to create and manage various equity-based
derivatives, including the following:

• Asian options
• Barrier options
• Basket options
• Compound options
• Convertible bonds
• Digital options
• Lookback options
• Rainbow options
• Vanilla stock options (put and call options)

The toolbox also provides pricing and sensitivity routines for these instruments. (See
“Pricing Equity Derivatives Using Trees” on page 3-128, “Equity Derivatives Using
Closed-Form Solutions” on page 3-148, and “Basket Option” on page 3-27.)

See Also
instasian | instbarrier | instcbond | instcompound | instlookback |
instoptstock

Related Examples
• “Creating Instruments or Properties” on page 1-21
• “Pricing Equity Derivatives Using Trees” on page 3-128

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Energy Derivatives” on page 3-43
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Expected Users
In general, this guide assumes experience working with financial derivatives and some
familiarity with the underlying models.

In designing Financial Instruments Toolbox documentation, we assume that your title is
similar to one of these:

• Analyst, quantitative analyst
• Risk manager
• Portfolio manager
• Fund manager, asset manager
• Financial engineer
• Trader
• Student, professor, or other academic

We also assume that your background, education, training, and responsibilities match
some aspects of this profile:

• Finance, economics, perhaps accounting
• Engineering, mathematics, physics, other quantitative sciences
• Bachelor's degree minimum; MS or MBA likely; Ph.D. perhaps; CFA
• Comfortable with probability theory, statistics, and algebra
• Understand linear or matrix algebra, calculus, and differential equations
• Previously done traditional programming (C, Fortran, and so on)
• Responsible for instruments or analyses involving large sums of money
• Perhaps new to MATLAB®

 Expected Users
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Portfolio Creation
In this section...
“Introduction” on page 1-8
“Interest-Rate-Based Derivatives” on page 1-8
“Equity Derivatives” on page 1-9

Introduction
The instadd function creates a set of instruments (portfolio) or adds instruments to an
existing instrument collection. The TypeString argument specifies the type of the
investment instrument. For interest-rate-based derivatives, the types are: Bond, OptBond,
CashFlow, Fixed, Float, Cap, Floor, and Swap. For equity derivatives, the types are
Asian, Barrier, Compound, Lookback, and OptStock.

The input arguments following TypeString are specific to the type of investment
instrument. Thus, the TypeString argument determines how the remainder of the input
arguments is interpreted. For example, instadd with the type character vector for Bond
creates a portfolio of bond instruments.

InstSet = instadd('Bond', CouponRate, Settle, Maturity, Period,
Basis, EndMonthRule, IssueDate, FirstCouponDate, LastCouponDate,
StartDate, Face)

Interest-Rate-Based Derivatives
In addition to the bond instrument already described, the toolbox can create portfolios
containing the following set of interest-rate-based derivatives:

• Bond option
InstSet = instadd('OptBond', BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

• Arbitrary cash flow instrument
InstSet = instadd('CashFlow', CFlowAmounts, CFlowDates, Settle, Basis)

• Fixed-rate note instrument
InstSet = instadd('Fixed', CouponRate, Settle, Maturity, FixedReset, Basis, Principal)

• Floating-rate note instrument
InstSet = instadd('Float', Spread, Settle, Maturity, FloatReset, Basis, Principal)
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• Cap instrument
InstSet = instadd('Cap', Strike, Settle, Maturity, CapReset, Basis, Principal)

• Convertible bond instrument
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)

• Floor instrument
InstSet = instadd('Floor', Strike, Settle, Maturity, FloorReset, Basis, Principal)

• Swap instrument
InstSet = instadd('Swap', LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

• Swaption instrument
InstSet = instadd('Swaption', OptSpec, Strike, ExerciseDates, Spread, ...
Settle, Maturity, AmericanOpt, SwapReset, Basis, Principal)

• Bond with embedded option instrument
InstSet = instadd('OptEmBond', CouponRate, Settle, Maturity, OptSpec, Strike, ...
ExerciseDates, 'AmericanOpt', AmericanOpt, 'Period', Period,'Basis', Basis, ...
'EndMonthRule', EndMonthRule,'Face',Face,'IssueDate', IssueDate, 'FirstCouponDate', ...
FirstCouponDate, 'LastCouponDate', LastCouponDate,'StartDate', StartDate)

Equity Derivatives
The toolbox can create portfolios containing the following set of equity derivatives:

• Asian instrument
InstSet = instadd('Asian', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
AvgType, AvgPrice, AvgDate)

• Barrier instrument
InstSet = instadd('Barrier', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt, ...
BarrierType, Barrier, Rebate)

• Compound instrument
InstSet = instadd('Compound', UOptSpec, UStrike, USettle, UExerciseDates, UAmericanOpt, ...
COptSpec, CStrike, CSettle, CExerciseDates, CAmericanOpt)

• Convertible bond instrument
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio)

• Lookback instrument
InstSet = instadd('Lookback', OptSpec, Strike, Settle, ExerciseDates, AmericanOpt)

• Stock option instrument
InstSet = instadd('OptStock', OptSpec, Strike, Settle, Maturity, AmericanOpt)

 Portfolio Creation
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See Also
hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset

Related Examples
• “Creating Instruments or Properties” on page 1-21
• “Adding Instruments to an Existing Portfolio” on page 1-11
• “Instrument Construction and Portfolio Management” on page 1-20

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Adding Instruments to an Existing Portfolio
To use the instadd function to add additional instruments to an existing instrument
portfolio, provide the name of an existing portfolio as the first argument to the instadd
function.

Consider, for example, a portfolio containing two cap instruments only:

Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
Maturity = '15-Jan-2003';

Port_1 = instadd('Cap', Strike, Settle, Maturity);

These commands create a portfolio containing two cap instruments with the same
settlement and maturity dates, but with different strikes. In general, the input arguments
describing an instrument can be either a scalar, or a number of instruments (NumInst)-
by-1 vector in which each element corresponds to an instrument. Using a scalar assigns
the same value to all instruments passed in the call to instadd.

Use the instdisp command to display the contents of the instrument set:

instdisp(Port_1)

Index Type Strike Settle      Maturity    CapReset Basis Principal
1     Cap  0.06   08-Feb-2000 15-Jan-2003 1        0     100 
2     Cap  0.07   08-Feb-2000 15-Jan-2003 1        0     100 

Now add a single bond instrument to Port_1. The bond has a 4.0% coupon and the same
settlement and maturity dates as the cap instruments.

CouponRate = 0.04;
Port_1 = instadd(Port_1, 'Bond', CouponRate, Settle, Maturity);

Use instdisp again to see the resulting instrument set:
instdisp(Port_1)

Index Type Strike Settle         Maturity       CapReset Basis Principal
1     Cap  0.06   08-Feb-2000    15-Jan-2003    1        0     100      
2     Cap  0.07   08-Feb-2000    15-Jan-2003    1        0     100      
 
Index Type CouponRate Settle         Maturity     Period Basis EndMonthRule IssueDate ... Face
3     Bond 0.04       08-Feb-2000    15-Jan-2003  2      0     1            NaN       ... 100
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See Also
hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset

Related Examples
• “Portfolio Creation” on page 1-8
• “Instrument Construction and Portfolio Management” on page 1-20

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Pricing a Portfolio Using the Black-Derman-Toy Model
This example illustrates how the Financial Instruments Toolbox™ is used to create a
Black-Derman-Toy (BDT) tree and price a portfolio of instruments using the BDT model.

Create the Interest Rate Term Structure

The structure RateSpec is an interest-rate term structure that defines the initial forward-
rate specification from which the tree rates are derived. Use the information of
annualized zero coupon rates in the table below to populate the RateSpec structure.

From To Rate

01 Jan 2005 01 Jan 2006 0.0275

01 Jan 2005 01 Jan 2007 0.0312

01 Jan 2005 01 Jan 2008 0.0363

01 Jan 2005 01 Jan 2009 0.0415

01 Jan 2005 01 Jan 2010 0.0458

StartDates = ['01 Jan 2005'];
          
EndDates =   ['01 Jan 2006';
              '01 Jan 2007'; 
              '01 Jan 2008';
              '01 Jan 2009';
              '01 Jan 2010'];
          
ValuationDate = ['01 Jan 2005'];
Rates = [0.0275; 0.0312; 0.0363; 0.0415; 0.0458];
Compounding = 1;

RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDates,...
                     'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]

 Pricing a Portfolio Using the Black-Derman-Toy Model

1-13



       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 732313
    ValuationDate: 732313
            Basis: 0
     EndMonthRule: 1

Specify the Volatility Model

Create the structure VolSpec that specifies the volatility process with the following data.

Volatility = [0.005; 0.0055; 0.006; 0.0065; 0.007];
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = struct with fields:
             FinObj: 'BDTVolSpec'
      ValuationDate: 732313
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
    VolInterpMethod: 'linear'

Specify the Time Structure of the Tree

The structure TimeSpec specifies the time structure for an interest-rate tree. This
structure defines the mapping between the observation times at each level of the tree and
the corresponding dates.

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

BDTTimeSpec = struct with fields:
           FinObj: 'BDTTimeSpec'
    ValuationDate: 732313
         Maturity: [5x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Create the BDT Tree

Use the previously computed values for RateSpec, VolSpec and TimeSpec to create the
BDT tree.
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BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [732313 732678 733043 733408 733774]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Observe the Interest Rate Tree

Visualize the interest-rate evolution along the tree by looking at the output structure
BDTTree. BDTTree returns an inverse discount tree, which you can convert into an
interest-rate tree with the cvtree function.

BDTTreeR = cvtree(BDTTree);

Look at the upper branch and lower branch paths of the tree:

%Rate at root node:
RateRoot      = treepath(BDTTreeR.RateTree, [0]) 

RateRoot = 0.0275

%Rates along upper branch:
RatePathUp    = treepath(BDTTreeR.RateTree, [1 1 1 1]) 

RatePathUp = 5×1

    0.0275
    0.0347
    0.0460
    0.0560
    0.0612

%Rates along lower branch:
RatePathDown = treepath(BDTTreeR.RateTree, [2 2 2 2])
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RatePathDown = 5×1

    0.0275
    0.0351
    0.0472
    0.0585
    0.0653

You can also display a graphical representation of the tree to examine interactively the
rates on the nodes of the tree until maturity. The function treeviewer displays the
structure of the rate tree in the left pane. The tree visualization in the right pane is blank,
but by selecting Diagram and clicking on the nodes you can examine the rates along the
paths.

treeviewer(BDTTreeR)
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Create an Instrument Portfolio

Create a portfolio consisting of two bond instruments and a option on the 5% Bond.

% Bonds
CouponRate = [0.04;0.05]; 
Settle = '01 Jan 2005'; 
Maturity = ['01 Jan 2009';'01 Jan 2010'];
Period = 1;

% Option
OptSpec = {'call'};
Strike = 98;
ExerciseDates = ['01 Jan 2010'];
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AmericanOpt = 1;

InstSet = instadd('Bond',CouponRate, Settle,  Maturity, Period);
InstSet = instadd(InstSet,'OptBond', 2, OptSpec, Strike, ExerciseDates, AmericanOpt);

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.04       01-Jan-2005    01-Jan-2009    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.05       01-Jan-2005    01-Jan-2010    1      0     1            NaN       NaN             NaN            NaN       100 
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt
3     OptBond 2        call    98     01-Jan-2010    1          
 

Price the Portfolio Using a BDT Tree

Calculate the price of each instrument in the instrument set.

Price = bdtprice(BDTTree, InstSet)

Price = 3×1

   99.6374
  102.2460
    4.2460

The prices in the output vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the Valuation Date of the interest-rate tree.

In the Price vector, the first element, 99.6374, represents the price of the first instrument
(4% Bond); the second element, 102.2460, represents the price of the second instrument
(5% Bond), and 4.2460 represents the price of the Option.

See Also
hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset
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Related Examples
• “Portfolio Creation” on page 1-8
• “Instrument Construction and Portfolio Management” on page 1-20

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Instrument Construction and Portfolio Management

In this section...
“Instrument Constructors” on page 1-20
“Creating Instruments or Properties” on page 1-21
“Searching or Subsetting a Portfolio” on page 1-23

Instrument Constructors
The toolbox provides constructors for the most common financial instruments. A
constructor is a function that builds a structure dedicated to a certain type of object; in
this toolbox, an object is a type of market instrument.

The instruments and their constructors in this toolbox are listed below.

Instrument Constructor
Asian option instasian
Barrier option instbarrier
Bond instbond
Bond option instoptbnd
Arbitrary cash flow instcf
Compound option instcompound
Convertible bond instcbond
Fixed-rate note instfixed
Floating-rate note instfloat
Cap instcap
Floor instfloor
Lookback option instlookback
Stock option instoptstock
Swap instswap
Swaption instswaption
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Each instrument has parameters (fields) that describe the instrument. The toolbox
functions let you do the following:

• Create an instrument or portfolio of instruments.
• Enumerate stored instrument types and information fields.
• Enumerate instrument field data.
• Search and select instruments.

The instrument structure consists of various fields according to instrument type. A field is
an element of data associated with the instrument. For example, a bond instrument
contains the fields: CouponRate, Settle, Maturity. Also, each instrument has a field
that identifies the investment type (bond, cap, floor, and so on).

In reality, the set of parameters for each instrument is not fixed. You have the ability to
add additional parameters. These additional fields are ignored by the toolbox functions.
They may be used to attach additional information to each instrument, such as an internal
code describing the bond.

Parameters not specified when creating an instrument default to NaN, which, in general,
means that the functions using the instrument set (such as intenvprice or hjmprice)
will use default values. At the time of pricing, an error occurs if any of the required fields
is missing, such as Strike in a cap or CouponRate in a bond.

Creating Instruments or Properties
Use the instaddfield function to create a kind of instrument or to add new properties
to the instruments in an existing instrument collection.

To create a kind of instrument with instaddfield, you must specify three arguments:

• Type
• FieldName
• Data

Type defines the type of the new instrument, for example, Future. FieldName names
the fields uniquely associated with the new type of instrument. Data contains the data for
the fields of the new instrument.

An optional fourth argument is ClassList. ClassList specifies the data types of the
contents of each unique field for the new instrument.
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Use either syntax to create a kind of instrument using instaddfield:
InstSet = instaddfield('FieldName', FieldList, 'Data', DataList,...
'Type', TypeString)
InstSet = instaddfield('FieldName', FieldList, 'FieldClass',...
ClassList, 'Data' , DataList, 'Type', TypeString)

To add new instruments to an existing set, use:
InstSetNew = instaddfield(InstSetOld, 'FieldName', FieldList,...
'Data', DataList, 'Type', TypeString)

As an example, consider a futures contract with a delivery date of July 15, 2000, and a
quoted price of $104.40. Since Financial Instruments Toolbox software does not directly
support this instrument, you must create it using the function instaddfield. Use these
parameters to create instruments:

• Type: Future
• Field names: Delivery and Price
• Data: Delivery is July 15, 2000, and price is $104.40.

Enter the data into MATLAB software:

Type = 'Future';
FieldName = {'Delivery', 'Price'};
Data = {'Jul-15-2000', 104.4};

Finally, create the portfolio with a single instrument:

Port = instaddfield('Type', Type, 'FieldName', FieldName,... 
'Data', Data);

Now use the function instdisp to examine the resulting single-instrument portfolio:

instdisp(Port)

Index Type   Delivery    Price
1     Future Jul-15-2000 104.4

Because your portfolio Port has the same structure as those created using the function
instadd, you can combine portfolios created using instadd with portfolios created
using instaddfield. For example, you can now add two cap instruments to Port with
instadd.
Strike = [0.06; 0.07];
Settle = '08-Feb-2000';
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Maturity = '15-Jan-2003';
 
Port = instadd(Port, 'Cap', Strike, Settle, Maturity);

View the resulting portfolio using instdisp.
instdisp(Port)

Index   Type   Delivery      Price
1       Future 15-Jul-2000   104.4
 
Index Type Strike Settle      Maturity    CapReset  Basis Principal
2     Cap  0.06   08-Feb-2000 15-Jan-2003 1         0     100 
3     Cap  0.07   08-Feb-2000 15-Jan-2003 1         0     100 

Searching or Subsetting a Portfolio
Financial Instruments Toolbox provides functions that enable you to:

• Find specific instruments within a portfolio.
• Create a subset portfolio consisting of instruments selected from a larger portfolio.

The instfind function finds instruments with a specific parameter value; it returns an
instrument index (position) in a large instrument set. The instselect function, on the
other hand, subsets a large instrument set into a portfolio of instruments with designated
parameter values; it returns an instrument set (portfolio) rather than an index.

instfind

The general syntax for instfind is
IndexMatch = instfind(InstSet, 'FieldName', FieldList, 'Data',...
DataList, 'Index', IndexSet, 'Type', TypeList)

InstSet is the instrument set to search. Within InstSet instruments categorized by
type, each type can have different data fields. The stored data field is a row vector or
character vector for each instrument.

The FieldList, DataList, and TypeList arguments indicate values to search for in
the FieldName, Data, and Type data fields of the instrument set. FieldList is a cell
array of field names specific to the instruments. DataList is a cell array or matrix of
acceptable values for one or more parameters specified in FieldList. FieldName and
Data (therefore, FieldList and DataList) parameters must appear together or not at
all.
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IndexSet is a vector of integer indexes designating positions of instruments in the
instrument set to check for matches; the default is all indices available in the instrument
set. TypeList is a character vector or cell array of character vectors restricting
instruments to match one of the TypeList types; the default is all types in the
instrument set.

IndexMatch is a vector of positions of instruments matching the input criteria.
Instruments are returned in IndexMatch if all the FieldName, Data, Index, and Type
conditions are met. An instrument meets an individual field condition if the stored
FieldName data matches any of the rows listed in the DataList for that FieldName.
instfind Examples

The examples use the provided MAT-file deriv.mat.

The MAT-file contains an instrument set, HJMInstSet, that contains eight instruments of
seven types.

load deriv.mat
instdisp(HJMInstSet)

Index Type CouponRate Settle       Maturity     Period Basis ...  Name      Quantity
1    Bond 0.04       01-Jan-2000  01-Jan-2003    1     NaN   ... 4% bond     100 
2    Bond 0.04       01-Jan-2000  01-Jan-2004    2     NaN   ... 4% bond      50 

Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name        Quantity
3     OptBond 2        call    101    01-Jan-2003    NaN         Option 101   -50     
 
Index Type  CouponRate Settle      Maturity     FixedReset Basis Principal Name     Quantity
4     Fixed 0.04       01-Jan-2000 01-Jan-2003    1        NaN    NaN     4% Fixed   80 
 
Index Type  Spread Settle      Maturity   FloatReset  Basis Principal Name        Quantity
5     Float 20     01-Jan-2000 01-Jan-2003 1           NaN   NaN       20BP Float   8  
 
Index Type Strike Settle         Maturity      CapReset Basis Principal Name     Quantity
6     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap   30  
 
Index Type  Strike Settle      Maturity     FloorReset Basis Principal Name       Quantity
7     Floor 0.03 01-Jan-2000 01-Jan-2004    1          NaN   NaN         3% Floor   40 
 
Index Type LegRate   Settle     Maturity     LegReset Basis Principal LegType  Name   Quantity

8     Swap [0.06 20] 01-Jan-2000  01-Jan-2003  [1  1]   NaN   NaN     [NaN]  6%/20BP Swap  10

Find all instruments with a maturity date of January 01, 2003.

Mat2003 = ... 
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

1 Getting Started

1-24



     1
     4
     5
     8

Find all cap and floor instruments with a maturity date of January 01, 2004.

CapFloor = instfind(HJMInstSet,... 
'FieldName','Maturity','Data','01-Jan-2004', 'Type',... 
{'Cap';'Floor'})

CapFloor =

     6
     7

Find all instruments where the portfolio is long or short a quantity of 50.

Pos50 = instfind(HJMInstSet,'FieldName',... 
'Quantity','Data',{'50';'-50'})

Pos50 =

     2
     3

instselect

The syntax for instselect is the same syntax as for instfind. instselect returns a
full portfolio instead of indexes into the original portfolio. Compare the values returned by
both functions by calling them equivalently.

Previously you used instfind to find all instruments in HJMInstSet with a maturity
date of January 01, 2003.

Mat2003 = ... 
instfind(HJMInstSet,'FieldName','Maturity','Data','01-Jan-2003')

Mat2003 =

     1
     4
     5
     8
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Now use the same instrument set as a starting point, but execute the instselect
function instead, to produce a new instrument set matching the identical search criteria.

Select2003 = ... 
instselect(HJMInstSet,'FieldName','Maturity','Data',... 
'01-Jan-2003')

instdisp(Select2003)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
2     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
3     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
4     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      

instselect Examples

These examples use the portfolio ExampleInst provided with the MAT-file
InstSetExamples.mat.

load InstSetExamples.mat
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    
 
Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6        

The instrument set contains three instrument types: Option, Futures, and TBill. Use
instselect to make a new instrument set containing only options struck at 95. In other
words, select all instruments containing the field Strike and with the data value for that
field equal to 95.
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InstSet = instselect(ExampleInst,'FieldName','Strike','Data',95);

instdisp(InstSet)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option  95     2.9  Put      0    

You can use all the various forms of instselect and instfind to locate specific
instruments within this instrument set.

See Also
hedgeopt | hedgeslf | instadd | instaddfield | instdelete | instdisp |
instfields | instfind | instget | instgetcell | instlength | instselect |
instsetfield | insttypes | intenvset

Related Examples
• “Portfolio Creation” on page 1-8
• “Hedging Functions” on page 4-4
• “Hedging with hedgeopt” on page 4-5
• “Self-Financing Hedges with hedgeslf” on page 4-12
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model”
• “Specifying Constraints with ConSet” on page 4-32
• “Portfolio Rebalancing” on page 4-34
• “Hedging with Constrained Portfolios” on page 4-37

More About
• “Hedging” on page 4-2
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Interest-Rate Derivatives

• “Supported Interest-Rate Instruments” on page 2-2
• “Work with Negative Interest Rates” on page 2-22
• “Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-27
• “Calibrate the SABR Model” on page 2-36
• “Price a Swaption Using the SABR Model” on page 2-42
• “Overview of Interest-Rate Tree Models” on page 2-50
• “Understanding the Interest-Rate Term Structure” on page 2-55
• “Interest-Rate Term Conversions” on page 2-62
• “Modeling the Interest-Rate Term Structure” on page 2-67
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Understanding Interest-Rate Tree Models” on page 2-79
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Computing Instrument Sensitivities” on page 2-108
• “Calibrating Hull-White Model Using Market Data” on page 2-111
• “Interest-Rate Derivatives Using Closed-Form Solutions” on page 2-121
• “Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
• “Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-142
• “Graphical Representation of Trees” on page 2-158
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Supported Interest-Rate Instruments
In this section...
“Bond” on page 2-2
“Convertible Bond” on page 2-3
“Stepped Coupon Bonds” on page 2-5
“Sinking Fund Bonds” on page 2-5
“Bonds with an Amortization Schedule” on page 2-6
“Bond Options” on page 2-6
“Bond with Embedded Options” on page 2-7
“Stepped Coupon Bonds with Calls and Puts” on page 2-8
“Sinking Fund Bonds with an Embedded Option” on page 2-9
“Fixed-Rate Note” on page 2-10
“Floating-Rate Note” on page 2-10
“Floating-Rate Note with an Amortization Schedule” on page 2-11
“Floating-Rate Note with Caps, Collars, and Floors” on page 2-11
“Floating-Rate Note Options” on page 2-12
“Floating-Rate Note with Embedded Options” on page 2-13
“Cap” on page 2-13
“Floor” on page 2-14
“Range Note” on page 2-15
“Swap” on page 2-15
“Swap with an Amortization Schedule” on page 2-16
“Forward Swap” on page 2-17
“Swaption” on page 2-17
“Bond Futures” on page 2-18

Bond
A bond is a long-term debt security with a preset interest-rate and maturity. At maturity,
you must pay the principal and interest.
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The price or value of a bond is determined by discounting the expected cash flows of the
bond to the present, using the appropriate discount rate. The following equation
represents the relationship of the expected cash flows and discount rate:
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where:

B0 is the bond value.

C is the annual coupon payment.

F is the face value of the bond.

r is the required return on the bond.

t is the number of years remaining until maturity.

Financial Instruments Toolbox supports the following for pricing and specifying a bond.

Function Purpose
bondbybdt Price a bond using a BDT interest-rate tree.
bondbyhw Price a bond using an HW interest-rate tree.
bondbybk Price a bond using a BK interest-rate tree.
bondbyhjm Price a bond using an HJM interest-rate tree.
bondbycir Price bonds using a CIR tree model.
bondbyzero Price a bond using a set of zero curves.
instbond Construct a bond instrument.

Convertible Bond
A convertible bond is a financial instrument that combines equity and debt features. It is a
bond with the embedded option to turn it into a fixed number of shares. The holder of a
convertible bond has the right, but not the obligation, to exchange the convertible
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security for a predetermined number of equity shares at a preset price. The debt
component is derived from the coupon payments and the principal. The equity component
is provided by the conversion feature.

Convertible bonds have several defining features:

• Coupon — The coupon in convertible bonds are typically lower than coupons in vanilla
bonds since investors are willing to take the lower coupon for the opportunity to
participate in the company’s stock via the conversion.

• Maturity — Most convertible bonds are issued with long-stated maturities. Short-term
maturity convertible bonds usually do not have call or put provisions.

• Conversion ratio — Conversion ratio is the number of shares that the holder of the
convertible bond receives from exercising the call option of the convertible bond:

Conversion ratio = par value convertible bond/conversion price
of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares of
stock. This also implies a conversion price of $40 (1000/25). This, $40, would be the
price at which the owner would buy the shares. This can be expressed as a ratio or as
the conversion price and is specified in the contract along with other provisions.

• Option type:

• Callable Convertible: a convertible bond that is callable by the issuer. The issuer of
the bond forces conversion, removing the advantage that conversion is at the
discretion of the bondholder. Upon call, the bondholder can either convert the bond
or redeem at the call price. This option enables the issuer to control the price of
the convertible bond and if necessary refinance the debt with a new cheaper one.

• Puttable Convertible: a convertible bond with a put feature that allows the
bondholder to sell back the bond at a premium on a specific date. This option
protects the holder against rising interest rates by reducing the year to maturity.

Function Purpose
cbondbycrr Price convertible bonds using a CRR binomial tree with the

Tsiveriotis and Fernandes model.
cbondbyeqp Price convertible bonds using an EQP binomial tree with the

Tsiveriotis and Fernandes model.
cbondbyitt Price convertible bonds using an implied trinomial tree with the

Tsiveriotis and Fernandes model.
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Function Purpose
cbondbystt Price convertible bonds using a standard trinomial tree with

the Tsiveriotis and Fernandes model.
instcbond Construct a cbond instrument for a convertible bond.

Stepped Coupon Bonds
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time. With these instruments, coupons increase (step up) or decrease (step down) at
specific times during the life of the bond. For more information on options features (call
and puts), see “Stepped Coupon Bonds with Calls and Puts” on page 2-8. The following
functions have a modified CouponRate argument to support a new variable coupon
schedule allowing pricing of stepped coupon bonds.

Function Purpose
bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
bondbycir Price bonds using a CIR tree model.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instdisp Display instruments stored in a variable.

Sinking Fund Bonds
A sinking fund bond is a coupon bond with a sinking fund provision. This provision
obligates the issuer to amortize portions of the principal before maturity, affecting bond
prices since the time of the principal repayment changes. This means that investors
receive the coupon and a portion of the principal paid back over time. These types of
bonds reduce credit risk, since it lowers the probability of investors not receiving their
principal payment at maturity. For more information on options support for sinking fund
bonds, see “Sinking Fund Bonds with an Embedded Option” on page 2-9. The following
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functions have a modified Face argument to support a variable face schedule for pricing
bonds with a sinking provisions.

Function Purpose
bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
bondbycir Price bonds using a CIR tree model.
instoptbnd Construct a bond option instrument.
instbond Construct a bond instrument.
instdisp Display instruments stored in a variable.

Bonds with an Amortization Schedule
A bond with an amortization schedule repays part of the principal (face value) along with
the coupon payments. An amortizing bond is a special case of a sinking fund bond when
there is no market purchase option and no call provision. The following functions have a
modified Face argument to support an amortization schedule.

Function Purpose
bondbyzero Price bonds using a term structure model.
bondbybdt Price bonds using a BDT tree model.
bondbyhjm Price bonds using an HJM tree model.
bondbyhw Price bonds using an HW tree model.
bondbybk Price bonds using a BK tree model.
bondbycir Price bonds using a CIR tree model.

Bond Options
Financial Instruments Toolbox supports three types of put and call options on bonds:
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• American option: An option that you exercise any time until its expiration date.
• European option: An option that you exercise only on its expiration date.
• Bermuda option: A Bermuda option resembles a hybrid of American and European

options. You can exercise it on predetermined dates only, usually monthly.

Financial Instruments Toolbox supports the following for pricing and specifying a bond
option.

Function Purpose
optbndbybdt Price a bond option price using a BDT interest-rate

tree.
optbndbyhw Price a bond option price using an HW interest-rate

tree.
optbndbybk Price a bond option price using a BK interest-rate tree.
optbndbyhjm Price a bond option price using an HJM interest-rate

tree.
optbndbycir Price a bond option price using a CIR interest-rate tree.
instoptbnd Construct a bond option instrument.

Bond with Embedded Options
A bond with embedded options allows the issuer to buy back or redeem the bond at a
predetermined price at specified future dates. Financial Instruments Toolbox supports
American, European, and Bermuda callable and puttable bonds.

The pricing for a bond with embedded options is as follows:

•
For a callable bond: PriceCallableBond = BondPrice - BondCallOption

•
For a puttable bond: PricePuttableBond = PriceBond + PricePutOption

In addition, Option Adjusted Spread (OAS) is a useful way to value and compare securities
with embedded options, like callable or puttable bonds. For more information on OAS, see
“OAS for Callable and Puttable Bonds” on page 2-76.

Financial Instruments Toolbox supports the following for pricing and specifying a bond
with embedded options.
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Function Purpose
optembndbybdt Price a bond with embedded options using a BDT

interest-rate tree.
optembndbyhw Price a bond with embedded options using an HW

interest rate tree.
optembndbybk Price a bond with embedded options using a BK

interest-rate tree.
optembndbyhjm Price a bond with embedded options using an HJM

interest-rate tree.
optembndbycir Price a bond with embedded options using a CIR

interest-rate tree.
instoptembnd Construct a bond-with-embedded-options instrument.
oasbybdt Determine an option adjusted spread using Black-

Derman-Toy model.
oasbybk Determine an option adjusted spread using Black-

Karasinski model.
oasbyhjm Determine an option adjusted spread using Heath-

Jarrow-Morton model.
oasbyhw Determine an option adjusted spread using Hull-White

model.
oasbycir Determine an option adjusted spread using Cox-

Ingersoll-Ross model.
agencyoas Compute the OAS of the callable bond using the

Agency OAS model.
agencyprice Price the callable bond OAS using the Agency OAS

model.

Stepped Coupon Bonds with Calls and Puts
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time. For more information on stepped coupon bonds, see “Stepped Coupon Bonds”
on page 2-5. Stepped coupon bonds can have options features (call and puts). The
following functions have a modified CouponRate argument to support a new variable
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coupon schedule allowing pricing stepped coupon bonds with callable and puttable
features:

Function Purpose
optembndbybdt Price bonds with embedded options using a BDT model tree.
optembndbyhjm Price bonds with embedded options using an HJM model tree.
optembndbybk Price bonds with embedded options using a BK model tree.
optembndbyhw Price bonds with embedded options using an HW model tree.
optembndbycir Price bonds with embedded options using a CIR model tree.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instoptembnd Construct a bond with an embedded option instrument.
instdisp Display instruments stored in a variable.

Sinking Fund Bonds with an Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision. For more information
on sinking fund bonds, see “Sinking Fund Bonds” on page 2-5. The sinking fund bond can
have a sinking fund option provision allowing the issuer to retire the sinking fund
obligation either by purchasing the bonds to be redeemed from the market or by calling
the bond via a sinking fund call, whichever is cheaper.

If interest rates are high, then the issuer buys back the required amount of bonds from
the market since bonds are cheap. But if interest rates are low (bond prices are high),
then most likely the issuer buys the bonds at the call price. Unlike a call feature, however,
if a bond has a sinking fund option provision, it is an obligation, not an option, for the
issuer to buy back the increments of the issue as stated. Because of this, a sinking fund
bond trades at a lower price than a nonsinking fund bond. The following functions have a
modified Face argument to support a variable face schedule for pricing bonds with a
sinking fund option provision.

Function Purpose
optembndbybdt Price bonds with embedded options using a BDT model tree.
optembndbyhjm Price bonds with embedded options using an HJM model tree.
optembndbybk Price bonds with embedded options using a BK model tree.
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Function Purpose
optembndbyhw Price bonds with embedded options using an HW model tree.
optembndbycir Price bonds with embedded options using a CIR model tree.
instbond Construct a bond instrument.
instoptbnd Construct a bond option instrument.
instdisp Display instruments stored in a variable.

Fixed-Rate Note
A fixed-rate note is a long-term debt security with a preset interest rate and maturity, by
which the interest must be paid. The principal may or may not be paid at maturity. In
Financial Instruments Toolbox, the principal is always paid at maturity.

Function Purpose
fixedbybdt Price a fixed-rate note using a BDT interest-rate tree.
fixedbyhw Price a fixed-rate note using an HW interest-rate tree.
fixedbybk Price a fixed-rate note using a BK interest-rate tree.
fixedbyhjm Price a fixed-rate note using an HJM interest-rate tree.
fixedbycir Price a fixed-rate note using a CIR interest-rate tree.
fixedbyzero Price a fixed-rate note using a set of zero curves.
instfixed Construct a fixed-rate instrument.

Floating-Rate Note
A floating-rate note is a security like a bond, but the interest rate of the note is reset
periodically, relative to a reference index rate, to reflect fluctuations in market interest
rates.

Function Purpose
floatbybdt Price a floating-rate note using a BDT interest-rate

tree.
floatbyhw Price a floating-rate note using an HW interest-rate

tree.
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Function Purpose
floatbybk Price a floating-rate note using a BK interest-rate tree.
floatbyhjm Price a floating-rate note using an HJM interest-rate

tree.
floatbycir Price a floating-rate note using a CIR interest-rate tree.
floatbyzero Price a floating-rate note using a set of zero curves.
instfloat Construct a floating-rate note instrument.

Floating-Rate Note with an Amortization Schedule
A floating-rate note with an amortization schedule repays part of the principal (face value)
along with the coupon payments. The following functions have a Principal argument to
support an amortization schedule.

Function Purpose
floatbyzero Price floating-rate note from set of zero curves.
floatbybdt Price floating-rate note from Black-Derman-Toy interest-rate

tree.
floatbyhjm Price floating-rate note from Heath-Jarrow-Morton interest-rate

tree.
floatbyhw Price floating-rate note from Hull-White interest-rate tree.
floatbybk Price floating-rate note from Black-Karasinski interest-rate

tree.
floatbycir Price a floating-rate note using a CIR interest-rate tree.

Floating-Rate Note with Caps, Collars, and Floors
A floating-rate note with caps, collars, and floors. This type of instrument can carry
restrictions on the maximum (cap) or minimum (floor) coupon rate paid. A cap is an
unattractive feature for an investor, since they constrain the coupon rates from
increasing. A floor is an attractive feature, since it allows investors to get a minimum
coupon rate when market rates decrease below a certain level. Also, a floating-rate note
can have a collar which is a combination of a cap and a floor together. The following
functions have a CapRate and FloorRate argument to support a capped, collared, or
floored floating-rate note.
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Function Purpose
floatbybdt Price a capped floating-rate note from a Black-Derman-Toy

interest-rate tree.
floatbyhjm Price a capped floating-rate note from a Heath-Jarrow-Morton

interest-rate tree.
floatbyhw Price a capped floating-rate note from a Hull-White interest-

rate tree.
floatbybk Price a capped floating-rate note from a Black-Karasinski

interest-rate tree.
floatbycir Price a floating-rate note using a CIR interest-rate tree.
instfloat Create a capped floating-rate note instrument.
instadd Add a capped floating-rate note instrument to a portfolio.

Floating-Rate Note Options
Financial Instruments Toolbox supports three types of put and call options on floating-rate
notes:

• American option — An option that you exercise any time until its expiration date.
• European option — An option that you exercise only on its expiration date.
• Bermuda option — A Bermuda option resembles a hybrid of American and European

options; you can only exercise it on predetermined dates, usually monthly.

Financial Instruments Toolbox supports the following for pricing and specifying a floating-
rate note option:

Function Purpose
optfloatbybdt Price an option for floating-rate note using a Black-Derman-Toy

interest-rate tree.
optfloatbyhjm Price an option for floating-rate note using a Heath-Jarrow-

Morton interest-rate tree.
optfloatbyhw Price an option for floating-rate note using a Hull-White

interest-rate tree.
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Function Purpose
optfloatbycir Price an option for floating-rate note using a Cox-Ingersoll-Ross

interest-rate tree.
optfloatbybk Price an option for floating-rate note using a Black-Karasinski

interest-rate tree.
instoptfloat Define the option instrument for floating-rate note.

Floating-Rate Note with Embedded Options
A floating-rate note with an embedded option enables floating-rate notes to have early
redemption features. An FRN with an embedded option gives investors or issuers the
option to retire the outstanding principal prior to maturity. An embedded call option gives
the right to retire the note prior to the maturity date (callable floater), and an embedded
put option gives the right to sell the note back at a specific price (puttable floater).

Financial Instruments Toolbox supports the following for pricing and specifying a floating-
rate note with an embedded option:

Function Purpose
optemfloatbybdt Price an embedded option for floating-rate note using a Black-

Derman-Toy interest-rate tree.
optemfloatbybk Price an embedded option for floating-rate note using a Black-

Karasinski interest-rate tree.
optemfloatbyhjm Price an embedded option for floating-rate note using a Heath-

Jarrow-Morton interest-rate tree.
optemfloatbyhw Price an embedded option for floating-rate note using a Hull-

White interest-rate tree.
optemfloatbycir Price an embedded option for floating-rate note using a Cox-

Ingersoll-Ross interest-rate tree.
instoptemfloat Define the floating-rate note with embedded option instrument.

Cap
A cap is a contract that includes a guarantee that sets the maximum interest rate to be
paid by the holder, based on an otherwise floating interest rate. The payoff for a cap is:
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max( , )CurrentRate CapRate- 0

Function Purpose
capbybdt Price a cap instrument using a BDT interest-rate tree.
capbyhw Price a cap instrument using an HW interest-rate tree.
capbybk Price a cap instrument using a BK interest-rate tree.
capbyhjm Price a cap instrument using an HJM interest-rate tree.
capbycir Price a cap instrument using a CIR interest-rate tree.
capbyblk Price a cap instrument using the Black option pricing

model.
capbylg2f Price a cap using Linear Gaussian two-factor model.
capbynormal Price a cap instrument with negative rates using the

Normal (Bachelier) option pricing model.
capvolstrip Strip caplet volatilities from flat cap volatilities.
instcap Construct a cap instrument.

Floor
A floor is a contract that includes a guarantee setting the minimum interest rate to be
received by the holder, based on an otherwise floating interest rate. The payoff for a floor
is:

max( , )FloorRate CurrentRate- 0

Function Purpose
floorbybdt Price a floor instrument using a BDT interest-rate tree.
floorbyhw Price a floor instrument using an HW interest-rate tree.
floorbybk Price a floor instrument using a BK interest-rate tree.
floorbyhjm Price a floor instrument using an HJM interest-rate

tree.
floorbycir Price a floor instrument using a CIR interest-rate tree.
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Function Purpose
floorbyblk Price a floor instrument using the Black option pricing

model.
floorbylg2f Price a floor using Linear Gaussian two-factor model.
floorbynormal Price a floor instrument with negative rates using the

Normal (Bachelier) option pricing model.
floorvolstrip Strip floorlet volatilities from flat floor volatilities.
instfloor Construct a floor instrument.

Range Note
A range note is a structured (market-linked) security whose coupon-rate is equal to the
reference rate as long as the reference rate is within a certain range. If the reference rate
is outside of the range, the coupon-rate is 0 for that period. This type of instrument
entitles the holder to cash flows that depend on the level of some reference interest-rate
that is floored to be positive and gives the holder of the note direct exposure to the
reference rate. This type of instrument is useful for cases where you believe that interest
rates will stay within a certain range. In return for the drawback that no interest is paid
for the time the range is left, a range note offers higher coupon rates than comparable
standard products, like vanilla floating notes.

Function Purpose
instrangefloat Create a range note instrument.
rangefloatbybdt Price range floating note using a BDT tree.
rangefloatbybk Price range floating note using a BK tree.
rangefloatbyhjm Price range floating note using an HJM tree.
rangefloatbyhw Price range floating note using an HW tree.
rangefloatbycir Price range floating note using a CIR tree.

Swap
A swap is contract between two parties obligating the parties to exchange future cash
flows. This toolbox version handles only the vanilla swap, which is composed of a floating-
rate leg and a fixed-rate leg.
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Function Purpose
swapbybdt Price a swap instrument using a BDT interest-rate tree.
swapbyhw Price a swap instrument using an HW interest-rate

tree.
swapbybk Price a swap instrument using a BK interest-rate tree.
swapbyhjm Price a swap instrument using an HJM interest-rate

tree.
swapbycir Price a swap instrument using a CIR interest-rate tree.
swapbyzero Price a swap instrument using a set of zero curves and

price cross currency swaps.
instswap Construct a swap instrument.

Swap with an Amortization Schedule
A swap with an amortization schedule repays part of the principal (face value) along with
the coupon payments. A swap with an amortization schedule is used to manage interest
rate risk and serve as a cash flow management tool. For this particular type of swap, the
notional amount decreases over time. This means that interest payments decrease not
only on the floating leg but also on the fixed leg. The following swap functions have a
Principal argument to support an amortization schedule.

Function Purpose
swapbyzero Price swap instrument from set of zero curves.
swapbybdt Price swap instrument from Black-Derman-Toy interest-rate

tree.
swapbyhjm Price swap instrument from Heath-Jarrow-Morton interest-rate

tree.
swapbyhw Price swap instrument from Hull-White interest-rate tree.
swapbybk Price swap instrument from Black-Karasinski interest-rate tree.
swapbycir Price a swap instrument using a CIR interest-rate tree.
instswap Construct swap instrument.
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Forward Swap
In a forward interest-rate swap, a fixed interest-rate loan is exchanged for a floating
interest-rate loan at a future specified date. The following functions have a StartDate
argument to support the future date for the forward swap.

Function Purpose
swapbyzero Price a forward swap from a zero curve.
swapbybdt Price a forward swap from a Black-Derman-Toy interest-rate

tree.
swapbyhjm Price a forward swap from a Heath-Jarrow-Morton interest-rate

tree.
swapbyhw Price a forward swap from a Hull-White interest-rate tree.
swapbybk Price a forward swap from a Black-Karasinski interest-rate tree.
swapbycir Price a swap instrument using a CIR interest-rate tree.
instswap Create a forward swap instrument.
instadd Add a capped floating-rate note instrument to a portfolio.

Swaption
A swaption is an option to enter into an interest-rate swap contract. A call swaption
allows the option buyer to enter into an interest-rate swap where the buyer of the option
pays the fixed-rate and receives the floating-rate. A put swaption allows the option buyer
to enter into an interest-rate swap where the buyer of the option receives the fixed-rate
and pays the floating-rate.

Function Purpose
swaptionbybdt Price a swaption instrument using a BDT interest-rate

tree.
swaptionbyhw Price a swaption instrument using an HW interest-rate

tree.
swaptionbybk Price a swaption instrument using a BK interest-rate

tree.
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Function Purpose
swaptionbyhjm Price a swaption instrument using an HJM interest-rate

tree.
swaptionbycir Price a swaption instrument using a CIR interest-rate

tree.
swaptionbyblk Price swaptions using the Black model with a forward

on a swap.
swaptionbylg2f Price European swaptions using Linear Gaussian two-

factor model.
swaptionbynormal Price swaptions for negative rates using the Normal

(Bachelier) model with a forward on a swap.
instswaption Construct a swaption instrument.

Use swaptionbyblk to price a swaption using the Black model. The Black model is
standard model used in the swaption market when pricing European swaptions. This type
of model is widely used by when speed is important to quickly obtain a price at settlement
date, even if the price is less accurate than other swaption pricing models based on
interest-rate tree models.

Bond Futures
Bond futures are futures contracts where the commodity for delivery is a government
bond. There are established global markets for government bond futures. Bond futures
provide a liquid alternative for managing interest-rate risk.

In the US market, the Chicago Mercantile Exchange (CME) offers futures on Treasury
bonds and notes with maturities of 2, 5, 10, and 30 years. Typically, the following bond
future contracts from the CME have maturities of 3, 6, 9, and 12 months:

• 30-year U.S. Treasury bond
• 10-year U.S. Treasury bond
• 5-year U.S. Treasury bond
• 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver to the long
position in one of many possible existing Treasury bonds. For example, in a 30-year
Treasury bond future, the short position must deliver a Treasury bond with at least 15
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years to maturity. Because these bonds have different values, the bond future contract is
standardized by computing a conversion factor. The conversion factor normalizes the
price of a bond to a theoretical bond with a coupon of 6%. The price of a bond future
contract is represented as:

InvoicePrice FutPrice CF AI= ¥ +

where:

FutPrice is the price of the bond future.

CF is the conversion factor for a bond to deliver in a futures contract.

AI is the accrued interest.

The short position in a futures contract has the option of which bond to deliver and, in the
US bond market, when in the delivery month to deliver the bond. The short position
typically chooses to deliver the bond known as the Cheapest to Deliver (CTD). The CTD
bond most often delivers on the last delivery day of the month.

Financial Instruments Toolbox supports the following bond futures:

• US Treasury bonds and notes
• German Bobl, Bund, Buxl, and Schatz
• UK gilts
• Japanese government bonds (JGBs)

The functions supporting all bond futures are:

Function Purpose
convfactor Calculates bond conversion factors for US Treasury bonds,

German Bobl, Bund, Buxl, and Schatz, UK gilts, and JGBs.
bndfutprice Prices bond future given repo rates.
bndfutimprepo Calculates implied repo rates for a bond future given price.

The functions supporting US Treasury bond futures are:
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Function Purpose
tfutbyprice Calculates future prices of Treasury bonds given the spot price.
tfutbyyield Calculates future prices of Treasury bonds given current yield.
tfutimprepo Calculates implied repo rates for the Treasury bond future

given price.
tfutpricebyrepo Calculates Treasury bond futures price given the implied repo

rates.
tfutyieldbyrepo Calculates Treasury bond futures yield given the implied repo

rates.

For more information on bond futures, see “Bond Futures” on page 7-10.

See Also
agencyoas | agencyprice | bdtprice | bdtsens | bdttimespec | bdttree |
bdtvolspec | bkprice | bksens | bktimespec | bktree | bkvolspec |
blackvolbyrebonato | blackvolbysabr | bndfutimprepo | bndfutprice |
bondbybdt | bondbybk | bondbyhjm | bondbyhw | bondbyzero | capbybdt | capbybk |
capbyblk | capbyhjm | capbyhw | capbylg2f | cfbybdt | cfbybk | cfbyhjm | cfbyhw
| cfbyzero | convfactor | fixedbybdt | fixedbybk | fixedbyhjm | fixedbyhw |
fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw | floatbyzero |
floatdiscmargin | floatmargin | floorbybdt | floorbybk | floorbyblk |
floorbyhjm | floorbyhw | floorbylg2f | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbycap | hwcalbyfloor | hwcalbyfloor
| hwprice | hwsens | hwtimespec | hwtree | hwvolspec | instbond | instcap |
instcf | instfixed | instfloat | instfloor | instoptbnd | instoptembnd |
instoptemfloat | instoptfloat | instrangefloat | instswap | instswaption |
intenvprice | intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt |
oasbybk | oasbyhjm | oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm |
optbndbyhw | optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
optsensbysabr | rangefloatbybdt | rangefloatbybk | rangefloatbyhjm |
rangefloatbyhw | swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero |
swaptionbybdt | swaptionbybk | swaptionbyblk | swaptionbyhjm |
swaptionbyhw | swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo |
tfutpricebyrepo | tfutyieldbyrepo
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Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-50
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Graphical Representation of Trees” on page 2-158
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Understanding Interest-Rate Tree Models” on page 2-79
• “Understanding the Interest-Rate Term Structure” on page 2-55

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Work with Negative Interest Rates
In this section...
“Interest-Rate Modeling Options for Negative Rates” on page 2-22
“Modeling Negative Rates” on page 2-22

Interest-Rate Modeling Options for Negative Rates
Financial Instruments Toolbox computes prices for caps, floors, and swaptions when
modeling for negative interest-rates using the following:

Support the Normal volatility model (Bachelier model) for interest-rate options to handle
negative rates:

• swaptionbynormal
• capbynormal
• floorbynormal
• normalvolbysabr

The following functions provide an optional Shift argument to support the shifted Black
model and the shifted SABR model for interest-rate options to handle negative rates:

• blackvolbysabr (Shifted SABR)
• optsensbysabr (Shifted SABR)
• swaptionbyblk (Shifted Black)
• capbyblk (Shifted Black)
• floorbyblk (Shifted Black)
• capvolstrip (Shifted Black)
• floorvolstrip (Shifted Black)

Modeling Negative Rates
The original authors of the SABR model provided a closed form approximation of the
implied Black volatility in terms of the SABR model parameters (known as “Hagan’s
formula”), so that the option price could be computed by inserting the computed SABR
Black volatility into the Black formula:
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Call K T Black F K r T F K Tcall Black( , ) ( , , , , ( , , , , , , ))= s a b r n

However, these methods started to break down with the introduction of negative interest
rates, due to the assumption of the Black model that the underlying rates are lognormally
distributed (and therefore cannot be negative).

In addition, even when the underlying rate is positive, the closed form approximation of
the SABR implied Black volatility (Hagan et al., 2002) is known to become increasingly
inaccurate as the strike approaches zero. Even without crossing the zero strike boundary,
the implied probability density of the underlying rate at option expiry can become
negative at low positive strikes, although probability densities clearly should not be
negative:

Options with negative strikes cannot be represented by Black volatilities. To work around
this problem, the market started to quote the cap, floor, and swaption prices also in terms
of either Normal volatilities or Shifted Black volatilities. Instead of the Black model, both
types of volatilities come from alternative models that allow negative rates.
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Normal Model

The Normal volatilities are associated with the Normal model (also known as the
Bachelier model):

where the underlying rates are assumed to be normally distributed. Unlike in a lognormal
model (where rates have a lower bound), the rates in the Normal model can be both
infinitely positive and infinitely negative.

Shifted Black

The Shifted Black volatilities are associated with the Shifted Black model (also known as
“Displaced Diffusion” or “Shifted Lognormal” model):

The Shifted Black model is essentially the same as the Black model, except that it models
the movements of (F + Shift) as the underlying asset, instead of F (where F is the forward
swap rate in the case of swaptions, and the forward rate in the case of caplets and
floorlets). So, the Shifted Black model allows negative rates, with a fixed negative lower
bound defined by the amount of shift, that is, the zero lower bound of the Black model has
been shifted.

Shifted SABR

The introduction of negative interest rates also called for an update in the method for
interpolating the volatilities quoted in the market. The following shows the connections
between the volatilities and the SABR models:
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As shown, the Black and Normal volatility approximations allow you to use the SABR
model with the Black and Normal model option pricing formulas. However, although the
Normal model itself allows negative rates and the SABR model has an implied Normal
volatility approximation, the underlying dynamics of the SABR model do not allow
negative rates, unless β = 0. In the Shifted SABR model, the Shifted Black volatility
approximation can be used to allow negative rates with a fixed negative lower bound
defined by the amount of shift.

Implied Normal Volatility and SABR

You can compute the implied Normal volatility in terms of the SABR model parameters,
for either β = 0 (Normal SABR), or any other value of β allowed by the SABR model (0 ≤ β
≤ 1) using normalvolbysabr.
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normalvolbysabrcomputes the implied Normal volatility σ N in terms of the SABR
model parameters. Using normalvolbysabr to compute σ N, you can then you this with
other functions for Normal model pricing (for example, capbynormal, floorbynormal,
and swaptionbyblk).

See Also
capbyblk | capbynormal | floorbyblk | floorbynormal | normalvolbysabr |
swaptionbyblk | swaptionbynormal

Related Examples
• “Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-

27
• “Calibrate the SABR Model using Normal (Bachelier) Volatilities with Negative

Strikes”

More About
• “Supported Interest-Rate Instruments” on page 2-2
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Price Swaptions with Negative Strikes Using the Shifted
SABR Model

This example shows how to price swaptions with negative strikes by using the Shifted
SABR model. The market Shifted Black volatilities are used to calibrate the Shifted SABR
model parameters. The calibrated Shifted SABR model is then used to compute the
Shifted Black volatilities for negative strikes.

The swaptions with negative strikes are then priced using the computed Shifted Black
volatilities and the swaptionbyblk function with the 'Shift' parameter set to the
prespecified shift. Similarly, Shifted SABR Greeks can be computed by using the 
optsensbysabr function by setting the 'Shift' parameter. Finally, from the swaption
prices, the probability density of the underlying asset is computed to show that the
swaption prices imply positive probability densities for some negative strikes.

Load the market data.

First, load the market interest rates and swaption volatility data. The market swaption
volatilities are quoted in terms of Shifted Black volatilities with a 0.8 percent shift.

Define RateSpec.

ValuationDate = '5-Apr-2016';
EndDates = datemnth(ValuationDate,[1 2 3 6 9 12*[1 2 3 4 5 6 7 8 9 10 12]])';
ZeroRates = [-0.34 -0.29 -0.25 -0.13 -0.07 -0.02 0.010 0.025 ...
    0.031 0.040 0.052 0.090 0.190 0.290 0.410 0.520]'/100;
Compounding = 1;
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',ZeroRates,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [16x1 double]
            Rates: [16x1 double]
         EndTimes: [16x1 double]
       StartTimes: [16x1 double]
         EndDates: [16x1 double]
       StartDates: 736425
    ValuationDate: 736425
            Basis: 0
     EndMonthRule: 1
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Define the swaption.

SwaptionSettle = '5-Apr-2016';
SwaptionExerciseDate = '5-Apr-2017';
SwapMaturity = '5-Apr-2022';
Reset = 1;
OptSpec = 'call';
TimeToExercise = yearfrac(SwaptionSettle,SwaptionExerciseDate);

Use swapbyzero to compute the forward swap rate.

LegRate = [NaN 0];  % To compute the forward swap rate, set the fixed rate to NaN.
[~, CurrentForwardValue] = swapbyzero(RateSpec,LegRate,SwaptionSettle,SwapMaturity,...
'StartDate',SwaptionExerciseDate)

CurrentForwardValue = 6.6384e-04

Specify amount of shift in decimals for Shifted Black and Shifted SABR models.

Shift = 0.008;  % 0.8 percent shift

Load the market implied Shifted Black volatility data for swaptions.

MarketShiftedBlackVolatilities = [21.1; 15.3; 14.0; 14.6; 16.0; 17.7; 19.8; 23.9; 26.2]/100;
StrikeGrid = [-0.5; -0.25; -0.125; 0; 0.125; 0.25; 0.5; 1.0; 1.5]/100;
MarketStrikes = CurrentForwardValue + StrikeGrid;
ATMShiftedBlackVolatility = MarketShiftedBlackVolatilities(StrikeGrid==0);

Calibrate the Shifted SABR model parameters.

To better represent the market at-the-money volatility, the Alpha parameter value is
implied by the market at-the-money volatility. This is similar to the "Method 2" in
“Calibrate the SABR Model” on page 2-36. However, note the addition of Shift to
CurrentForwardValue and the use of the 'Shift' parameter with blackvolbysabr.
The Beta parameter is predetermined at 0.5.

Beta = 0.5;

This function solves the Shifted SABR at-the-money volatility equation as a polynomial of
Alpha. Note the addition of Shift to CurrentForwardValue.

alpharoots = @(Rho,Nu) roots([...
    (1 - Beta)^2*TimeToExercise/24/(CurrentForwardValue + Shift)^(2 - 2*Beta) ...
    Rho*Beta*Nu*TimeToExercise/4/(CurrentForwardValue + Shift)^(1 - Beta) ...
    (1 + (2 - 3*Rho^2)*Nu^2*TimeToExercise/24) ...
    -ATMShiftedBlackVolatility*(CurrentForwardValue + Shift)^(1 - Beta)]);
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This function converts at-the-money volatility into Alpha by picking the smallest positive
real root.

atmVol2ShiftedSabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));

Fit Rho and Nu (while converting at-the-money volatility into Alpha). Note the 'Shift'
parameter of blackvolbysabr is set to the prespecified shift.

objFun = @(X) MarketShiftedBlackVolatilities - ...
    blackvolbysabr(atmVol2ShiftedSabrAlpha(X(1), X(2)), ...
    Beta, X(1), X(2), SwaptionSettle, SwaptionExerciseDate, CurrentForwardValue, ...
    MarketStrikes, 'Shift', Shift);

options = optimoptions('lsqnonlin','Display','none');
X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options);
Rho = X(1);
Nu = X(2);

Get the final Alpha from the calibrated parameters.

Alpha = atmVol2ShiftedSabrAlpha(Rho, Nu)

Alpha = 0.0133

Show the calibrated Shifted SABR parameters.

CalibratedPrameters = array2table([Shift Alpha Beta Rho Nu],...
    'VariableNames',{'Shift' 'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'1Y into 5Y'})

CalibratedPrameters=1×5 table
                  Shift     Alpha      Beta      Rho        Nu   
                  _____    ________    ____    _______    _______

    1Y into 5Y    0.008    0.013345    0.5     0.46698    0.49816

Compute the swaption volatilities using the calibrated Shifted SABR model.

Use blackvolbysabr with the 'Shift' parameter.

Strikes = (-0.6:0.01:1.6)'/100; % Include negative strikes.
SABRShiftedBlackVolatilities = blackvolbysabr(Alpha, Beta, Rho, Nu, SwaptionSettle, ...
    SwaptionExerciseDate, CurrentForwardValue, Strikes, 'Shift', Shift);
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figure;
plot(MarketStrikes, MarketShiftedBlackVolatilities, 'o', ...
    Strikes, SABRShiftedBlackVolatilities);
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
ylim([0.13 0.31])
xlabel('Strike');
legend('Market quotes','Shifted SABR', 'location', 'southeast');
title (['Shifted Black Volatility (',num2str(Shift*100),' percent shift)']);
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Price the swaptions, including those with negative strikes.

Use swaptionbyblk with the 'Shift' parameter to compute swaption prices using the
Shifted Black model.

SwaptionPrices = swaptionbyblk(RateSpec, OptSpec, Strikes, SwaptionSettle, SwaptionExerciseDate, ...
    SwapMaturity, SABRShiftedBlackVolatilities, 'Reset', Reset, 'Shift', Shift);
figure;
plot(Strikes, SwaptionPrices, 'r');
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Swaption Price');
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Compute Shifted SABR Delta.

Use optsensbysabr with the 'Shift' parameter to compute Delta using the Shifted
SABR model.

ShiftedSABRDelta = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, SwaptionSettle, ...
SwaptionExerciseDate, CurrentForwardValue, Strikes, OptSpec, 'Shift', Shift);

figure;
plot(Strikes,ShiftedSABRDelta,'r-');
ylim([-0.002 1.002]);
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Delta');
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Compute the probability density.

The risk-neutral probability density of the terminal underlying asset prices can be
approximated as the second derivative of swaption prices with respect to strike (Breeden
and Litzenberger, 1978). As can be seen in the plot below, the computed probability
density is positive for some negative rates above -0.8 percent (the lower bound
determined by 'Shift').

NumGrids = length(Strikes);
ProbDensity = zeros(NumGrids-2,1);
dStrike = mean(diff(Strikes));

for k = 2:(NumGrids-1)
    ProbDensity(k-1) = (SwaptionPrices(k-1) - 2*SwaptionPrices(k) + SwaptionPrices(k+1))/dStrike^2;
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end

ProbDensity = ProbDensity./sum(ProbDensity);
ProbStrikes = Strikes(2:end-1);

figure;
plot(ProbStrikes,ProbDensity,'r-');
h = gca;
line([0,0],[min(h.YLim),max(h.YLim)],'LineStyle','--');
xlabel('Strike');
title ('Probability Density');
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See Also
capbyblk | capbynormal | capvolstrip | floorbyblk | floorbynormal |
floorvolstrip | optsensbysabr | swaptionbyblk | swaptionbynormal

Related Examples
• “Calibrate the SABR Model” on page 2-36
• “Price a Swaption Using the SABR Model” on page 2-42

More About
• “Work with Negative Interest Rates” on page 2-22
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Calibrate the SABR Model
This example shows how to use two different methods to calibrate the SABR stochastic
volatility model from market implied Black volatilities. Both approaches use
blackvolbysabr.

In this section...
“Load Market Implied Black Volatility Data” on page 2-36
“Method 1: Calibrate Alpha, Rho, and Nu Directly” on page 2-37
“Method 2: Calibrate Rho and Nu by Implying Alpha from At-The-Money Volatility” on
page 2-37
“Use the Calibrated Models” on page 2-40
“References” on page 2-41

Load Market Implied Black Volatility Data
This example shows how to set up hypothetical market implied Black volatilities for
European swaptions over a range of strikes before calibration. The swaptions expire in
three years from the Settle date and have 10-year swaps as the underlying instrument.
The rates are expressed in decimals. (Changing the units affect the numerical value and
interpretation of the Alpha input parameter to the function blackvolbysabr.)

Load the market implied Black volatility data for swaptions expiring in three years.

Settle = '12-Jun-2013';
ExerciseDate = '12-Jun-2016';

MarketStrikes = [2.0 2.5 3.0 3.5 4.0 4.5 5.0]'/100;
MarketVolatilities = [45.6 41.6 37.9 36.6 37.8 39.2 40.0]'/100;

At the time of Settle, define the underlying forward rate and the at-the-money volatility.

CurrentForwardValue = MarketStrikes(4)
ATMVolatility = MarketVolatilities(4)

CurrentForwardValue =

    0.0350
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ATMVolatility =

    0.3660

Method 1: Calibrate Alpha, Rho, and Nu Directly
This example shows how to calibrate the Alpha, Rho, and Nu input parameters directly.
The value of Beta is predetermined either by fitting historical market volatility data or by
choosing a value deemed appropriate for that market [1].

Define the predetermined Beta.

Beta1 = 0.5;

After fixing the value of b  (Beta), the parameters a  (Alpha), r  (Rho), and u (Nu) are
all fitted directly. The Optimization Toolbox™ function lsqnonlin generates the
parameter values that minimize the squared error between the market volatilities and the
volatilities computed by blackvolbysabr.

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities - ...
    blackvolbysabr(X(1), Beta1, X(2), X(3), Settle, ...
    ExerciseDate, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Alpha1 = X(1);
Rho1 = X(2);
Nu1 = X(3);

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

Method 2: Calibrate Rho and Nu by Implying Alpha from At-
The-Money Volatility

This example shows how to use an alternative calibration method where the value of b

(Beta) is again predetermined as in Method 1.
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Define the predetermined Beta.

Beta2 = 0.5;

However, after fixing the value of b  (Beta), the parameters r  (Rho), and u  (Nu) are
fitted directly while a  (Alpha) is implied from the market at-the-money volatility. Models
calibrated using this method produce at-the-money volatilities that are equal to market
quotes. This approach is widely used in swaptions, where at-the-money volatilities are
quoted most frequently and are important to match. To imply a  (Alpha) from market at-

the-money volatility (s
ATM ), the following cubic polynomial is solved for a  (Alpha), and

the smallest positive real root is selected [2].
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where:

•
F  is the current forward value.

•
T  is the year fraction to maturity.

To accomplish this, define an anonymous function as:

% Year fraction from Settle to option maturity
T = yearfrac(Settle, ExerciseDate, 1);

% This function solves the SABR at-the-money volatility equation as a
% polynomial of Alpha
alpharoots = @(Rho,Nu) roots([...
    (1 - Beta2)^2*T/24/CurrentForwardValue^(2 - 2*Beta2) ...
    Rho*Beta2*Nu*T/4/CurrentForwardValue^(1 - Beta2) ...
    (1 + (2 - 3*Rho^2)*Nu^2*T/24) ...
    -ATMVolatility*CurrentForwardValue^(1 - Beta2)]);

% This function converts at-the-money volatility into Alpha by picking the
% smallest positive real root 
atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
    x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));
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The function atmVol2SabrAlpha converts at-the-money volatility into a  (Alpha) for a
given set of r  (Rho) and u  (Nu). This function is then used in the objective function to fit
parameters r  (Rho) and u  (Nu).

% Calibrate Rho and Nu (while converting at-the-money volatility into Alpha
% using atmVol2SabrAlpha)
objFun = @(X) MarketVolatilities - ...
    blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)), ...
    Beta2, X(1), X(2), Settle, ExerciseDate, CurrentForwardValue, ...
    MarketStrikes);

X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf]);

Rho2 = X(1);
Nu2 = X(2);

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

The calibrated parameter a  (Alpha) is computed using the calibrated parameters r

(Rho) and u  (Nu).

% Obtain final Alpha from at-the-money volatility using calibrated parameters
Alpha2 = atmVol2SabrAlpha(Rho2, Nu2);

% Display calibrated parameters
C = {Alpha1 Beta1 Rho1 Nu1;Alpha2 Beta2 Rho2 Nu2};
CalibratedPrameters = cell2table(C,...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'Method 1';'Method 2'})

CalibratedPrameters = 

                 Alpha      Beta      Rho        Nu   
                ________    ____    _______    _______
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    Method 1    0.060277    0.5      0.2097    0.75091
    Method 2    0.058484    0.5     0.20568    0.79647

Use the Calibrated Models
This example shows how to use the calibrated models to compute new volatilities at any
strike value.

Compute volatilities for models calibrated using Method 1 and Method 2 and plot the
results.

PlottingStrikes = (1.75:0.1:5.50)'/100;

% Compute volatilities for model calibrated by Method 1
ComputedVols1 = blackvolbysabr(Alpha1, Beta1, Rho1, Nu1, Settle, ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 2
ComputedVols2 = blackvolbysabr(Alpha2, Beta2, Rho2, Nu2, Settle, ...
    ExerciseDate, CurrentForwardValue, PlottingStrikes);

figure;
plot(MarketStrikes,MarketVolatilities,'xk',...
    PlottingStrikes,ComputedVols1,'b', ...
    PlottingStrikes,ComputedVols2,'r', ...
    CurrentForwardValue,ATMVolatility,'ok',...
    'MarkerSize',10);
xlim([0.01 0.06]);
ylim([0.35 0.5]);
xlabel('Strike', 'FontWeight', 'bold');
ylabel('Implied Black Volatility', 'FontWeight', 'bold');
legend('Market Volatilities', 'SABR Model (Method 1)',...
    'SABR Model (Method 2)', 'At-the-money volatility');
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The model calibrated using Method 2 reproduces the market at-the-money volatility
(marked with a circle) exactly.

References
[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., Managing smile risk,
Wilmott Magazine, 2002.
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See Also
blackvolbysabr | optsensbysabr | swaptionbyblk

Related Examples
• “Price a Swaption Using the SABR Model” on page 2-42
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Price a Swaption Using the SABR Model
This example shows how to price a swaption using the SABR model. First, a swaption
volatility surface is constructed from market volatilities. This is done by calibrating the
SABR model parameters separately for each swaption maturity. The swaption price is
then computed by using the implied Black volatility on the surface as an input to the 
swaptionbyblk function.

Step 1. Load market swaption volatility data.

Load the market implied Black volatility data for swaptions.

Settle = '12-Jun-2013';
ExerciseDates = {'12-Sep-2013';'12-Jun-2014';'12-Jun-2015';...
    '12-Jun-2016';'12-Jun-2017';'12-Jun-2018';'12-Jun-2020';...
    '12-Jun-2023'};

YearsToExercise = yearfrac(Settle, ExerciseDates, 1);
NumMaturities = length(YearsToExercise);

MarketVolatilities = [ ...
   57.6 53.7 49.4 45.6 44.1 41.1 35.2 32.0
   46.6 46.9 44.8 41.6 39.8 37.4 33.4 31.0
   35.9 39.3 39.6 37.9 37.2 34.7 30.5 28.9
   34.1 36.5 37.8 36.6 35.0 31.9 28.1 26.6
   41.0 41.3 39.5 37.8 36.0 32.6 29.0 26.0
   45.8 43.4 41.9 39.2 36.9 33.2 29.6 26.3
   50.3 46.9 44.0 40.0 37.5 33.8 30.2 27.3]/100;

MarketStrikes = [ ...
  1.00 1.25 1.68 2.00 2.26 2.41 2.58 2.62;
  1.50 1.75 2.18 2.50 2.76 2.91 3.08 3.12;
  2.00 2.25 2.68 3.00 3.26 3.41 3.58 3.62;
  2.50 2.75 3.18 3.50 3.76 3.91 4.08 4.12;
  3.00 3.25 3.68 4.00 4.26 4.41 4.58 4.62;
  3.50 3.75 4.18 4.50 4.76 4.91 5.08 5.12;
  4.00 4.25 4.68 5.00 5.26 5.41 5.58 5.62]/100;

CurrentForwardValues = MarketStrikes(4,:)

CurrentForwardValues = 1×8

    0.0250    0.0275    0.0318    0.0350    0.0376    0.0391    0.0408    0.0412
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ATMVolatilities = MarketVolatilities(4,:)

ATMVolatilities = 1×8

    0.3410    0.3650    0.3780    0.3660    0.3500    0.3190    0.2810    0.2660

The current underlying forward rates and the corresponding at-the-money volatilities
across the eight swaption maturities are represented in the fourth rows of the two
matrices.

Step 2. Calibrate the SABR model parameters for each swaption maturity.

Using a model implemented in the function blackvolbysabr, a static SABR model,
where the model parameters are assumed to be constant with respect to time, the
parameters are calibrated separately for each swaption maturity (years to exercise) in a
for loop. To better represent market at-the-money volatilities, the Alpha parameter
values are implied by the market at-the-money volatilities (see "Method 2" for “Calibrate
the SABR Model” on page 2-36).

Define the predetermined Beta, calibrate SABR model parameters for each swaption
maturity and display calibrated parameters in a table.

Beta = 0.5;
Betas = repmat(Beta, NumMaturities, 1);
Alphas = zeros(NumMaturities, 1);
Rhos = zeros(NumMaturities, 1);
Nus = zeros(NumMaturities, 1);

options = optimoptions('lsqnonlin','Display','none');

for k = 1:NumMaturities
    % This function solves the SABR at-the-money volatility equation as a
    % polynomial of Alpha
    alpharoots = @(Rho,Nu) roots([...
        (1 - Beta)^2*YearsToExercise(k)/24/CurrentForwardValues(k)^(2 - 2*Beta) ...
        Rho*Beta*Nu*YearsToExercise(k)/4/CurrentForwardValues(k)^(1 - Beta) ...
        (1 + (2 - 3*Rho^2)*Nu^2*YearsToExercise(k)/24) ...
        -ATMVolatilities(k)*CurrentForwardValues(k)^(1 - Beta)]);

    % This function converts at-the-money volatility into Alpha by picking the
    % smallest positive real root
    atmVol2SabrAlpha = @(Rho,Nu) min(real(arrayfun(@(x) ...
        x*(x>0) + realmax*(x<0 || abs(imag(x))>1e-6), alpharoots(Rho,Nu))));
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    % Fit Rho and Nu (while converting at-the-money volatility into Alpha)
    objFun = @(X) MarketVolatilities(:,k) - ...
        blackvolbysabr(atmVol2SabrAlpha(X(1), X(2)), ...
        Beta, X(1), X(2), Settle, ExerciseDates(k), CurrentForwardValues(k), ...
        MarketStrikes(:,k));

    X = lsqnonlin(objFun, [0 0.5], [-1 0], [1 Inf], options);
    Rho = X(1);
    Nu = X(2);

    % Get final Alpha from the calibrated parameters
    Alpha = atmVol2SabrAlpha(Rho, Nu);

    Alphas(k) = Alpha;
    Rhos(k) = Rho;
    Nus(k) = Nu;
end

CalibratedPrameters = array2table([Alphas Betas Rhos Nus],...
    'VariableNames',{'Alpha' 'Beta' 'Rho' 'Nu'},...
    'RowNames',{'3M into 10Y';'1Y into 10Y';...
    '2Y into 10Y';'3Y into 10Y';'4Y into 10Y';...
    '5Y into 10Y';'7Y into 10Y';'10Y into 10Y'})

CalibratedPrameters=8×4 table
                     Alpha      Beta      Rho         Nu   
                    ________    ____    ________    _______

    3M into 10Y     0.051947    0.5      0.39572     1.4146
    1Y into 10Y     0.054697    0.5       0.2955     1.1257
    2Y into 10Y     0.058433    0.5      0.24175    0.93463
    3Y into 10Y     0.058484    0.5      0.20568    0.79647
    4Y into 10Y     0.056054    0.5      0.13685    0.76993
    5Y into 10Y     0.051072    0.5     0.060285    0.73595
    7Y into 10Y      0.04475    0.5     0.083385    0.66341
    10Y into 10Y    0.044548    0.5      0.02261    0.49487

Step 3. Construct a volatility surface.

Use the calibrated model to compute new volatilities at any strike value to produce a
smooth smile for a given maturity. This can be repeated for each maturity to form a
volatility surface
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Compute volatilities using the calibrated models for each maturity and plot the volatility
surface.

PlottingStrikes = (0.95:0.1:5.8)'/100;
ComputedVols = zeros(length(PlottingStrikes), NumMaturities);

for k = 1:NumMaturities
ComputedVols(:,k) = blackvolbysabr(Alphas(k), Betas(k), Rhos(k), Nus(k), Settle, ...
    ExerciseDates(k), CurrentForwardValues(k), PlottingStrikes);
end

figure;
surf(YearsToExercise, PlottingStrikes, ComputedVols);
xlim([0 10]); ylim([0.0095 0.06]); zlim([0.2 0.8]);
view(113,32);
set(gca, 'Position', [0.13 0.11 0.775 0.815], ...
    'PlotBoxAspectRatioMode', 'manual');
xlabel('Years to exercise', 'Fontweight', 'bold');
ylabel('Strike', 'Fontweight', 'bold');
zlabel('Implied Black volatility', 'Fontweight', 'bold');
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Note, in this volatility surface, the smiles tend to get flatter for longer swaption maturities
(years to exercise). This is consistent with the Nu parameter values tending to decrease
with swaption maturity, as shown previously in the table for CalibratedPrameters.

Step 4. Use swaptionbyblk to price a swaption.

Use the volatility surface to price a swaption that matures in five years. Define a swaption
(for a 10-year swap) that matures in five years and use the interest-rate term structure at
the time of the swaption Settle date to define the RateSpec. Use the RateSpec to
compute the current forward swap rate using the swapbyzero function. Compute the
SABR implied Black volatility for this swaption using the blackvolbysabr function (and
it is marked with a red arrow in the figure that follows). Price the swaption using the
SABR implied Black volatility as an input to the swaptionbyblk function.
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% Define the swaption
SwaptionSettle = '12-Jun-2013';
SwaptionExerciseDate = '12-Jun-2018';
SwapMaturity = '12-Jun-2028';
Reset = 1;
OptSpec = 'call';
Strike = 0.0263;

% Define RateSpec
ValuationDate = '12-Jun-2013';
EndDates = {'12-Jul-2013';'12-Sep-2013';'12-Dec-2013';'12-Jun-2014';...
    '12-Jun-2015';'12-Jun-2016';'12-Jun-2017';'12-Jun-2018';...
    '12-Jun-2019';'12-Jun-2020';'12-Jun-2021';'12-Jun-2022';...
    '12-Jun-2023';'12-Jun-2025';'12-Jun-2028';'12-Jun-2033'};
Rates = [0.2 0.3 0.4 0.7 0.5 0.7 1.0 1.4 1.7 1.9 ...
    2.1 2.3 2.5 2.8 3.1 3.3]'/100;
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [16x1 double]
            Rates: [16x1 double]
         EndTimes: [16x1 double]
       StartTimes: [16x1 double]
         EndDates: [16x1 double]
       StartDates: 735397
    ValuationDate: 735397
            Basis: 0
     EndMonthRule: 1

% Use swapbyzero
LegRate = [NaN 0]; % To compute the forward swap rate, set the coupon rate to NaN.
[~, CurrentForwardSwapRate] = swapbyzero(RateSpec, LegRate, SwaptionSettle, SwapMaturity,...
'StartDate', SwaptionExerciseDate);

% Use blackvolbysabr
SABRBlackVolatility = blackvolbysabr(Alphas(6), Betas(6), Rhos(6), Nus(6), SwaptionSettle, ...
    SwaptionExerciseDate, CurrentForwardSwapRate, Strike)
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SABRBlackVolatility = 0.3932

text (YearsToExercise(6), Strike, SABRBlackVolatility, '\leftarrow',...
    'Color', 'r', 'FontWeight', 'bold', 'FontSize', 22);

% Use swaptionbyblk
Price = swaptionbyblk(RateSpec, OptSpec, Strike, SwaptionSettle, SwaptionExerciseDate, ...
SwapMaturity, SABRBlackVolatility, 'Reset', Reset)

Price = 14.2403

[1] Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E., “Managing Smile
Risk,” Wilmott Magazine, 2002.
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[2] West, G., “Calibration of the SABR Model in Illiquid Markets,” Applied Mathematical
Finance, 12(4), pp. 371–385, 2004.

See Also
blackvolbysabr | swapbyzero | swaptionbyblk

Related Examples
• “Calibrate the SABR Model” on page 2-36
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Overview of Interest-Rate Tree Models
In this section...
“Interest-Rate Modeling” on page 2-50
“Rate and Price Trees” on page 2-51
“Viewing Rate or Price Movement” on page 2-52

Interest-Rate Modeling
Financial Instruments Toolbox computes prices and sensitivities of interest-rate
contingent claims based on several methods of modeling changes in interest rates over
time:

• The interest-rate term structure

This model uses sets of zero-coupon bonds to predict changes in interest rates.
• Heath-Jarrow-Morton (HJM) model

The HJM model considers a given initial term structure of interest rates and a
specification of the volatility of forward rates to build a tree representing the evolution
of the interest rates, based on a statistical process.

• Black-Derman-Toy (BDT) model

In the BDT model, all security prices and rates depend on the short rate (annualized
one-period interest rate). The model uses long rates and their volatilities to construct a
tree of possible future short rates. The resulting tree can then be used to determine
the value of interest-rate sensitive securities from this tree.

• Hull-White (HW) model

The Hull-White model incorporates the initial term structure of interest rates and the
volatility term structure to build a trinomial recombining tree of short rates. The
resulting tree is used to value interest-rate dependent securities. The implementation
of the HW model in Financial Instruments Toolbox is limited to one factor.

• Black-Karasinski (BK) model

The BK model is a single-factor, log-normal version of the HW model.

For detailed information about interest-rate models, see:

2 Interest-Rate Derivatives

2-50



• “Pricing Using Interest-Rate Term Structure” on page 2-72 for a discussion of price
and sensitivity based on portfolios of zero-coupon bonds

• “Pricing Using Interest-Rate Tree Models” on page 2-99 for a discussion of price and
sensitivity based on the HJM and BDT interest-rate models

Note Historically, the initial version of Financial Instruments Toolbox provided only
the HJM interest-rate model. A later version added the BDT model. The current
version adds both the HW and BK models. This section provides extensive examples of
using the HJM and BDT models to compute prices and sensitivities of interest-rate
based financial derivatives.

The HW and BK tree structures are similar to the BDT tree structure. To avoid
needless repetition throughout this section, documentation is provided only where
significant deviations from the BDT structure exist. Specifically, “HW and BK Tree
Structures” on page 2-95 explains the few noteworthy differences among the various
formats.

Rate and Price Trees
The interest-rate or price trees supported in this toolbox can be either binomial (two
branches per node) or trinomial (three branches per node). Typically, binomial trees
assume that underlying interest rates or prices can only either increase or decrease at
each node. Trinomial trees allow for a more complex movement of rates or prices. With
trinomial trees, the movement of rates or prices at each node is unrestricted (for example,
up-up-up or unchanged-down-down).

Types of Trees

Financial Instruments Toolbox trees can be classified as bushy or recombining. A bushy
tree is a tree in which the number of branches increases exponentially relative to
observation times; branches never recombine. In this context, a recombining tree is the
opposite of a bushy tree. A recombining tree has branches that recombine over time.
From any given node, the node reached by taking the path up-down is the same node
reached by taking the path down-up. A bushy tree and a recombining binomial tree are
illustrated next.
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In this toolbox, the Heath-Jarrow-Morton model works with bushy trees. The Black-
Derman-Toy model, on the other hand, works with recombining binomial trees.

The other two interest rate models supported in this toolbox, Hull-White and Black-
Karasinski, work with recombining trinomial trees.

Viewing Rate or Price Movement
This toolbox provides the data file deriv.mat that contains four interest-rate based
trees:

• HJMTree — A bushy binomial tree
• BDTTree — A recombining binomial tree
• HWTree and BKTree — Recombining trinomial trees

The toolbox also provides the treeviewer function, which graphically displays the shape
and data of price, interest rate, and cash flow trees. Viewed with treeviewer, the bushy
shape of an HJM tree and the recombining shape of a BDT tree are apparent.
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With treeviewer, you can also see the recombining shape of HW and BK trinomial trees.

See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
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cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Graphical Representation of Trees” on page 2-158
• “Understanding the Interest-Rate Term Structure” on page 2-55

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Understanding the Interest-Rate Term Structure
In this section...
“Introduction” on page 2-55
“Interest Rates Versus Discount Factors” on page 2-55

Introduction
The interest-rate term structure represents the evolution of interest rates through time.
In MATLAB, the interest-rate environment is encapsulated in a structure called RateSpec
(rate specification). This structure holds all information required to completely identify
the evolution of interest rates. Several functions included in Financial Instruments
Toolbox software are dedicated to the creating and managing of the RateSpec structure.
Many others take this structure as an input argument representing the evolution of
interest rates.

Before looking further at the RateSpec structure, examine three functions that provide
key functionality for working with interest rates: disc2rate, its opposite, rate2disc,
and ratetimes. The first two functions map between discount factors and interest rates.
The third function, ratetimes, calculates the effect of term changes on the interest
rates.

Interest Rates Versus Discount Factors
Discount factors are coefficients commonly used to find the current value of future cash
flows. As such, there is a direct mapping between the rate applicable to a period of time,
and the corresponding discount factor. The function disc2rate converts discount factors
for a given term (period) into interest rates. The function rate2disc does the opposite; it
converts interest rates applicable to a given term (period) into the corresponding
discount factors.

Calculating Discount Factors from Rates

As an example, consider these annualized zero-coupon bond rates.

From To Rate
15 Feb 2000 15 Aug 2000 0.05

 Understanding the Interest-Rate Term Structure

2-55



From To Rate
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

To calculate the discount factors corresponding to these interest rates, call rate2disc
using the syntax

Disc = rate2disc(Compounding, Rates, EndDates, StartDates, 
ValuationDate)

where:

• Compounding represents the frequency at which the zero rates are compounded
when annualized. For this example, assume this value to be 2.

• Rates is a vector of annualized percentage rates representing the interest rate
applicable to each time interval.

• EndDates is a vector of dates representing the end of each interest-rate term
(period).

• StartDates is a vector of dates representing the beginning of each interest-rate
term.

• ValuationDate is the date of observation for which the discount factors are
calculated. In this particular example, use February 15, 2000 as the beginning date for
all interest-rate terms.

Next, set the variables in MATLAB.

StartDates = ['15-Feb-2000'];
EndDates  = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

Finally, compute the discount factors.

Disc = rate2disc(Compounding, Rates, EndDates, StartDates,... 
ValuationDate)
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Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319

By adding a fourth column to the rates table (see “Calculating Discount Factors from
Rates” on page 2-55) to include the corresponding discounts, you can see the evolution of
the discount factors.

From To Rate Discount
15 Feb 2000 15 Aug 2000 0.05 0.9756
15 Feb 2000 15 Feb 2001 0.056 0.9463
15 Feb 2000 15 Aug 2001 0.06 0.9151
15 Feb 2000 15 Feb 2002 0.065 0.8799
15 Feb 2000 15 Aug 2002 0.075 0.8319

Optional Time Factor Outputs

The function rate2disc optionally returns two additional output arguments: EndTimes
and StartTimes. These vectors of time factors represent the start dates and end dates in
discount periodic units. The scale of these units is determined by the value of the input
variable Compounding.

To examine the time factor outputs, find the corresponding values in the previous
example.

[Disc, EndTimes, StartTimes] = rate2disc(Compounding, Rates,... 
EndDates, StartDates, ValuationDate);

Arrange the two vectors into a single array for easier visualization.

Times = [StartTimes, EndTimes]

Times =

     0     1
     0     2
     0     3
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     0     4
     0     5

Because the valuation date is equal to the start date for all periods, the StartTimes
vector is composed of 0s. Also, since the value of Compounding is 2, the rates are
compounded semiannually, which sets the units of periodic discount to six months. The
vector EndDates is composed of dates separated by intervals of six months from the
valuation date. This explains why the EndTimes vector is a progression of integers from 1
to 5.

Alternative Syntax (rate2disc)

The function rate2disc also accommodates an alternative syntax that uses periodic
discount units instead of dates. Since the relationship between discount factors and
interest rates is based on time periods and not on absolute dates, this form of rate2disc
allows you to work directly with time periods. In this mode, the valuation date
corresponds to 0, and the vectors StartTimes and EndTimes are used as input
arguments instead of their date equivalents, StartDates and EndDates. This syntax for
rate2disc is:

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Using as input the StartTimes and EndTimes vectors computed previously, you should
obtain the previous results for the discount factors.

Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319

Calculating Rates from Discounts

The function disc2rate is the complement to rate2disc. It finds the rates applicable to
a set of compounding periods, given the discount factor in those periods. The syntax for
calling this function is:

Rates = disc2rate(Compounding, Disc, EndDates, StartDates, 
ValuationDate)
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Each argument to this function has the same meaning as in rate2disc. Use the results
found in the previous example to return the rate values you started with.

Rates = disc2rate(Compounding, Disc, EndDates, StartDates,... 
ValuationDate)

Rates =

    0.0500
    0.0560
    0.0600
    0.0650
    0.0750

Alternative Syntax (disc2rate)

As in the case of rate2disc, disc2rate optionally returns StartTimes and EndTimes
vectors representing the start and end times measured in discount periodic units. Again,
working with the same values as before, you should obtain the same numbers.

[Rates, EndTimes, StartTimes] = disc2rate(Compounding, Disc,... 
EndDates, StartDates, ValuationDate);

Arrange the results in a matrix convenient to display.

Result = [StartTimes, EndTimes, Rates]

Result =

         0    1.0000    0.0500
         0    2.0000    0.0560
         0    3.0000    0.0600
         0    4.0000    0.0650
         0    5.0000    0.0750

As with rate2disc, the relationship between rates and discount factors is determined by
time periods and not by absolute dates. So, the alternate syntax for disc2rate uses time
vectors instead of dates, and it assumes that the valuation date corresponds to time = 0.
The time-based calling syntax is:

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes);

Using this syntax, you again obtain the original values for the interest rates.

Rates = disc2rate(Compounding, Disc, EndTimes, StartTimes)
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Rates =

    0.0500
    0.0560
    0.0600
    0.0650
    0.0750

See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Modeling the Interest-Rate Term Structure” on page 2-67
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Graphical Representation of Trees” on page 2-158
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More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Interest-Rate Term Conversions
Interest-rate evolution is typically represented by a set of interest rates, including the
beginning and end of the periods the rates apply to. For zero rates, the start dates are
typically at the valuation date, with the rates extending from that valuation date until
their respective maturity dates.

Spot Curve to Forward Curve Conversion
Frequently, given a set of rates including their start and end dates, you may be interested
in finding the rates applicable to different terms (periods). This problem is addressed by
the function ratetimes. This function interpolates the interest rates given a change in
the original terms. The syntax for calling ratetimes is
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate);

where:

• Compounding represents the frequency at which the zero rates are compounded
when annualized.

• RefRates is a vector of initial interest rates representing the interest rates applicable
to the initial time intervals.

• RefEndDates is a vector of dates representing the end of the interest rate terms
(period) applicable to RefRates.

• RefStartDates is a vector of dates representing the beginning of the interest rate
terms applicable to RefRates.

• EndDates represent the maturity dates for which the interest rates are interpolated.
• StartDates represent the starting dates for which the interest rates are interpolated.
• ValuationDate is the date of observation, from which the StartTimes and

EndTimes are calculated. This date represents time = 0.

The input arguments to this function can be separated into two groups:

• The initial or reference interest rates, including the terms for which they are valid
• Terms for which the new interest rates are calculated

As an example, consider the rate table specified in “Calculating Discount Factors from
Rates” on page 2-55.
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From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

Assuming that the valuation date is February 15, 2000, these rates represent zero-coupon
bond rates with maturities specified in the second column. Use the function ratetimes
to calculate the forward rates at the beginning of all periods implied in the table. Assume
a compounding value of 2.

% Reference Rates.
RefStartDates = ['15-Feb-2000'];
RefEndDates  = ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
RefRates = [0.05; 0.056; 0.06; 0.065; 0.075];

% New Terms.
StartDates = ['15-Feb-2000'; '15-Aug-2000'; '15-Feb-2001';... 
'15-Aug-2001'; '15-Feb-2002'];
EndDates =   ['15-Aug-2000'; '15-Feb-2001'; '15-Aug-2001';... 
'15-Feb-2002'; '15-Aug-2002'];
% Find the new rates.
Rates = ratetimes(Compounding, RefRates, RefEndDates,... 
RefStartDates, EndDates, StartDates, ValuationDate)

Rates =

    0.0500
    0.0620
    0.0680
    0.0801
    0.1155

Place these values in a table like the previous one. Observe the evolution of the forward
rates based on the initial zero-coupon rates.
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From To Rate
15 Feb 2000 15 Aug 2000 0.0500
15 Aug 2000 15 Feb 2001 0.0620
15 Feb 2001 15 Aug 2001 0.0680
15 Aug 2001 15 Feb 2002 0.0801
15 Feb 2002 15 Aug 2002 0.1155

Alternative Syntax (ratetimes)
The ratetimes function can provide the additional output arguments StartTimes and
EndTimes, which represent the time factor equivalents to the StartDates and
EndDates vectors. The ratetimes function uses time factors for interpolating the rates.
These time factors are calculated from the start and end dates, and the valuation date,
which are passed as input arguments. ratetimes can also use time factors directly,
assuming time = 0 as the valuation date. This alternate syntax is:

[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Use this alternate version of ratetimes to find the forward rates again. In this case, you
must first find the time factors of the reference curve. Use date2time for this.

RefEndTimes = date2time(ValuationDate, RefEndDates, Compounding)

RefEndTimes =

     1
     2
     3
     4
     5

RefStartTimes = date2time(ValuationDate, RefStartDates,... 
Compounding)

RefStartTimes =

     0
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These are the expected values, given semiannual discounts (as denoted by a value of 2 in
the variable Compounding), end dates separated by six-month periods, and the valuation
date equal to the date marking beginning of the first period (time factor = 0).

Now call ratetimes with the alternate syntax.

[Rates, EndTimes, StartTimes] = ratetimes(Compounding,... 
RefRates, RefEndTimes, RefStartTimes, EndTimes, StartTimes);

Rates =

    0.0500
    0.0620
    0.0680
    0.0801
    0.1155

EndTimes and StartTimes have, as expected, the same values they had as input
arguments.

Times = [StartTimes, EndTimes]

Times =

     0     1
     1     2
     2     3
     3     4
     4     5

See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
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intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Modeling the Interest-Rate Term Structure” on page 2-67
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Graphical Representation of Trees” on page 2-158

More About
• “Understanding the Interest-Rate Term Structure” on page 2-55
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Modeling the Interest-Rate Term Structure
Financial Instruments Toolbox includes a set of functions to encapsulate interest-rate
term information into a single structure. These functions present a convenient way to
package all information related to interest-rate terms into a common format, and to
resolve interdependencies when one or more of the parameters is modified. For
information, see:

• “Creating or Modifying (intenvset)” on page 2-67 for a discussion of how to create or
modify an interest-rate term structure (RateSpec) using the intenvset function

• “Obtaining Specific Properties (intenvget)” on page 2-69 for a discussion of how to
extract specific properties from a RateSpec

Creating or Modifying (intenvset)
The main function to create or modify an interest-rate term structure RateSpec (rates
specification) is intenvset. If the first argument to this function is a previously created
RateSpec, the function modifies the existing rate specification and returns a new one.
Otherwise, it creates a RateSpec.

When using RateSpec to specify the rate term structure to price instruments based on
yields (zero coupon rates) or forward rates, specify zero rates or forward rates as the
input argument. However, the RateSpec structure is not limited or specific to this
problem domain. RateSpec is an encapsulation of rates-times relationships; intenvset
acts as either a constructor or a modifier, and intenvget as an accessor. The interest
rate models supported by the Financial Instruments Toolbox software work either with
zero coupon rates or forward rates.

The other intenvset arguments are name-value pairs. The name-value pair arguments
that can be specified or modified are:

• Basis
• Compounding
• Disc
• EndDates
• EndMonthRule
• Rates
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• StartDates
• ValuationDate

For more information on Basis, see basis on page Glossary-0 .

Consider again the original table of interest rates (see “Calculating Discount Factors from
Rates” on page 2-55).

From To Rate
15 Feb 2000 15 Aug 2000 0.05
15 Feb 2000 15 Feb 2001 0.056
15 Feb 2000 15 Aug 2001 0.06
15 Feb 2000 15 Feb 2002 0.065
15 Feb 2000 15 Aug 2002 0.075

Use the information in this table to populate the RateSpec structure.

StartDates = ['15-Feb-2000'];
EndDates =   ['15-Aug-2000';
              '15-Feb-2001'; 
              '15-Aug-2001';
              '15-Feb-2002';
              '15-Aug-2002'];
Compounding = 2;
ValuationDate = ['15-Feb-2000'];
Rates = [0.05; 0.056; 0.06; 0.065; 0.075];

rs = intenvset('Compounding',Compounding,'StartDates',... 
StartDates, 'EndDates', EndDates, 'Rates', Rates,... 
'ValuationDate', ValuationDate)

rs = 

       FinObj:    'RateSpec'
  Compounding:    2
         Disc:    [5x1 double]
        Rates:    [5x1 double]
     EndTimes:    [5x1 double]
   StartTimes:    [5x1 double]
     EndDates:    [5x1 double]
   StartDates:    730531

2 Interest-Rate Derivatives

2-68



ValuationDate:    730531
        Basis: 0
 EndMonthRule: 1

Some of the properties filled in the structure were not passed explicitly in the call to
RateSpec. The values of the automatically completed properties depend on the
properties that are explicitly passed. Consider for example the StartTimes and
EndTimes vectors. Since the StartDates and EndDates vectors are passed in, and the
ValuationDate, intenvset has all the information required to calculate StartTimes
and EndTimes. Hence, these two properties are read-only.

Obtaining Specific Properties (intenvget)
The complementary function to intenvset is intenvget, which gets function-specific
properties from the interest-rate term structure. Its syntax is:

ParameterValue = intenvget(RateSpec, 'ParameterName')

To obtain the vector EndTimes from the RateSpec structure, enter:

EndTimes = intenvget(rs, 'EndTimes')

EndTimes =

     1
     2
     3
     4
     5

To obtain Disc, the values for the discount factors that were calculated automatically by
intenvset, type:

Disc = intenvget(rs, 'Disc')

Disc =

    0.9756
    0.9463
    0.9151
    0.8799
    0.8319
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These discount factors correspond to the periods starting from StartDates and ending
in EndDates.

Caution Although you can directly access these fields within the structure instead of
using intenvget, it is advised not to do so. The format of the interest-rate term structure
could change in future versions of the toolbox. Should that happen, any code accessing
the RateSpec fields directly would stop working.

Now use the RateSpec structure with its functions to examine how changes in specific
properties of the interest-rate term structure affect those depending on it. As an exercise,
change the value of Compounding from 2 (semiannual) to 1 (annual).

rs = intenvset(rs, 'Compounding', 1);

Since StartTimes and EndTimes are measured in units of periodic discount, a change in
Compounding from 2 to 1 redefines the basic unit from semiannual to annual. This means
that a period of six months is represented with a value of 0.5, and a period of one year is
represented by 1. To obtain the vectors StartTimes and EndTimes, enter:

StartTimes = intenvget(rs, 'StartTimes');
EndTimes = intenvget(rs, 'EndTimes');
Times = [StartTimes, EndTimes]

Times =

         0    0.5000
         0    1.0000
         0    1.5000
         0    2.0000
         0    2.5000

Since all the values in StartDates are the same as the valuation date, all StartTimes
values are 0. On the other hand, the values in the EndDates vector are dates separated
by six-month periods. Since the redefined value of compounding is 1, EndTimes becomes
a sequence of numbers separated by increments of 0.5.

See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
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cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Graphical Representation of Trees” on page 2-158

More About
• “Understanding the Interest-Rate Term Structure” on page 2-55
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Pricing Using Interest-Rate Term Structure
In this section...
“Introduction” on page 2-72
“Computing Instrument Prices” on page 2-73
“Computing Instrument Sensitivities” on page 2-74
“OAS for Callable and Puttable Bonds” on page 2-76
“Agency OAS” on page 2-76

Introduction
The instruments can be presented to the functions as a portfolio of different types of
instruments or as groups of instruments of the same type. The current version of the
toolbox can compute price and sensitivities for five instrument types of using interest-rate
curves:

• Bonds
• Fixed-rate notes
• Floating-rate notes
• Swaps
• OAS for callable and puttable bonds
• Agency OAS

In addition to these instruments, the toolbox also supports the calculation of price and
sensitivities of arbitrary sets of cash flows.

Options and interest-rate floors and caps are absent from the above list of supported
instruments. These instruments are not supported because their pricing and sensitivity
function require a stochastic model for the evolution of interest rates. The interest-rate
term structure used for pricing is treated as deterministic, and as such is not adequate for
pricing these instruments.

Financial Instruments Toolbox also contains functions that use the Heath-Jarrow-Morton
(HJM) and Black-Derman-Toy (BDT) models to compute prices and sensitivities for
financial instruments. These models support computations involving options and interest-
rate floors and caps. See “Pricing Using Interest-Rate Tree Models” on page 2-99 for
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information on computing price and sensitivities of financial instruments using the HJM
and BDT models.

Computing Instrument Prices
The main function used for pricing portfolios of instruments is intenvprice. This
function works with the family of functions that calculate the prices of individual types of
instruments. When called, intenvprice classifies the portfolio contained in InstSet by
instrument type, and calls the appropriate pricing functions. The map between instrument
types and the pricing function intenvprice calls is

bondbyzero: Price a bond by a set of zero curves
fixedbyzero: Price a fixed-rate note by a set of zero curves
floatbyzero: Price a floating-rate note by a set of zero curves
swapbyzero: Price a swap by a set of zero curves

You can use each of these functions individually to price an instrument. Consult the
reference pages for specific information on using these functions.

intenvprice takes as input an interest-rate term structure created with intenvset,
and a portfolio of interest-rate contingent derivatives instruments created with instadd.

The syntax for using intenvprice to price an entire portfolio is

Price = intenvprice(RateSpec, InstSet)

where:

• RateSpec is the interest-rate term structure.
• InstSet is the name of the portfolio.

Example: Pricing a Portfolio of Instruments

Consider this example of using the intenvprice function to price a portfolio of
instruments supplied with Financial Instruments Toolbox software.

The provided MAT-file deriv.mat stores a portfolio as an instrument set variable
ZeroInstSet. The MAT-file also contains the interest-rate term structure
ZeroRateSpec. You can display the instruments with the function instdisp.
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load deriv.mat;
instdisp(ZeroInstSet)

Index Type CouponRate Settle         Maturity       Period Basis...
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN... 
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN... 
 
Index Type  CouponRate Settle      Maturity    FixedReset Basis...
3     Fixed 0.04       01-Jan-2000 01-Jan-2003 1          NaN... 
 
Index Type  Spread Settle         Maturity       FloatReset Basis...
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN... 
 
Index Type LegRate    Settle         Maturity       LegReset Basis...
5     Swap [0.06 20]  01-Jan-2000    01-Jan-2003    [1  1]   NaN...

Use intenvprice to calculate the prices for the instruments contained in the portfolio
ZeroInstSet.

format bank
Prices = intenvprice(ZeroRateSpec, ZeroInstSet)

Prices =

         98.72
         97.53
         98.72
        100.55
          3.69

The output Prices is a vector containing the prices of all the instruments in the portfolio
in the order indicated by the Index column displayed by instdisp. So, the first two
elements in Prices correspond to the first two bonds; the third element corresponds to
the fixed-rate note; the fourth to the floating-rate note; and the fifth element corresponds
to the price of the swap.

Computing Instrument Sensitivities
In general, you can compute sensitivities either as dollar price changes or as percentage
price changes. The toolbox reports all sensitivities as dollar sensitivities.

Using the interest-rate term structure, you can calculate two types of derivative price
sensitivities, delta and gamma. Delta represents the dollar sensitivity of prices to shifts in
the observed forward yield curve. Gamma represents the dollar sensitivity of delta to
shifts in the observed forward yield curve.
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The intenvsens function computes instrument sensitivities and instrument prices. If you
need both the prices and sensitivity measures, use intenvsens. A separate call to
intenvprice is not required.

Here is the syntax

[Delta, Gamma, Price] = intenvsens(RateSpec, InstSet)

where, as before:

• RateSpec is the interest-rate term structure.
• InstSet is the name of the portfolio.

Example: Sensitivities and Prices

Here is an example that uses intenvsens to calculate both sensitivities and prices.

format bank
load deriv.mat;
[Delta, Gamma, Price] = intenvsens(ZeroRateSpec, ZeroInstSet);

Display the results in a single matrix in bank format.

All = [Delta Gamma Price]

All =

       -272.64       1029.84       98.72
       -347.44       1622.65       97.53
       -272.64       1029.84       98.72
         -1.04          3.31      100.55
       -282.04       1059.62        3.69

To view the per-dollar sensitivity, divide the first two columns by the last one.

[Delta./Price, Gamma./Price, Price]

ans =

         -2.76         10.43         98.72
         -3.56         16.64         97.53
         -2.76         10.43         98.72
         -0.01          0.03        100.55
        -76.39        286.98          3.69
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OAS for Callable and Puttable Bonds
Option Adjusted Spread (OAS) is a useful way to value and compare securities with
embedded options, like callable or puttable bonds. Basically, when the constant or flat
spread is added to the interest-rate curve/rates in the tree, the pricing model value equals
the market price. Financial Instruments Toolbox supports pricing American, European,
and Bermuda callable and puttable bonds using different interest rate models. The pricing
for a bond with embedded options is:

• For a callable bond, where the holder has bought a bond and sold a call option to the
issuer:

Price callable bond = Price Option free bond − Price call option
• For a puttable bond, where the holder has bought a bond and a put option:

Price puttable bond = Price Option free bond + Price put option

There are two additional sensitivities related to OAS for bonds with embedded options:
Option Adjusted Duration and Option Adjusted Convexity. These are similar to the
concepts of modified duration and convexity for option-free bonds. The measure Duration
is a general term that describes how sensitive a bond’s price is to a parallel shift in the
yield curve. Modified Duration and Modified Convexity assume that the bond’s cash flows
do not change when the yield curve shifts. This is not true for OA Duration or OA
Convexity because the cash flows may change due to the option risk component of the
bond.

Function Purpose
oasbybdt Compute OAS using a BDT model.
oasbybk Compute OAS using a BK model.
oasbyhjm Compute OAS using an HJM model.
oasbyhw Compute OAS using an HW model.

Agency OAS
Often bonds are issued with embedded options, which then makes standard price/yield or
spread measures irrelevant. For example, a municipality concerned about the chance that
interest rates may fall in the future might issue bonds with a provision that allows the
bond to be repaid before the bond’s maturity. This is a call option on the bond and must
be incorporated into the valuation of the bond. Option-adjusted spread (OAS), which
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adjusts a bond spread for the value of the option, is the standard measure for valuing
bonds with embedded options. Financial Instruments Toolbox supports computing option-
adjusted spreads for bonds with single embedded options using the agency model.

The Securities Industry and Financial Markets Association (SIFMA) has a simplified
approach to compute OAS for agency issues (Government Sponsored Entities like Fannie
Mae and Freddie Mac) termed “Agency OAS.” In this approach, the bond has only one call
date (European call) and uses Black’s model (see The BMA European Callable Securities
Formula at https://www.sifma.org) to value the bond option. The price of the bond is
computed as follows:

PriceCallable = PriceNonCallable – PriceOption

where

PriceCallable is the price of the callable bond.

PriceNonCallable is the price of the noncallable bond, that is, price of the bond using
bndspread.

PriceOption is the price of the option, that is, price of the option using Black’s model.

The Agency OAS is the spread, when used in the previous formula, yields the market
price. Financial Instruments Toolbox supports these functions:

Agency OAS

Agency OAS Functions Purpose
agencyoas Compute the OAS of the callable bond using the Agency

OAS model.
agencyprice Price the callable bond OAS using the Agency OAS model.

For more information on agency OAS, see “Agency Option-Adjusted Spreads” on page 6-
2.

See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
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fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Understanding the Interest-Rate Term Structure” on page 2-55

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Understanding Interest-Rate Tree Models
In this section...
“Introduction” on page 2-79
“Building a Tree of Forward Rates” on page 2-80
“Specifying the Volatility Model (VolSpec)” on page 2-82
“Specifying the Interest-Rate Term Structure (RateSpec)” on page 2-84
“Specifying the Time Structure (TimeSpec)” on page 2-85
“Creating Trees” on page 2-87
“Examining Trees” on page 2-88

Introduction
Financial Instruments Toolbox supports the following interest-rate trees:

• Black-Derman-Toy (BDT)
• Black-Karasinski (BK)
• Heath-Jarrow-Morton (HJM)
• Hull-White (HW)
• Cox-Ingersoll-Ross (CIR)

The Heath-Jarrow-Morton model is one of the most widely used models for pricing
interest-rate derivatives. The model considers a given initial term structure of interest
rates and a specification of the volatility of forward rates to build a tree representing the
evolution of the interest rates, based on a statistical process. For further explanation, see
the book Modelling Fixed Income Securities and Interest Rate Options by Robert A.
Jarrow.

The Black-Derman-Toy model is another analytical model commonly used for pricing
interest-rate derivatives. The model considers a given initial zero rate term structure of
interest rates and a specification of the yield volatilities of long rates to build a tree
representing the evolution of the interest rates. For further explanation, see the paper “A
One Factor Model of Interest Rates and its Application to Treasury Bond Options” by
Fischer Black, Emanuel Derman, and William Toy.

The Hull-White model incorporates the initial term structure of interest rates and the
volatility term structure to build a trinomial recombining tree of short rates. The resulting
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tree is used to value interest rate-dependent securities. The implementation of the Hull-
White model in Financial Instruments Toolbox software is limited to one factor.

The Black-Karasinski model is a single factor, log-normal version of the Hull-White model.

For further information on the Hull-White and Black-Karasinski models, see the book
Options, Futures, and Other Derivatives by John C. Hull.

Building a Tree of Forward Rates
The tree of forward rates is the fundamental unit representing the evolution of interest
rates in a given period of time. This section explains how to create a forward-rate tree
using Financial Instruments Toolbox.

Note To avoid needless repetition, this document uses the HJM and BDT models to
illustrate the creation and use of interest-rate trees. The HW and BK models are similar to
the BDT model. Where specific differences exist, they are documented in “HW and BK
Tree Structures” on page 2-95.

The MATLAB functions that create rate trees are hjmtree and bdttree. The hjmtree
function creates the structure, HJMTree, containing time and forward-rate information
for a bushy tree. The bdttree function creates a similar structure, BDTTree, for a
recombining tree.

This structure is a self-contained unit that includes the tree of rates (found in the
FwdTree field of the structure) and the volatility, rate, and time specifications used in
building this tree.

These functions take three structures as input arguments:

• The volatility model VolSpec. (See “Specifying the Volatility Model (VolSpec)” on page
2-82.)

• The interest-rate term structure RateSpec. (See “Specifying the Interest-Rate Term
Structure (RateSpec)” on page 2-84.)

• The tree time layout TimeSpec. (See “Specifying the Time Structure (TimeSpec)” on
page 2-85.)
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An easy way to visualize any trees you create is with the treeviewer function, which
displays trees in a graphical manner. See “Graphical Representation of Trees” on page 2-
158 for information about treeviewer.

Calling Sequence

The calling syntax for hjmtree is HJMTree = hjmtree(VolSpec, RateSpec,
TimeSpec).

Similarly, the calling syntax for bdttree is BDTTree = bdttree(VolSpec,
RateSpec, TimeSpec).

Each of these functions requires VolSpec, RateSpec, and TimeSpec input arguments:

• VolSpec is a structure that specifies the forward-rate volatility process. You create
VolSpec using either of the functions hjmvolspec or bdtvolspec.

The hjmvolspec function supports the specification of up to three factors. It handles
these models for the volatility of the interest-rate term structure:

• Constant
• Stationary
• Exponential
• Vasicek
• Proportional

A one-factor model assumes that the interest term structure is affected by a single
source of uncertainty. Incorporating multiple factors allows you to specify different
types of shifts in the shape and location of the interest-rate structure. See
hjmvolspec for details.

The bdtvolspec function supports only a single volatility factor. The volatility
remains constant between pairs of nodes on the tree. You supply the input volatility
values in a vector of decimal values. See bdtvolspec for details.

• RateSpec is the interest-rate specification of the initial rate curve. You create this
structure with the function intenvset. (See “Modeling the Interest-Rate Term
Structure” on page 2-67.)

• TimeSpec is the tree time layout specification. You create this variable with the
functions hjmtimespec or bdttimespec. It represents the mapping between level
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times and level dates for rate quoting. This structure indirectly determines the number
of levels in the tree.

Specifying the Volatility Model (VolSpec)
Because HJM supports multifactor (up to 3) volatility models while BDT (also, BK and
HW) supports only a single volatility factor, the hjmvolspec and bdtvolspec functions
require different inputs and generate slightly different outputs. For examples, see
“Creating an HJM Volatility Model” on page 2-82. For BDT examples, see “Creating a
BDT Volatility Model” on page 2-83.

Creating an HJM Volatility Model

The function hjmvolspec generates the structure VolSpec, which specifies the volatility

process s t T,( )  used in the creation of the forward-rate trees. In this context capital T
represents the starting time of the forward rate, and t represents the observation time.
The volatility process can be constructed from a combination of factors specified
sequentially in the call to function that creates it. Each factor specification starts with a
character vector specifying the name of the factor, followed by the pertinent parameters.
HJM Volatility Specification Example

Consider an example that uses a single factor, specifically, a constant-sigma factor. The
constant factor specification requires only one parameter, the value of s . In this case, the
value corresponds to 0.10.

HJMVolSpec = hjmvolspec('Constant', 0.10)

HJMVolSpec = 

      FinObj: 'HJMVolSpec'
FactorModels: {'Constant'}
  FactorArgs: {{1x1 cell}}
  SigmaShift: 0
  NumFactors: 1
   NumBranch: 2
     PBranch: [0.5000 0.5000]
 Fact2Branch: [-1 1]

The NumFactors field of the VolSpec structure, VolSpec.NumFactors = 1, reveals
that the number of factors used to generate VolSpec was one. The FactorModels field
indicates that it is a Constant factor, and the NumBranches field indicates the number
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of branches. As a consequence, each node of the resulting tree has two branches, one
going up, and the other going down.

Consider now a two-factor volatility process made from a proportional factor and an
exponential factor.
% Exponential factor
Sigma_0 = 0.1;
Lambda = 1;
% Proportional factor
CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [   1   ;    2   ;    3   ];
% Build VolSpec
HJMVolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm,...
1e6,'Exponential', Sigma_0, Lambda)

HJMVolSpec = 

      FinObj: 'HJMVolSpec'
FactorModels: {'Proportional'  'Exponential'}
  FactorArgs: {{1x3 cell}  {1x2 cell}}
  SigmaShift: 0
  NumFactors: 2
   NumBranch: 3
     PBranch: [0.2500 0.2500 0.5000]
 Fact2Branch: [2x3 double]

The output shows that the volatility specification was generated using two factors. The
tree has three branches per node. Each branch has probabilities of 0.25, 0.25, and 0.5,
going from top to bottom.

Creating a BDT Volatility Model

The function bdtvolspec generates the structure VolSpec, which specifies the volatility
process. The function requires three input arguments:

• The valuation date ValuationDate
• The yield volatility end dates VolDates
• The yield volatility values VolCurve

An optional fourth argument InterpMethod, specifying the interpolation method, can be
included.

The syntax used for calling bdtvolspec is:
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BDTVolSpec = bdtvolspec(ValuationDate, VolDates, VolCurve,...
InterpMethod)

where:

• ValuationDate is the first observation date in the tree.
• VolDates is a vector of dates representing yield volatility end dates.
• VolCurve is a vector of yield volatility values.
• InterpMethod is the method of interpolation to use. The default is linear.

BDT Volatility Specification Example

Consider the following example:

ValuationDate = datenum('01-01-2000');
EndDates = datenum(['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']);
Volatility = [.2; .19; .18; .17; .16];

Use bdtvolspec to create a volatility specification. Because no interpolation method is
explicitly specified, the function uses the linear default.

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = 
             FinObj: 'BDTVolSpec'
      ValuationDate: 730486
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
    VolInterpMethod: 'linear'

Specifying the Interest-Rate Term Structure (RateSpec)
The structure RateSpec is an interest term structure that defines the initial forward-rate
specification from which the tree rates are derived. “Modeling the Interest-Rate Term
Structure” on page 2-67 explains how to create these structures using the function
intenvset, given the interest rates, the starting and ending dates for each rate, and the
compounding value.

Rate Specification Creation Example

Consider the following example:
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Compounding = 1;
Rates = [0.02; 0.02; 0.02; 0.02];
StartDates = ['01-Jan-2000';   
              '01-Jan-2001';  
              '01-Jan-2002';  
              '01-Jan-2003'];
EndDates =   ['01-Jan-2001'; 
              '01-Jan-2002';  
              '01-Jan-2003'; 
              '01-Jan-2004'];
ValuationDate = '01-Jan-2000';

RateSpec = intenvset('Compounding',1,'Rates', Rates,... 
'StartDates', StartDates, 'EndDates', EndDates,... 
'ValuationDate', ValuationDate)

RateSpec = 

        FinObj: 'RateSpec'
   Compounding: 1
          Disc: [4x1 double]
         Rates: [4x1 double]
      EndTimes: [4x1 double]
    StartTimes: [4x1 double]
      EndDates: [4x1 double]
    StartDates: [4x1 double]
 ValuationDate: 730486
         Basis: 0
  EndMonthRule: 1

Use the function datedisp to examine the dates defined in the variable RateSpec. For
example:

datedisp(RateSpec.ValuationDate)
01-Jan-2000

Specifying the Time Structure (TimeSpec)
The structure TimeSpec specifies the time structure for an interest-rate tree. This
structure defines the mapping between the observation times at each level of the tree and
the corresponding dates.

TimeSpec is built using either the hjmtimespec or bdttimespec function. These
functions require three input arguments:
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• The valuation date ValuationDate
• The maturity date Maturity
• The compounding rate Compounding

For example, the syntax used for calling hjmtimespec is

TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

where:

• ValuationDate is the first observation date in the tree.
• Maturity is a vector of dates representing the cash flow dates of the tree. Any

instrument cash flows with these maturities fall on tree nodes.
• Compounding is the frequency at which the rates are compounded when annualized.

Creating a Time Specification

Calling the time specification creation functions with the same data used to create the
interest-rate term structure, RateSpec on page 2-84 builds the structure that specifies
the time layout for the tree.

HJM Time Specification Example

Consider the following example:

Maturity = EndDates;
HJMTimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

HJMTimeSpec = 

       FinObj: 'HJMTimeSpec'
ValuationDate: 730486
     Maturity: [4x1 double]
  Compounding: 1
        Basis: 0
 EndMonthRule: 1

Maturities specified when building TimeSpec need not coincide with the EndDates of
the rate intervals in RateSpec. Since TimeSpec defines the time-date mapping of the
tree, the rates in RateSpec are interpolated to obtain the initial rates with maturities
equal to those in TimeSpec.
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Creating a BDT Time Specification

Consider the following example:

Maturity = EndDates;
BDTTimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

BDTTimeSpec = 

           FinObj: 'BDTTimeSpec'
    ValuationDate: 730486
         Maturity: [4x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Creating Trees
Use the VolSpec, RateSpec, and TimeSpec you have previously created as inputs to the
functions used to create HJM and BDT trees.

Creating an HJM Tree
% Reset the volatility factor to the Constant case
HJMVolSpec = hjmvolspec('Constant', 0.10);

HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMTree = 

  FinObj: 'HJMFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1 2 3]
    TFwd: {[4x1 double] [3x1 double] [2x1 double] [3]}
  CFlowT: {[4x1 double] [3x1 double] [2x1 double] [4]}
 FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

Creating a BDT Tree

Now use the previously computed values for VolSpec, RateSpec, and TimeSpec as
input to the function bdttree to create a BDT tree.
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)
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BDTTree = 

  FinObj: 'BDTFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1.00 2.00 3.00]
    TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3.00]}
  CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4.00]}
 FwdTree: {[1.02] [1.02 1.02] [1.01 1.02 1.03] [1.01 1.02 1.02 1.03]}

Examining Trees
When working with the models, Financial Instruments Toolbox uses trees to represent
forward rates, prices, and so on. At the highest level, these trees have structures wrapped
around them. The structures encapsulate information required to interpret completely the
information contained in a tree.

Consider this example, which uses the interest rate and portfolio data in the MAT-file
deriv.mat included in the toolbox.

Load the data into the MATLAB workspace.

load deriv.mat

Display the list of the variables loaded from the MAT-file.

whos

 Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             15956  struct              
  BDTTree           1x1              5138  struct              
  BKInstSet         1x1             15946  struct              
  BKTree            1x1              5904  struct              
  CRRInstSet        1x1             12434  struct              
  CRRTree           1x1              5058  struct              
  EQPInstSet        1x1             12434  struct              
  EQPTree           1x1              5058  struct              
  HJMInstSet        1x1             15948  struct              
  HJMTree           1x1              5838  struct              
  HWInstSet         1x1             15946  struct              
  HWTree            1x1              5904  struct              
  ITTInstSet        1x1             12438  struct              
  ITTTree           1x1              8862  struct              
  ZeroInstSet       1x1             10282  struct              
  ZeroRateSpec      1x1              1580  struct         
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HJM Tree Structure

You can now examine in some detail the contents of the HJMTree structure contained in
this file.

HJMTree

HJMTree = 

  FinObj: 'HJMFwdTree'
 VolSpec: [1x1 struct]
TimeSpec: [1x1 struct]
RateSpec: [1x1 struct]
    tObs: [0 1 2 3]
    TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
  CFlowT: {[4x1 double]  [3x1 double]  [2x1 double] [4]}
 FwdTree:{[4x1 double][3x1x2 double][2x2x2 double][1x4x2 double]}

FwdTree contains the actual forward-rate tree. MATLAB represents it as a cell array with
each cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree.
The most important are VolSpec, TimeSpec, and RateSpec, which contain the volatility,
time structure, and rate structure information respectively.

First Node

Observe the forward rates in FwdTree. The first node represents the valuation date, tObs
= 0.

HJMTree.FwdTree{1}

ans =

   1.0356
   1.0468
   1.0523
   1.0563

Note Financial Instruments Toolbox uses inverse discount notation for forward rates in
the tree. An inverse discount represents a factor by which the current value of an asset is
multiplied to find its future value. In general, these forward factors are reciprocals of the
discount factors.
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Look closely at the RateSpec structure used in generating this tree to see where these
values originate. Arrange the values in a single array.

[HJMTree.RateSpec.StartTimes HJMTree.RateSpec.EndTimes... 
HJMTree.RateSpec.Rates]

ans =

         0    1.0000    0.0356
    1.0000    2.0000    0.0468
    2.0000    3.0000    0.0523
    3.0000    4.0000    0.0563

If you find the corresponding inverse discounts of the interest rates in the third column,
you have the values at the first node of the tree. You can turn interest rates into inverse
discounts using the function rate2disc.

Disc = rate2disc(HJMTree.TimeSpec.Compounding,... 
HJMTree.RateSpec.Rates, HJMTree.RateSpec.EndTimes,... 
HJMTree.RateSpec.StartTimes);
FRates = 1./Disc

FRates =
    1.0356
    1.0468
    1.0523
    1.0563

Second Node

The second node represents the first-rate observation time, tObs = 1. This node displays
two states: one representing the branch going up and the other representing the branch
going down.

Note that HJMTree.VolSpec.NumBranch = 2.

HJMTree.VolSpec

ans = 

          FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
      FactorArgs: {{1x1 cell}}
      SigmaShift: 0
      NumFactors: 1
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       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

Examine the rates of the node corresponding to the up branch.

HJMTree.FwdTree{2}(:,:,1)

ans =

    1.0364
    1.0420
    1.0461

Now examine the corresponding down branch.

HJMTree.FwdTree{2}(:,:,2)

ans =

    1.0574
    1.0631
    1.0672

Third Node

The third node represents the second observation time, tObs = 2. This node contains a
total of four states, two representing the branches going up and the other two
representing the branches going down. Examine the rates of the node corresponding to
the up states.

HJMTree.FwdTree{3}(:,:,1)

ans =

    1.0317    1.0526
    1.0358    1.0568

Next examine the corresponding down states.

HJMTree.FwdTree{3}(:,:,2)

ans =

    1.0526    1.0738
    1.0568    1.0781
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Isolating a Specific Node

Starting at the third level, indexing within the tree cell array becomes complex, and
isolating a specific node can be difficult. The function bushpath isolates a specific node
by specifying the path to the node as a vector of branches taken to reach that node. As an
example, consider the node reached by starting from the root node, taking the branch up,
then the branch down, and then another branch down. Given that the tree has only two
branches per node, branches going up correspond to a 1, and branches going down
correspond to a 2. The path up-down-down becomes the vector [1 2 2].

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

    1.0356
    1.0364
    1.0526
    1.0674

bushpath returns the spot rates for all the nodes tapped by the path specified in the
input argument, the first one corresponding to the root node, and the last one
corresponding to the target node.

Isolating the same node using direct indexing obtains

HJMTree.FwdTree{4}(:, 3, 2)

ans =

    1.0674

As expected, this single value corresponds to the last element of the rates returned by
bushpath.

You can use these techniques with any type of tree generated with Financial Instruments
Toolbox, such as forward-rate trees or price trees.

BDT Tree Structure

You can now examine in some detail the contents of the BDTTree structure.

BDTTree 

BDTTree = 
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      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1.00 2.00 3.00]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3.00]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4.00]}
     FwdTree: {[1.10]  [1.10 1.14]  [1.10 1.14 1.19]  [1.09 1.12 1.16 1.22]}

FwdTree contains the actual rate tree. MATLAB represents it as a cell array with each
cell array element containing a tree level.

The other fields contain other information relevant to interpreting the values in FwdTree.
The most important are VolSpec, TimeSpec, and RateSpec, which contain the volatility,
time structure, and rate structure information respectively.

Look at the RateSpec structure used in generating this tree to see where these values
originate. Arrange the values in a single array.

[BDTTree.RateSpec.StartTimes BDTTree.RateSpec.EndTimes... 
BDTTree.RateSpec.Rates]

ans =

         0    1.0000    0.1000
         0    2.0000    0.1100
         0    3.0000    0.1200
         0    4.0000    0.1250

Look at the rates in FwdTree. The first node represents the valuation date, tObs = 0.
The second node represents tObs = 1. Examine the rates at the second, third, and
fourth nodes.

BDTTree.FwdTree{2}  

ans =

      1.0979    1.1432

The second node represents the first observation time, tObs = 1. This node contains a
total of two states, one representing the branch going up (1.0979) and the other
representing the branch going down (1.1432).

Note The convention in this document is to display prices going up on the upper branch.
So, when displaying rates, rates are falling on the upper branch and increasing on the
lower branch.
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BDTTree.FwdTree{3}

ans =

    1.0976    1.1377    1.1942

The third node represents the second observation time, tObs = 2. This node contains a
total of three states, one representing the branch going up (1.0976), one representing
the branch in the middle (1.1377) and the other representing the branch going down
(1.1942).

BDTTree.FwdTree{4}

ans =

    1.0872    1.1183    1.1606    1.2179

The fourth node represents the third observation time, tObs = 3. This node contains a
total of four states, one representing the branch going up (1.0872), two representing the
branches in the middle (1.1183 and 1.1606), and the other representing the branch
going down (1.2179).

Isolating a Specific Node

The function treepath isolates a specific node by specifying the path to the node as a
vector of branches taken to reach that node. As an example, consider the node reached by
starting from the root node, taking the branch up, then the branch down, and finally
another branch down. Given that the tree has only two branches per node, branches
going up correspond to a 1, and branches going down correspond to a 2. The path up-
down-down becomes the vector [1 2 2].

FRates = treepath(BDTTree.FwdTree, [1 2 2]) 

FRates =

    1.1000
    1.0979
    1.1377
    1.1606

treepath returns the short rates for all the nodes tapped by the path specified in the
input argument, the first one corresponding to the root node, and the last one
corresponding to the target node.
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HW and BK Tree Structures

The HW and BK tree structures are similar to the BDT tree structure. You can see this if
you examine the sample HW tree contained in the file deriv.mat.

load deriv.mat;
HWTree

HWTree = 

      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1.00 2.00 3.00]
        dObs: [731947.00 732313.00 732678.00 733043.00]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4.00]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2.00]  [2.00 3.00 4.00]  [2.00 2.00 3.00 4.00 4.00]}
     FwdTree: {[1.03]  [1.05 1.04 1.02]  [1.08 1.07 1.05 1.03 1.01]  [1.09 1.08 1.06 1.04 1.02]

All fields of this structure are similar to their BDT counterparts. There are two additional
fields not present in BDT: Probs and Connect. The Probs field represents the
occurrence probabilities at each branch of each node in the tree. The Connect field
describes the connectivity of the nodes of a given tree level to nodes to the next tree
level.

Probs Field

While BDT and one-factor HJM models have equal probabilities for each branch at a node,
HW and BK do not. For HW and BK trees, the Probs field indicates the likelihood that a
particular branch will be taken in moving from one node to another node on the next
level.

The Probs field consists of a cell array with one cell per tree level. Each cell is a 3-by-
NUMNODES array with the top row representing the probability of an up movement, the
middle row representing the probability of a middle movement, and the last row the
probability of a down movement.

As an illustration, consider the first two elements of the Probs field of the structure,
corresponding to the first (root) and second levels of the tree.

HWTree.Probs{1}

0.16666666666667
0.66666666666667
0.16666666666667
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HWTree.Probs{2}

0.12361333418768   0.16666666666667   0.21877591615172
0.65761074966060   0.66666666666667   0.65761074966060
0.21877591615172   0.16666666666667   0.12361333418768

Reading from top to bottom, the values in HWTree.Probs{1} correspond to the up,
middle, and down probabilities at the root node.

HWTree.Probs{2} is a 3-by-3 matrix of values. The first column represents the top node,
the second column represents the middle node, and the last column represents the
bottom node. As with the root node, the first, second, and third rows hold the values for
up, middle, and down branching off each node.

As expected, the sum of all the probabilities at any node equals 1.

sum(HWTree.Probs{2})

1.0000    1.0000    1.0000

Connect Field

The other field that distinguishes HW and BK tree structures from the BDT tree structure
is Connect. This field describes how each node in a given level connects to the nodes of
the next level. The need for this field arises from the possibility of nonstandard branching
in a tree.

The Connect field of the HW tree structure consists of a cell array with one cell per tree
level.

HWTree.Connect

ans = 

    [2]    [1x3 double]    [1x5 double]

Each cell contains a 1-by-NUMNODES vector. Each value in the vector relates to a node in
the corresponding tree level and represents the index of the node in the next tree level
that the middle branch of the node connects to.

If you subtract 1 from the values contained in Connect, you reveal the index of the nodes
in the next level that the up branch connects to. If you add 1 to the values, you reveal the
index of the corresponding down branch.

As an illustration, consider HWTree.Connect{1}:
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HWTree.Connect{1}

ans =

     2

This indicates that the middle branch of the root node connects to the second (from the
top) node of the next level, as expected. If you subtract 1 from this value, you obtain 1,
which tells you that the up branch goes to the top node. If you add 1, you obtain 3, which
points to the last node of the second level of the tree.

Now consider level 3 in this example:

HWTree.Connect{3}

2     2     3     4     4

On this level, there is nonstandard branching. This can be easily recognized because the
middle branch of two nodes is connected to the same node on the next level.

To visualize this, consider the following illustration of the tree.

Here it becomes apparent that there is nonstandard branching at the third level of the
tree, on the top and bottom nodes. The first and second nodes connect to the same trio of
nodes on the next level. Similar branching occurs at the bottom and next-to-bottom nodes
of the tree.
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See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-50
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Graphical Representation of Trees” on page 2-158

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43

2 Interest-Rate Derivatives

2-98



Pricing Using Interest-Rate Tree Models
In this section...
“Introduction” on page 2-99
“Computing Instrument Prices” on page 2-99

Introduction
For purposes of illustration, this section relies on the HJM and BDT models. The HW and
BK functions that perform price and sensitivity computations are not explicitly shown
here. Functions that use the HW and BK models operate similarly to the BDT model.

Computing Instrument Prices
The portfolio pricing functions hjmprice and bdtprice calculate the price of any set of
supported instruments, based on an interest-rate tree. The functions are capable of
pricing these instrument types:

• Bonds
• Bond options
• Bond with embedded options
• Arbitrary cash flows
• Fixed-rate notes
• Floating-rate notes
• Floating-rate notes with options or embedded options
• Caps
• Floors
• Range Notes
• Swaps
• Swaptions

For example, the syntax for calling hjmprice is:

[Price, PriceTree] = hjmprice(HJMTree, InstSet, Options)
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Similarly, the calling syntax for bdtprice is:

[Price, PriceTree] = bdtprice(BDTTree, InstSet, Options)

Each function requires two input arguments: the interest-rate tree and the set of
instruments, InstSet. An optional argument, Options, further controls the pricing and
the output displayed. (See “Pricing Options Structure” on page B-2 for information
about the Options argument.)

HJMTree is the Heath-Jarrow-Morton tree sampling of a forward-rate process, created
using hjmtree. BDTTree is the Black-Derman-Toy tree sampling of an interest-rate
process, created using bdttree. See “Building a Tree of Forward Rates” on page 2-80 to
learn how to create these structures.

InstSet is the set of instruments to be priced. This structure represents the set of
instruments to be priced independently using the model.

Options is an options structure created with the function derivset. This structure
defines how the tree is used to find the price of instruments in the portfolio, and how
much additional information is displayed in the command window when calling the
pricing function. If this input argument is not specified in the call to the pricing function,
a default Options structure is used. The pricing options structure is described in “Pricing
Options Structure” on page B-2.

The portfolio pricing functions classify the instruments and call the appropriate
instrument-specific pricing function for each of the instrument types. The HJM
instrument-specific pricing functions are bondbyhjm, cfbyhjm, fixedbyhjm,
floatbyhjm, optbndbyhjm, rangefloatbyhjm, swapbyhjm, and swaptionbyhjm. A
similarly named set of functions exists for BDT models. You can also use these functions
directly to calculate the price of sets of instruments of the same type.

HJM Pricing Example

Consider the following example, which uses the portfolio and interest-rate data in the
MAT-file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.

whos
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Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             15956  struct              
  BDTTree           1x1              5138  struct              
  BKInstSet         1x1             15946  struct              
  BKTree            1x1              5904  struct              
  CRRInstSet        1x1             12434  struct              
  CRRTree           1x1              5058  struct              
  EQPInstSet        1x1             12434  struct              
  EQPTree           1x1              5058  struct              
  HJMInstSet        1x1             15948  struct              
  HJMTree           1x1              5838  struct              
  HWInstSet         1x1             15946  struct              
  HWTree            1x1              5904  struct              
  ITTInstSet        1x1             12438  struct              
  ITTTree           1x1              8862  struct              
  ZeroInstSet       1x1             10282  struct              
  ZeroRateSpec      1x1              1580  struct         

HJMTree and HJMInstSet are the input arguments required to call the function
hjmprice.

Use the function instdisp to examine the set of instruments contained in the variable
HJMInstSet.

instdisp(HJMInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name       Quantity
3     OptBond 2        call    101    01-Jan-2003    NaN         Option 101 -50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
4     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
5     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
6     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30      
 
Index Type  Strike Settle         Maturity       FloorReset Basis Principal Name     Quantity
7     Floor 0.03   01-Jan-2000    01-Jan-2004    1          NaN   NaN       3% Floor 40      
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
8     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      

Index Type CouponRate Settle       Maturity     Period Basis  ...  Name      Quantity
1     Bond 0.04       01-Jan-2000  01-Jan-2003  1      NaN    ...  4% bond   100 
2     Bond 0.04       01-Jan-2000  01-Jan-2004  2      NaN    ...  4% bond    50  
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There are eight instruments in this portfolio set: two bonds, one bond option, one fixed-
rate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a
corresponding index that identifies the instrument prices in the price vector returned by
hjmprice.

Now use hjmprice to calculate the price of each instrument in the instrument set.

Price = hjmprice(HJMTree, HJMInstSet)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =

   98.7159
   97.5280
    0.0486
   98.7159
  100.5529
    6.2831
    0.0486
    3.6923

Note The warning shown above appears because some of the cash flows for the second
bond do not fall exactly on a tree node.

BDT Pricing Example

Load the MAT-file deriv.mat into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.

whos

 Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             15956  struct              
  BDTTree           1x1              5138  struct              
  BKInstSet         1x1             15946  struct              
  BKTree            1x1              5904  struct              
  CRRInstSet        1x1             12434  struct              
  CRRTree           1x1              5058  struct              
  EQPInstSet        1x1             12434  struct              
  EQPTree           1x1              5058  struct              
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  HJMInstSet        1x1             15948  struct              
  HJMTree           1x1              5838  struct              
  HWInstSet         1x1             15946  struct              
  HWTree            1x1              5904  struct              
  ITTInstSet        1x1             12438  struct              
  ITTTree           1x1              8862  struct              
  ZeroInstSet       1x1             10282  struct              
  ZeroRateSpec      1x1              1580  struct         

BDTTree and BDTInstSet are the input arguments required to call the function
bdtprice.

Use the function instdisp to examine the set of instruments contained in the variable
BDTInstSet.

instdisp(BDTInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name     Quantity
1     Bond 0.1        01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond 100     
2     Bond 0.1        01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond  50     
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Name      Quantity
3     OptBond 1        call    95     01-Jan-2002    NaN         Option 95 -50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name      Quantity
4     Fixed 0.1        01-Jan-2000    01-Jan-2003    1          NaN   NaN       10% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
5     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name    Quantity
6     Cap  0.15   01-Jan-2000    01-Jan-2004    1        NaN   NaN       15% Cap 30      
 
Index Type  Strike Settle         Maturity       FloorReset Basis Principal Name     Quantity
7     Floor 0.09   01-Jan-2000    01-Jan-2004    1          NaN   NaN       9% Floor 40      
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name          Quantity
8     Swap [0.15  10] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   15%/10BP Swap 10  

There are eight instruments in this portfolio set: two bonds, one bond option, one fixed-
rate note, one floating-rate note, one cap, one floor, and one swap. Each instrument has a
corresponding index that identifies the instrument prices in the price vector returned by
bdtprice.

Now use bdtprice to calculate the price of each instrument in the instrument set.

Price = bdtprice(BDTTree, BDTInstSet)

Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

Price =
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   95.5030
   93.9079
    1.7657
   95.5030
  100.4865
    1.4863
    0.0245
    7.4222

Price Vector Output

The prices in the output vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the valuation date of the interest-rate tree. The
instrument indexing within Price is the same as the indexing within InstSet.

In the HJM example, the prices in the Price vector correspond to the instruments in this
order.

InstNames = instget(HJMInstSet, 'FieldName','Name')

InstNames =

4% bond     
4% bond     
Option 101  
4% Fixed    
20BP Float  
3% Cap      
3% Floor    
6%/20BP Swap

So, in the Price vector, the fourth element, 98.7159, represents the price of the fourth
instrument (4% fixed-rate note); the sixth element, 6.2831, represents the price of the
sixth instrument (3% cap).

In the BDT example, the prices in the Price vector correspond to the instruments in this
order.

InstNames = instget(BDTInstSet, 'FieldName','Name')

InstNames =

10% Bond     
10% Bond     
Option 95    
10% Fixed    
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20BP Float   
15% Cap      
9% Floor     
15%/10BP Swap

So, in the Price vector, the fourth element, 95.5030, represents the price of the fourth
instrument (10% fixed-rate note); the sixth element, 1.4863, represents the price of the
sixth instrument (15% cap).

Price Tree Structure Output

If you call a pricing function with two output arguments, for example,

[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet) 

you generate a price tree along with the price information.

The optional output price tree structure PriceTree holds all the pricing information.
HJM Price Tree

In the HJM example, the first field of this structure, FinObj, indicates that this structure
represents a price tree. The second field, PBush, is the tree holding the price of the
instruments in each node of the tree. The third field, AIBush, is the tree holding the
accrued interest of the instruments in each node of the tree. Finally, the fourth field,
tObs, represents the observation time of each level of PBush and AIBush, with units in
terms of compounding periods.

In this example, the price tree looks like

PriceTree = 

FinObj: 'HJMPriceTree'
 PBush: {[8x1 double]  [8x1x2 double]  ...[8x8 double]}
AIBush: {[8x1 double]  [8x1x2 double] ... [8x8 double]}
  tObs: [0 1 2 3 4]

Both PBush and AIBush are 1-by-5 cell arrays, consistent with the five observation times
of tObs. The data display has been shortened here to fit on a single line.

Using the command-line interface, you can directly examine PriceTree.PBush, the field
within the PriceTree structure that contains the price tree with the price vectors at
every state. The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PBush{1}

 Pricing Using Interest-Rate Tree Models

2-105



ans =

   98.7159
   97.5280
    0.0486
   98.7159
  100.5529
    6.2831
    0.0486
    3.6923

With this interface, you can observe the prices for all instruments in the portfolio at a
specific time.

BDT Price Tree

The BDT output price tree structure PriceTree holds all the pricing information. The
first field of this structure, FinObj, indicates that this structure represents a price tree.
The second field, PTree, is the tree holding the price of the instruments in each node of
the tree. The third field, AITree, is the tree holding the accrued interest of the
instruments in each node of the tree. The fourth field, tObs, represents the observation
time of each level of PTree and AITree, with units in terms of compounding periods.

You can directly examine the field within the PriceTree structure, which contains the
price tree with the price vectors at every state. The first node represents tObs = 0,
corresponding to the valuation date.

[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet)

PriceTree.PTree{1}

ans =

   95.5030
   93.9079
    1.7657
   95.5030
  100.4865
    1.4863
    0.0245
    7.4222
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See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-50
• “Computing Instrument Sensitivities” on page 2-108
• “Graphical Representation of Trees” on page 2-158
• “Understanding Interest-Rate Tree Models” on page 2-79
• “Understanding the Interest-Rate Term Structure” on page 2-55
• “Pricing Using Interest-Rate Term Structure” on page 2-72

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Computing Instrument Sensitivities
Sensitivities can be reported either as dollar price changes or percentage price changes.
The delta, gamma, and vega sensitivities that the toolbox computes are dollar
sensitivities.

The functions hjmsens and bdtsens compute the delta, gamma, and vega sensitivities of
instruments using an interest-rate tree. They also optionally return the calculated price
for each instrument. The sensitivity functions require the same two input arguments used
by the pricing functions (HJMTree and HJMInstSet for HJM; BDTTree and BDTInstSet
for BDT).

Sensitivity functions calculate the dollar value of delta and gamma by shifting the
observed forward yield curve by 100 basis points in each direction, and the dollar value of
vega by shifting the volatility process by 1%. To obtain the per-dollar value of the
sensitivities, divide the dollar sensitivity by the price of the corresponding instrument.

HJM Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet)

Use the previous example data to calculate the price of instruments.
load deriv.mat
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

Note The warning appears because some of the cash flows for the second bond do not
fall exactly on a tree node.

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.

All = [Delta, Gamma, Vega, Price]

All =

       -272.65       1029.90          0.00         98.72
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       -347.43       1622.69         -0.04         97.53
         -8.08        643.40         34.07          0.05
       -272.65       1029.90          0.00         98.72
         -1.04          3.31             0        100.55
        294.97       6852.56         93.69          6.28
        -47.16       8459.99         93.69          0.05
       -282.05       1059.68          0.00          3.69

As with the prices, each row of the sensitivity vectors corresponds to the similarly
indexed instrument in HJMInstSet. To view the per-dollar sensitivities, divide each dollar
sensitivity by the corresponding instrument price.

BDT Sensitivities Example
The calling syntax for the function is:

[Delta, Gamma, Vega, Price] = bdtsens(BDTTree, BDTInstSet);

Arrange the sensitivities and prices into a single matrix.

All = [Delta, Gamma, Vega, Price]

All =

     -232.67       803.71      -0.00       95.50
     -281.05      1181.93      -0.01       93.91
      -50.54       246.02       5.31        1.77
     -232.67       803.71          0       95.50
        0.84         2.45          0      100.49
       78.38       748.98      13.54        1.49
       -4.36       382.06       2.50        0.02
     -253.23       863.81          0        7.42

To view the per-dollar sensitivities, divide each dollar sensitivity by the corresponding
instrument price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

       -2.44         8.42      -0.00       95.50
       -2.99        12.59      -0.00       93.91
      -28.63       139.34       3.01        1.77
       -2.44         8.42          0       95.50
        0.01         0.02          0      100.49
       52.73       503.92       9.11        1.49
     -177.89     15577.42     101.87        0.02
      -34.12       116.38          0        7.42
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See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-50
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Graphical Representation of Trees” on page 2-158
• “Understanding Interest-Rate Tree Models” on page 2-79
• “Understanding the Interest-Rate Term Structure” on page 2-55
• “Pricing Using Interest-Rate Term Structure” on page 2-72

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Calibrating Hull-White Model Using Market Data
The pricing of interest-rate derivative securities relies on models that describe the
underlying process. These interest rate models depend on one or more parameters that
you must determine by matching the model predictions to the existing data available in
the market. In the Hull-White model, there are two parameters related to the short rate
process: mean reversion and volatility. Calibration is used to determine these parameters,
such that the model can reproduce, as close as possible, the prices of caps or floors
observed in the market. The calibration routines find the parameters that minimize the
difference between the model price predictions and the market prices for caps and floors.

For a Hull-White model, the minimization is two dimensional, with respect to mean
reversion (α) and volatility (σ). That is, calibrating the Hull-White model minimizes the
difference between the model’s predicted prices and the observed market prices of the
corresponding caplets or floorlets.

Hull-White Model Calibration Example
Use market data to identify the implied volatility (σ) and mean reversion (α) coefficients
needed to build a Hull-White tree to price an instrument. The ideal case is to use the
volatilities of the caps or floors used to calculate Alpha (α) and Sigma (σ). This will most
likely not be the case, so market data must be interpolated to obtain the required values.

Consider a cap with these parameters:

Settle = ' Jan-21-2008';
Maturity = 'Mar-21-2011';
Strike = 0.0690;
Reset = 4;
Principal = 1000;
Basis = 0;

The caplets for this example would fall in:

capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates')

ans =

21-Mar-2008
21-Jun-2008
21-Sep-2008
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21-Dec-2008
21-Mar-2009
21-Jun-2009
21-Sep-2009
21-Dec-2009
21-Mar-2010
21-Jun-2010
21-Sep-2010
21-Dec-2010
21-Mar-2011

In the best case, look up the market volatilities for caplets with a Strike = 0.0690, and
maturities in each reset date listed, but the likelihood of finding these exact instruments
is low. As a consequence, use data that is available in the market and interpolate to find
appropriate values for the caplets.

Based on the market data, you have the cap information for different dates and strikes.
Assume that instead of having the data for Strike = 0.0690, you have the data for
Strike1 = 0.0590 and Strike2 = 0.0790.

Maturity Strike1 = 0.0590 Strike2 = 0.0790
21-Mar-2008 0.1533 0. 1526
21-Jun-2008 0.1731 0. 1730
21-Sep-2008 0. 1727 0. 1726
21-Dec-2008 0. 1752 0. 1747
21-Mar-2009 0. 1809 0. 1808
21-Jun-2009 0. 1809 0. 1792
21-Sep-2009 0. 1805 0. 1797
21-Dec-2009 0. 1802 0. 1794
21-Mar-2010 0. 1802 0. 1733
21-Jun-2010 0. 1757 0. 1751
21-Sep-2010 0. 1755 0. 1750
21-Dec-2010 0. 1755 0. 1745
21-Mar-2011 0. 1726 0. 1719

2 Interest-Rate Derivatives

2-112



The nature of this data lends itself to matrix nomenclature, which is perfect for MATLAB.
hwcalbycap requires that the dates, the strikes, and the actual volatility be separated
into three variables: MarketStrike, MarketMat, and MarketVol.
MarketStrike = [0.0590; 0.0790];
MarketMat = {'21-Mar-2008';   
'21-Jun-2008'; 
'21-Sep-2008';  
'21-Dec-2008';  
'21-Mar-2009';  
'21-Jun-2009';  
'21-Sep-2009';  
'21-Dec-2009';  
'21-Mar-2010';  
'21-Jun-2010';  
'21-Sep-2010';  
'21-Dec-2010'; 
'21-Mar-2011'};

MarketVol = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802 0.1735 0.1757 ... 
             0.1755 0.1755 0.1726; % First row in table corresponding to Strike1 
             0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794 0.1733 0.1751 ... 
             0.1750 0.1745 0.1719]; % Second row in table corresponding to Strike2

Complete the input arguments using this data for RateSpec:
Rates= [0.0627;
0.0657;
0.0691;
0.0717;
0.0739;
0.0755;
0.0765;
0.0772;
0.0779;
0.0783;
0.0786;
0.0789;
0.0792;
0.0793];

ValuationDate = '21-Jan-2008';
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008';...
            '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';....
            '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010';....
            '21-Mar-2011';'21-Jun-2011'};
Compounding = 4;
Basis = 0;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = 
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           FinObj: 'RateSpec'
      Compounding: 4
             Disc: [14x1 double]
            Rates: [14x1 double]
         EndTimes: [14x1 double]
       StartTimes: [14x1 double]
         EndDates: [14x1 double]
       StartDates: 733428
    ValuationDate: 733428
            Basis: 0
     EndMonthRule: 1

Call the calibration routine to find values for volatility parameters Alpha and
Sigma

Use hwcalbycap to calculate the values of Alpha and Sigma based on market data.
Internally, hwcalbycap calls the Optimization Toolbox function lsqnonlin. You can
customize lsqnonlin by passing an optimization options structure created by
optimoptions and then this can be passed to hwcalbycap using the name-value pair
argument for OptimOptions. For example, optimoptions defines the target objective
function tolerance as 100*eps and then calls hwcalbycap:
o=optimoptions('lsqnonlin','TolFun',100*eps);

[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMat, MarketVol,...
Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal, 'Basis',... 
Basis, 'OptimOptions', o)

Local minimum possible.

lsqnonlin stopped because the size of the current step is less than
the default value of the step size tolerance.

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 2.
 
> In hwcalbycapfloor at 93
  In hwcalbycap at 75 

Alpha =

   1.0000e-06

Sigma =

    0.0127

The previous warning indicates that the conversion was not optimal. The search
algorithm used by the Optimization Toolbox™ function lsqnonlin did not find a solution
that conforms to all the constraints. To discern whether the solution is acceptable, look at
the results of the optimization by specifying a third output (OptimOut) for hwcalbycap:
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[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o);

The OptimOut.residual field of the OptimOut structure is the optimization residual.
This value contains the difference between the Black caplets and those calculated during
the optimization. You can use the OptimOut.residual value to calculate the percentual
difference (error) compared to Black caplet prices and then decide whether the residual
is acceptable. There is almost always some residual, so decide if it is acceptable to
parameterize the market with a single value of Alpha and Sigma.

Price caplets using market data and Black's formula to obtain reference caplet
values

To determine the effectiveness of the optimization, calculate reference caplet values using
Black’s formula and the market data. Note, you must first interpolate the market data to
obtain the caplets for calculation:
MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');

Compute the price of the cap using the Black model:
[CapPrice, Caplets] = capbyblk(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Caplets = Caplets(2:end)';

Caplets =

    0.3210
    1.6355
    2.4863
    3.1903
    3.4110
    3.2685
    3.2385
    3.4803
    3.2419
    3.1949
    3.2991
    3.3750
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Compare optimized values and Black values and display graphically

After calculating the reference values for the caplets, compare the values, analytically
and graphically, to determine whether the calculated single values of Alpha and Sigma
provide an adequate approximation:
OptimCaplets = Caplets+OptimOut.residual;

disp('   ');
disp('    Black76   Calibrated Caplets');
disp([Caplets                   OptimCaplets])

plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');
datetick('x', 2)
xlabel('Caplet Maturity');
ylabel('Caplet Price');
title('Black and Calibrated Caplets');
h = legend('Black Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on

 Black76   Calibrated Caplets
    0.3210    0.3636
    1.6355    1.6603
    2.4863    2.4974
    3.1903    3.1874
    3.4110    3.4040
    3.2685    3.2639
    3.2385    3.2364
    3.4803    3.4683
    3.2419    3.2408
    3.1949    3.1957
    3.2991    3.2960
    3.3750    3.3663
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Compare cap prices using the Black, HW analytical, and HW tree models

Using the calculated caplet values, compare the prices of the corresponding cap using the
Black model, Hull-White analytical, and Hull-White tree models. To calculate a Hull-White
tree based on Alpha and Sigma, use these calibration routines:

• Black model:

CapPriceBLK = CapPrice;

• HW analytical model:

CapPriceHWAnalytical = sum(OptimCaplets);

• HW tree model to price the cap derived from the calibration process:

1 Create VolSpec from the calibration parameters Alpha and Sigma:
VolDates    = EndDates;
VolCurve    = Sigma*ones(14,1);
AlphaDates  = EndDates;
AlphaCurve  = Alpha*ones(14,1);
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,AlphaDates, AlphaCurve);

2 Create the TimeSpec:
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HWTimeSpec  = hwtimespec(ValuationDate, EndDates, Compounding);
3 Build the HW tree using the HW2000 method:

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000');

4 Price the cap:
Price = capbyhw(HWTree, Strike, Settle, Maturity, Reset, Basis, Principal); 

disp('   ');
disp(['  CapPrice Black76 ..................:  ', num2str(CapPriceBLK,'%15.5f')]);
disp(['  CapPrice HW analytical..........:  ', num2str(CapPriceHWAnalytical,'%15.5f')]);
disp(['  CapPrice HW from capbyhw ..:  ', num2str(Price,'%15.5f')]);
disp('   ');

CapPrice Black76 ..........: 34.14220
CapPrice HW analytical.....: 34.18008
CapPrice HW from capbyhw ..: 34.14192

Price a portfolio of instruments using the calibrated HW tree

After building a Hull-White tree, based on parameters calibrated from market data, use
HWTree to price a portfolio of these instruments:

• Two bonds

CouponRate = [0.07; 0.09];
Settle= ' Jan-21-2008';
Maturity = {'Mar-21-2010';'Mar-21-2011'};
Period = 1;
Face = 1000;
Basis = 0;

• Bond with an embedded American call option

CouponRateOEB = 0.08;
SettleOEB = ' Jan-21-2008';
MaturityOEB = 'Mar-21-2011';
OptSpec = 'call';
StrikeOEB = 950;
ExerciseDatesOEB = 'Mar-21-2011';
AmericanOpt= 1;
Period =1;
Face = 1000;
Basis =0;

To price this portfolio of instruments using the calibrated HWTree:
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1 Use instadd to create the portfolio InstSet:
InstSet = instadd('Bond', CouponRate, Settle,  Maturity, Period, Basis, [], [], [], [], [], Face);
InstSet = instadd(InstSet,'OptEmBond',  CouponRateOEB, SettleOEB, MaturityOEB, OptSpec,...
StrikeOEB,   ExerciseDatesOEB, 'AmericanOpt', AmericanOpt, 'Period', Period,...
'Face',Face,  'Basis', Basis);

2 Add the cap instrument used in the calibration:
SettleCap = ' Jan-21-2008';
MaturityCap = 'Mar-21-2011';
StrikeCap = 0.0690;
Reset = 4;
Principal = 1000;

InstSet = instadd(InstSet,'Cap', StrikeCap, SettleCap, MaturityCap, Reset, Basis, Principal);

3 Assign names to the portfolio instruments:
Names = {'7% Bond'; '8% Bond'; 'BondEmbCall'; '6.9% Cap'};
InstSet = instsetfield(InstSet, 'Index',1:4, 'FieldName', {'Name'}, 'Data', Names );

4 Examine the set of instruments contained in InstSet:

instdisp(InstSet)

IdxType CoupRate Settle Mature Period Basis EOMRule IssueDate 1stCoupDate LastCoupDate StartDate Face Name

1 Bond 0.07       21-Jan-2008    21-Mar-2010    1  0  NaN  NaN     NaN   NaN  NaN  1000    7% Bond
2 Bond 0.09       21-Jan-2008    21-Mar-2011    1  0  NaN  NaN     NaN   NaN  NaN  1000    8% Bond

IdxType CoupRate Settle Mature OptSpec Stke ExDate Per Basis EOMRule IssDate 1stCoupDate LstCoupDate StrtDate Face AmerOpt Name
3 OptEmBond 0.08 21-Jan-2008 21-Mar-2011 call 950  21-Jan-2008  21-Mar-2011  1  0  1  NaN  NaN NaN  NaN  1000 1 BondEmbCall
 
Index Type Strike Settle     Maturity   CapReset Basis Principal Name 
4 Cap  0.069  21-Jan-2008    21-Mar-2011    4      0     1000    6.9% Cap   

5 Use hwprice to price the portfolio using the calibrated HWTree:
format bank
PricePortfolio = hwprice(HWTree, InstSet)

PricePortfolio =
        980.45
       1023.05
        945.73
         34.14

See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
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floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-50
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Graphical Representation of Trees” on page 2-158
• “Understanding Interest-Rate Tree Models” on page 2-79
• “Understanding the Interest-Rate Term Structure” on page 2-55
• “Pricing Using Interest-Rate Term Structure” on page 2-72

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Interest-Rate Derivatives Using Closed-Form Solutions

Pricing Caps and Floors Using the Black Option Model
Caps and floors are contracts that allow the holder to be protected if interest rates rise or
decrease. The Black model uses a forward price as an underlier in place of a spot price.
The assumption is that the forward price at maturity of the option is log-normally
distributed.

Closed-form solutions for pricing caps and floors using the Black model support the
following tasks:

Task Function
Price the interest rate caps using the Black option
pricing model.

capbyblk

Price the interest rate floors using the Black option
pricing model.

floorbyblk

See Also
agencyoas | agencyprice | blackvolbyrebonato | blackvolbysabr |
bndfutimprepo | bndfutprice | capbyblk | capbylg2f | convfactor | floorbyblk
| floorbylg2f | hwcalbycap | hwcalbyfloor | optsensbysabr | swaptionbyblk |
swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo
| tfutyieldbyrepo

Related Examples
• “Calibrate the SABR Model” on page 2-36
• “Price a Swaption Using the SABR Model” on page 2-42
• “Computing the Agency OAS for Bonds” on page 6-3
• “Analysis of Bond Futures” on page 7-13
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17
• “Fitting the Diebold Li Model” on page 7-25
• “Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
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• “Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-142

More About
• “Managing Present Value with Bond Futures” on page 7-16
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Price Swaptions with Interest-Rate Models Using
Simulation

In this section...
“Introduction” on page 2-123
“Construct a Zero Curve” on page 2-124
“Define Swaption Parameters” on page 2-126
“Compute the Black Model and the Swaption Volatility Matrix” on page 2-126
“Select Calibration Instruments” on page 2-126
“Compute Swaption Prices Using Black's Model” on page 2-127
“Define Simulation Parameters” on page 2-127
“Simulate Interest-Rate Paths Using the Hull-White One-Factor Model” on page 2-128
“Simulate Interest-Rate Paths Using the Linear Gaussian Two-Factor Model” on page 2-
131
“Simulate Interest-Rate Paths Using the LIBOR Market Model” on page 2-134
“Compare Interest-Rate Modeling Results” on page 2-140
“References” on page 2-140

Introduction
This example shows how to price European swaptions using interest-rate models in
Financial Instruments Toolbox. Specifically, a Hull-White one factor model, a Linear
Gaussian two-factor model, and a LIBOR Market Model are calibrated to market data and
then used to generate interest-rate paths using Monte Carlo simulation.

The following sections set up the data that is then used with examples for “Simulate
Interest-Rate Paths Using the Hull-White One-Factor Model” on page 2-128, “Simulate
Interest-Rate Paths Using the Linear Gaussian Two-Factor Model” on page 2-131, and
“Simulate Interest-Rate Paths Using the LIBOR Market Model” on page 2-134:

• “Construct a Zero Curve” on page 2-124
• “Define Swaption Parameters” on page 2-126
• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-126
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• “Select Calibration Instruments” on page 2-126
• “Compute Swaption Prices Using Black's Model” on page 2-127
• “Define Simulation Parameters” on page 2-127

Construct a Zero Curve
This example shows how to use ZeroRates for a zero curve that is hard-coded. You can
also create a zero curve by bootstrapping the zero curve from market data (for example,
deposits, futures/forwards, and swaps)

The hard-coded data for the zero curve is defined as:

Settle = datenum('21-Jul-2008');

% Zero Curve
CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]'/100;

plot(CurveDates,ZeroRates)
datetick
title(['Zero Curve for ' datestr(Settle)]);
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Construct an IRCurve object.

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

Create the RateSpec.

RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [6x1 double]
            Rates: [6x1 double]
         EndTimes: [6x1 double]
       StartTimes: [6x1 double]
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         EndDates: [6x1 double]
       StartDates: 733610
    ValuationDate: 733610
            Basis: 0
     EndMonthRule: 1

Define Swaption Parameters
While Monte Carlo simulation is typically used to value more sophisticated derivatives
(for example, Bermudan swaptions), in this example, the price of a European swaption is
computed with an exercise date of five years and an underlying swap of five years.
InstrumentExerciseDate = datenum('21-Jul-2013');
InstrumentMaturity = datenum('21-Jul-2018');
InstrumentStrike = .045;

Compute the Black Model and the Swaption Volatility Matrix
Black's model is often used to price and quote European exercise interest-rate options,
that is, caps, floors and swaptions. In the case of swaptions, Black's model is used to
imply a volatility given the current observed market price. The following matrix shows the
Black implied volatility for a range of swaption exercise dates (columns) and underlying
swap maturities (rows).
SwaptionBlackVol = [22 21 19 17 15 13 12
    21 19 17 16 15 13 11
    20 18 16 15 14 12 11
    19 17 15 14 13 12 10
    18 16 14 13 12 11 10
    15 14 13 12 12 11 10
    13 13 12 11 11 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];

EurExDatesFull = repmat(daysadd(Settle,ExerciseDates*360,1)',...
    length(Tenors),1);
EurMatFull = reshape(daysadd(EurExDatesFull,...
    repmat(360*Tenors,1,length(ExerciseDates)),1),size(EurExDatesFull));

Select Calibration Instruments
Selecting the instruments to calibrate the model to is one of the tasks in calibration. For
Bermudan swaptions, it is typical to calibrate to European swaptions that are co-terminal
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with the Bermudan swaption to be priced. In this case, all swaptions having an underlying
tenor that matures before the maturity of the swaption to be priced (21-Jul-2018) are used
in the calibration.
% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= InstrumentMaturity);

Compute Swaption Prices Using Black's Model
This example shows how to compute swaption prices using Black's Model. The swaption
prices are then used to compare the model’s predicted values that are obtained from the
calibration process.

To compute the swaption prices using Black's model:
SwaptionBlackPrices = zeros(size(SwaptionBlackVol));
SwaptionStrike = zeros(size(SwaptionBlackVol));

for iSwaption=1:length(ExerciseDates)
    for iTenor=1:length(Tenors)
        [~,SwaptionStrike(iTenor,iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, EurMatFull(iTenor,iSwaption),...
            'StartDate',EurExDatesFull(iTenor,iSwaption),'LegReset',[1 1]);
        SwaptionBlackPrices(iTenor,iSwaption) = swaptionbyblk(RateSpec, 'call', SwaptionStrike(iTenor,iSwaption),Settle, ...
            EurExDatesFull(iTenor,iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBlackVol(iTenor,iSwaption));
    end
end

Define Simulation Parameters
This example shows how to use the simTermStructs method with HullWhite1F,
LinearGaussian2F, and LiborMarketModel objects.

To demonstrate using the simTermStructs method with HullWhite1F,
LinearGaussian2F, and LiborMarketModel objects, use the following simulation
parameters:
nPeriods = 5;
DeltaTime = 1;
nTrials = 1000;

Tenor = (1:10)';

SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1)
SimTimes = diff(yearfrac(SimDates(1),SimDates))

% For 1 year periods and an evenly spaced tenor, the exercise row will be
% the 5th row and the swaption maturity will be the 5th column
exRow = 5;
endCol = 5;
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SimDates =

      733610
      733975
      734340
      734705
      735071
      735436

SimTimes =

    1.0000
    1.0000
    1.0000
    1.0027
    1.0000

Simulate Interest-Rate Paths Using the Hull-White One-Factor
Model
This example shows how to simulate interest-rate paths using the Hull-White one-factor
model. Before beginning this example that uses a HullWhite1F model, make sure that
you have set up the data as described in:

• “Construct a Zero Curve” on page 2-124
• “Define Swaption Parameters” on page 2-126
• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-126
• “Select Calibration Instruments” on page 2-126
• “Compute Swaption Prices Using Black's Model” on page 2-127
• “Define Simulation Parameters” on page 2-127

The Hull-White one-factor model describes the evolution of the short rate and is specified
using the zero curve, alpha, and sigma parameters for the equation

dr t a t r dt t dW= - +[ ( ) ( ) ] ( )q s

where:

dr is the change in the short-term interest rate over a small interval, dt.

r is the short-term interest rate.

Θ(t) is a function of time determining the average direction in which r moves, chosen such
that movements in r are consistent with today's zero coupon yield curve.
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α is the mean reversion rate.

dt is a small change in time.

σ is the annual standard deviation of the short rate.

W is the Brownian motion.

The Hull-White model is calibrated using the function swaptionbyhw, which constructs a
trinomial tree to price the swaptions. Calibration consists of minimizing the difference
between the observed market prices (computed above using the Black's implied swaption
volatility matrix, see “Compute the Black Model and the Swaption Volatility Matrix” on
page 2-126) and the model’s predicted prices.

In this example, the Optimization Toolbox function lsqnonlin is used to find the
parameter set that minimizes the difference between the observed and predicted values.
However, other approaches (for example, simulated annealing) may be appropriate.
Starting parameters and constraints for α and σ are set in the variables x0, lb, and ub;
these could also be varied depending upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and
predicted values using swaptionbyhw and lsqnonlin.
TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);
HW1Fobjfun = @(x) SwaptionBlackPrices(relidx) - ...
    swaptionbyhw(hwtree(hwvolspec(Settle,'11-Aug-2015',x(2),'11-Aug-2015',x(1)), RateSpec, TimeSpec), 'call', SwaptionStrike(relidx),...
    EurExDatesFull(relidx), 0, EurExDatesFull(relidx), EurMatFull(relidx));
options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);

% Find the parameters that minimize the difference between the observed and
% predicted prices
x0 = [.1 .01];
lb = [0 0];
ub = [1 1];
HW1Fparams = lsqnonlin(HW1Fobjfun,x0,lb,ub,options);

HW_alpha = HW1Fparams(1)
HW_sigma = HW1Fparams(2)

                                        Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          3        0.953772                          20.5
     1          6        0.142828      0.0169199           1.53
     2          9        0.123022      0.0146705           2.31
     3         12        0.122222      0.0154098          0.482
     4         15        0.122217     0.00131297        0.00409 

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.
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HW_alpha =

    0.0967

HW_sigma =

    0.0088

Construct the HullWhite1F model using the HullWhite1F constructor.

HW1F = HullWhite1F(RateSpec,HW_alpha,HW_sigma)

HW1F = 

  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Use Monte Carlo simulation to generate the interest-rate paths with
HullWhite1F.simTermStructs.
HW1FSimPaths = HW1F.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);
trialIdx = 1;
figure
surf(Tenor,SimDates,HW1FSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of Hull White Model'])
xlabel('Tenor (Years)')

2 Interest-Rate Derivatives

2-130



Price the European swaption.
DF = exp(bsxfun(@times,-HW1FSimPaths,repmat(Tenor',[nPeriods+1 1])));
SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
PayoffValue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-HW1FSimPaths(1:exRow,1,:),SimTimes(1:exRow))),1);
HW1F_SwaptionPrice = mean(RealizedDF.*PayoffValue)

HW1F_SwaptionPrice =

    2.1839                    

Simulate Interest-Rate Paths Using the Linear Gaussian Two-
Factor Model
This example shows how to simulate interest-rate paths using the Linear Gaussian two-
factor model. Before beginning this example that uses a LinearGaussian2F model,
make sure that you have set up the data as described in:

• “Construct a Zero Curve” on page 2-124
• “Define Swaption Parameters” on page 2-126
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• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-126
• “Select Calibration Instruments” on page 2-126
• “Compute Swaption Prices Using Black's Model” on page 2-127
• “Define Simulation Parameters” on page 2-127

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio, see
“Interest-Rate Modeling Using Monte Carlo Simulation” on page C-5) is also a short
rate model, but involves two factors. Specifically:

r t x t y t t( ) ( ) ( ) ( )= + +f

dx t a t x t dt t dW t x( ) ( ) ( ) ( ) ( ), ( )= - + =s 1 0 0

dy t b t y t dt t dW t y( ) ( ) ( ) ( ) ( ), ( )= - + =h 2 0 0

where dW t dW t dt1 2( ) ( ) = r  is a two-dimensional Brownian motion with correlation ρ, and
ϕ is a function chosen to match the initial zero curve.

The function swaptionbylg2f is used to compute analytic values of the swaption price
for model parameters, and therefore can be used to calibrate the model. Calibration
consists of minimizing the difference between the observed market prices (computed
above using the Black's implied swaption volatility matrix, see “Compute the Black Model
and the Swaption Volatility Matrix” on page 2-126) and the model’s predicted prices.

In this example, the approach is similar to “Simulate Interest-Rate Paths Using the Hull-
White One-Factor Model” on page 2-128 and the Optimization Toolbox function
lsqnonlin is used to minimize the difference between the observed swaption prices and
the predicted swaption prices. However, other approaches (for example, simulated
annealing) may also be appropriate. Starting parameters and constraints for a, b, η, ρ,
and σ are set in the variables x0, lb, and ub; these could also be varied depending upon
the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and
predicted values using swaptionbylg2f and lsqnonlin.
G2PPobjfun = @(x) SwaptionBlackPrices(relidx) - swaptionbylg2f(irdc,x(1),x(2),x(3),x(4),x(5),SwaptionStrike(relidx),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Reset',1);

options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);
x0 = [.2 .1 .02 .01 -.5];
lb = [0 0 0 0 -1];
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ub = [1 1 1 1 1];
LG2Fparams = lsqnonlin(G2PPobjfun,x0,lb,ub,options)

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6         12.3547                          67.6
     1         12         1.37984      0.0979743           8.59      
     2         18         1.37984       0.112847           8.59      
     3         24        0.445202      0.0282118           1.31      
     4         30        0.236746      0.0564236           3.02      
     5         36        0.134678      0.0843366           7.78      
     6         42       0.0398816       0.015084           6.34      
     7         48       0.0287731       0.038967          0.732      
     8         54       0.0273025       0.112847          0.881      
     9         60       0.0241689       0.213033           1.06      
    10         66       0.0241689       0.125602           1.06      
    11         72       0.0239103      0.0314005           9.78      
    12         78       0.0234246      0.0286685           1.21      
    13         84       0.0234246      0.0491135           1.21      
    14         90        0.023304      0.0122784           1.67      
    15         96       0.0231931      0.0245568           5.92      
    16        102       0.0230898     0.00785421          0.434      
    17        108       0.0230898      0.0245568          0.434      
    18        114        0.023083     0.00613919          0.255    

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

LG2Fparams =

    0.5752    0.1181    0.0146    0.0119   -0.7895

Create the G2PP object and use Monte Carlo simulation to generate the interest-rate
paths with LinearGaussian2F.simTermStructs.
LG2f_a = LG2Fparams(1);
LG2f_b = LG2Fparams(2);
LG2f_sigma = LG2Fparams(3);
LG2f_eta = LG2Fparams(4);
LG2f_rho = LG2Fparams(5);

G2PP = LinearGaussian2F(RateSpec,LG2f_a,LG2f_b,LG2f_sigma,LG2f_eta,LG2f_rho);

G2PPSimPaths = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);

trialIdx = 1;
figure
surf(Tenor,SimDates,G2PPSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')
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Price the European swaption.
DF = exp(bsxfun(@times,-G2PPSimPaths,repmat(Tenor',[nPeriods+1 1])));
SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
PayoffValue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-G2PPSimPaths(1:exRow,1,:),SimTimes(1:exRow))),1);
G2PP_SwaptionPrice = mean(RealizedDF.*PayoffValue)

G2PP_SwaptionPrice =

    2.0988

Simulate Interest-Rate Paths Using the LIBOR Market Model
This example shows how to simulate interest-rate paths using the LIBOR market model.
Before beginning this example that uses a LiborMarketModel, make sure that you have
set up the data as described in:

• “Construct a Zero Curve” on page 2-124
• “Define Swaption Parameters” on page 2-126
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• “Compute the Black Model and the Swaption Volatility Matrix” on page 2-126
• “Select Calibration Instruments” on page 2-126
• “Compute Swaption Prices Using Black's Model” on page 2-127
• “Define Simulation Parameters” on page 2-127

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of
discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion
equation for each forward rate

dF t

F
dt t dW
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W is an N-dimensional geometric Brownian motion with
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The LMM relates the drifts of the forward rates based on no-arbitrage arguments.
Specifically, under the Spot LIBOR measure, the drifts are expressed as
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The choice with the LMM is how to model volatility and correlation and how to estimate
the parameters of these models for volatility and correlation. In practice, you may use a
combination of historical data (for example, observed correlation between forward rates)
and current market data. For this example, only swaption data is used. Further, many
different parameterizations of the volatility and correlation exist. For this example, two
relatively straightforward parameterizations are used.

One of the most popular functional forms in the literature for volatility is:
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This calculation is done using the function blackvolbyrebonato to compute analytic
values of the swaption price for model parameters, and therefore, is then used to
calibrate the model. Calibration consists of minimizing the difference between the
observed implied swaption Black volatilities and the predicted Black volatilities.

In this example, the approach is similar to “Simulate Interest-Rate Paths Using the Hull-
White One-Factor Model” on page 2-128 and “Simulate Interest-Rate Paths Using the

2 Interest-Rate Derivatives

2-136



Linear Gaussian Two-Factor Model” on page 2-131 where the Optimization Toolbox
function lsqnonlin is used to minimize the difference between the observed swaption
prices and the predicted swaption prices. However, other approaches (for example,
simulated annealing) may also be appropriate. Starting parameters and constraints for a,
b, d, and β are set in the variables x0, lb, and ub; these could also be varied depending
upon the particular calibration approach.

Calibrate the set of parameters that minimize the difference between the observed and
predicted values using blackvolbyrebonato and lsqnonlin.
nRates = 10;

CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));

objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec,...
    repmat({@(t) ones(size(t)).*(x(1)*t + x(2)).*exp(-x(3)*t) + x(4)},nRates-1,1),...
    CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),x(5)),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Period',1);

options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);

x0 = [.2 .05 1 .05 .2];
lb = [0 0 .5 0 .01];
ub = [1 1 2 .3 1];
LMMparams = lsqnonlin(objfun,x0,lb,ub,options)

                                        Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6        0.156251                         0.483
     1         12      0.00870177       0.188164         0.0339      
     2         18      0.00463441       0.165527        0.00095      
     3         24      0.00331055       0.351017         0.0154      
     4         30      0.00294775      0.0892617       7.47e-05      
     5         36      0.00281565       0.385779        0.00917      
     6         42      0.00278988      0.0145632       4.15e-05      
     7         48      0.00278522       0.115042        0.00116    
Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

LMMparams =

    0.0781    0.1656    0.5121    0.0617    0.0100

Calculate VolFunc for the LMM object.

a = LMMparams(1);
b = LMMparams(2);
c = LMMparams(3);
d = LMMparams(4);

Beta = LMMparams(5);

VolFunc = repmat({@(t) ones(size(t)).*(a*t + b).*exp(-c*t) + d},nRates-1,1);
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Plot the volatility function.
figure
fplot(VolFunc{1},[0 20])
title('Volatility Function')

CorrelationMatrix = CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),Beta);

Inspect the correlation matrix.
disp('Correlation Matrix')
fprintf([repmat('%1.3f ',1,length(CorrelationMatrix)) ' \n'],CorrelationMatrix)

Correlation Matrix
1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923  
0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932  
0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942  
0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951  
0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961  
0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970  
0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980  
0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990  
0.923 0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000  

Create the LMM object and use Monte Carlo simulation to generate the interest-rate paths
with LiborMarketModel.simTermStructs.
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LMM = LiborMarketModel(irdc,VolFunc,CorrelationMatrix,'Period',1);

[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods,'nTrials',nTrials);

trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(Tenor,SimDates,tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Model'])
xlabel('Tenor (Years)')

Price the European swaption.
DF = exp(bsxfun(@times,-LMMZeroRates,repmat(Tenor',[nPeriods+1 1])));
SwapRate = (1 - DF(exRow,endCol,:))./sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
PayoffValue = 100*max(SwapRate-InstrumentStrike,0).*sum(bsxfun(@times,1,DF(exRow,1:endCol,:)));
RealizedDF = prod(exp(bsxfun(@times,-LMMZeroRates(2:exRow+1,1,:),SimTimes(1:exRow))),1);
LMM_SwaptionPrice = mean(RealizedDF.*PayoffValue)
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LMM_SwaptionPrice =

    1.9915

Compare Interest-Rate Modeling Results
This example shows how to compare the results for pricing a European swaption with
different interest-rate models.

Compare the results for pricing a European swaption with interest-rate models using
Monte Carlo simulation.
disp(' ')
fprintf('     # of Monte Carlo Trials: %8d\n'    , nTrials)
fprintf('     # of Time Periods/Trial: %8d\n\n'  , nPeriods)
fprintf('HW1F European Swaption Price: %8.4f\n', HW1F_SwaptionPrice)
fprintf('LG2F Europesn Swaption Price: %8.4f\n', G2PP_SwaptionPrice)
fprintf(' LMM European Swaption Price: %8.4f\n', LMM_SwaptionPrice)

 # of Monte Carlo Trials:     1000
     # of Time Periods/Trial:        5

HW1F European Swaption Price:   2.1839
LG2F Europesn Swaption Price:   2.0988
 LMM European Swaption Price:   1.9915
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See Also
HullWhite1F | LiborMarketModel | LinearGaussian2F | blackvolbyrebonato |
capbylg2f | floorbylg2f | lsqnonlin | simTermStructs | simTermStructs |
simTermStructs | swaptionbyhw | swaptionbylg2f

Related Examples
• “Pricing Bermudan Swaptions with Monte Carlo Simulation” on page 2-142
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Pricing Bermudan Swaptions with Monte Carlo
Simulation

This example shows how to price Bermudan swaptions using interest-rate models in
Financial Instruments Toolbox™. Specifically, a Hull-White one factor model, a Linear
Gaussian two-factor model, and a LIBOR Market Model are calibrated to market data and
then used to generate interest-rate paths using Monte Carlo simulation.

Zero Curve

In this example, the ZeroRates for a zero curve is hard-coded. You can also create a zero
curve by bootstrapping the zero curve from market data (for example, deposits, futures/
forwards, and swaps). The hard-coded data for the zero curve is defined as:

Settle = datenum('21-Jul-2008');

% Zero Curve
CurveDates = daysadd(Settle,360*([1 3 5 7 10 20]),1);
ZeroRates = [1.9 2.6 3.1 3.5 4 4.3]'/100;

plot(CurveDates,ZeroRates)
datetick
title(['Zero Curve for ' datestr(Settle)]);
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RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);

Define Swaption Parameters

For this example, we compute the price of a 10-no-call-1 Bermudan swaption.

BermudanExerciseDates = daysadd(Settle,360*(1:9),1);
BermudanMaturity = datenum('21-Jul-2018');
BermudanStrike = .045;

Black's Model and the Swaption Volatility Matrix

Black's model is often used to price and quote European exercise interest-rate options,
that is, caps, floors and swaptions. In the case of swaptions, Black's model is used to
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imply a volatility given the current observed market price. The following matrix shows the
Black implied volatility for a range of swaption exercise dates (columns) and underlying
swap maturities (rows).

SwaptionBlackVol = [22 21 19 17 15 13 12
    21 19 17 16 15 13 11
    20 18 16 15 14 12 11
    19 17 15 14 13 12 10
    18 16 14 13 12 11 10
    15 14 13 12 12 11 10
    13 13 12 11 11 10 9]/100;
ExerciseDates = [1:5 7 10];
Tenors = [1:5 7 10];

EurExDatesFull = repmat(daysadd(Settle,ExerciseDates*360,1)',...
    length(Tenors),1);
EurMatFull = reshape(daysadd(EurExDatesFull,...
    repmat(360*Tenors,1,length(ExerciseDates)),1),size(EurExDatesFull));

Selecting the Calibration Instruments

Selecting the instruments to calibrate the model to is one of the tasks in calibration. For
Bermudan swaptions, it is typical to calibrate to European swaptions that are co-terminal
with the Bermudan swaption to be priced. In this case, all swaptions having an underlying
tenor that matures before the maturity of the swaption to be priced are used in the
calibration.

% Find the swaptions that expire on or before the maturity date of the
% sample swaption
relidx = find(EurMatFull <= BermudanMaturity);

Compute Swaption Prices Using Black's Model

Swaption prices are computed using Black's Model. The swaption prices are then used to
compare the model's predicted values. To compute the swaption prices using Black's
model:

% Compute Swaption Prices using Black's model
SwaptionBlackPrices = zeros(size(SwaptionBlackVol));
SwaptionStrike = zeros(size(SwaptionBlackVol));

for iSwaption=1:length(ExerciseDates)
    for iTenor=1:length(Tenors)
        [~,SwaptionStrike(iTenor,iSwaption)] = swapbyzero(RateSpec,[NaN 0], Settle, EurMatFull(iTenor,iSwaption),...
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            'StartDate',EurExDatesFull(iTenor,iSwaption),'LegReset',[1 1]);
        SwaptionBlackPrices(iTenor,iSwaption) = swaptionbyblk(RateSpec, 'call', SwaptionStrike(iTenor,iSwaption),Settle, ...
            EurExDatesFull(iTenor,iSwaption), EurMatFull(iTenor,iSwaption), SwaptionBlackVol(iTenor,iSwaption));
    end
end

Simulation Parameters

The following parameters will be used; each exercise date is a simulation date.

nPeriods = 9;
DeltaTime = 1;
nTrials = 1000;

Tenor = (1:10)';

SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1);
SimTimes = diff(yearfrac(SimDates(1),SimDates));

Hull White 1 Factor Model

The Hull-White one-factor model describes the evolution of the short rate and is specified
by the following:

The Hull-White model is calibrated using the function swaptionbyhw, which constructs a
trinomial tree to price the swaptions. Calibration consists of minimizing the difference
between the observed market prices (computed above using the Black's implied swaption
volatility matrix) and the model's predicted prices.

In this example, the Optimization Toolbox™ function lsqnonlin is used to find the
parameter set that minimizes the difference between the observed and predicted values.
However, other approaches (for example, simulated annealing) may be appropriate.
Starting parameters and constraints for  and  are set in the variables x0 , lb, and ub;
these could also be varied depending upon the particular calibration approach.

warning('off')
TimeSpec = hwtimespec(Settle,daysadd(Settle,360*(1:11),1), 2);
HW1Fobjfun = @(x) SwaptionBlackPrices(relidx) - ...
    swaptionbyhw(hwtree(hwvolspec(Settle,'11-Aug-2015',x(2),'11-Aug-2015',x(1)), RateSpec, TimeSpec), 'call', SwaptionStrike(relidx),...
    EurExDatesFull(relidx), 0, EurExDatesFull(relidx), EurMatFull(relidx));
options = optimset('disp','iter','MaxFunEvals',1000,'TolFun',1e-5);
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% Find the parameters that minimize the difference between the observed and
% predicted prices
x0 = [.1 .01];
lb = [0 0];
ub = [1 1];
warning('off');
HW1Fparams = lsqnonlin(HW1Fobjfun,x0,lb,ub,options);

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          3        0.953772                          20.5
     1          6        0.142828      0.0169199           1.53      
     2          9        0.123022      0.0146705           2.31      
     3         12        0.122222      0.0154099          0.482      
     4         15        0.122217     0.00131282        0.00409      

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

HW_alpha = HW1Fparams(1);
HW_sigma = HW1Fparams(2);

% Construct the HullWhite1F model using the HullWhite1F constructor.
HW1F = HullWhite1F(RateSpec,HW_alpha,HW_sigma);

% Use Monte Carlo simulation to generate the interest-rate paths with
% HullWhite1F.simTermStructs.
HW1FSimPaths = HW1F.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);

% Examine one simulation
trialIdx = 1;
figure
surf(Tenor,SimDates,HW1FSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of Hull White Model'])
xlabel('Tenor (Years)')
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% Price the swaption using the helper function hBermudanSwaption
HW1FBermPrice = hBermudanSwaption(HW1FSimPaths,SimDates,Tenor,BermudanStrike,...
    BermudanExerciseDates,BermudanMaturity);

Linear Gaussian 2 Factor Model

The Linear Gaussian two-factor model (called the G2++ by Brigo and Mercurio) is also a
short rate model, but involves two factors. Specifically:
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where  is a two-dimensional Brownian motion with correlation 

and  is a function chosen to match the initial zero curve.

The function swaptionbylg2f is used to compute analytic values of the swaption price
for model parameters, and consequently can be used to calibrate the model. Calibration
consists of minimizing the difference between the observed market prices and the model's
predicted prices.

% Calibrate the set of parameters that minimize the difference between the
% observed and predicted values using swaptionbylg2f and lsqnonlin.
G2PPobjfun = @(x) SwaptionBlackPrices(relidx) - ...
    swaptionbylg2f(RateSpec,x(1),x(2),x(3),x(4),x(5),SwaptionStrike(relidx),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Reset',1);
x0 = [.2 .1 .02 .01 -.5];
lb = [0 0 0 0 -1];
ub = [1 1 1 1 1];
LG2Fparams = lsqnonlin(G2PPobjfun,x0,lb,ub,options);

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6         12.1928                          67.1
     1         12         1.36663      0.0974259           8.54      
     2         18         1.36663       0.112377           8.54      
     3         24        0.442322      0.0280943            1.3      
     4         30        0.236944      0.0561887           3.23      
     5         36         0.13078      0.0840413           7.66      
     6         42       0.0394584      0.0145002           6.79      
     7         48       0.0275889      0.0372418          0.755      
     8         54       0.0261953       0.112377          0.693      
     9         60       0.0234048       0.206008          0.142      
    10         66       0.0225717       0.140338          0.116      
    11         72         0.02254      0.0245593           1.45      
    12         78       0.0225306      0.0188219           1.36      

Local minimum possible.
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lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

LG2f_a = LG2Fparams(1);
LG2f_b = LG2Fparams(2);
LG2f_sigma = LG2Fparams(3);
LG2f_eta = LG2Fparams(4);
LG2f_rho = LG2Fparams(5);

% Create the G2PP object and use Monte Carlo simulation to generate the
% interest-rate paths with LinearGaussian2F.simTermStructs.
G2PP = LinearGaussian2F(RateSpec,LG2f_a,LG2f_b,LG2f_sigma,LG2f_eta,LG2f_rho);

G2PPSimPaths = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'DeltaTime',DeltaTime,'Tenor',Tenor,'antithetic',true);

% Examine one simulation
trialIdx = 1;
figure
surf(Tenor,SimDates,G2PPSimPaths(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')
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% Price the swaption using the helper function hBermudanSwaption
LG2FBermPrice = hBermudanSwaption(G2PPSimPaths,SimDates,Tenor,BermudanStrike,BermudanExerciseDates,BermudanMaturity);

LIBOR Market Model

The LIBOR Market Model (LMM) differs from short rate models in that it evolves a set of
discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion
equation for each forward rate
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where

 is the volatility function for each rate and  is an N dimensional geometric Brownian
motion with:

The LMM relates the drifts of the forward rates based on no-arbitrage arguments.

The choice with the LMM is how to model volatility and correlation and how to estimate
the parameters of these models for volatility and correlation. In practice, you may use a
combination of historical data (for example, observed correlation between forward rates)
and current market data. For this example, only swaption data is used. Further, many
different parameterizations of the volatility and correlation exist. For this example, two
relatively straightforward parameterizations are used.

One of the most popular functional forms in the literature for volatility is:

where  adjusts the curve to match the volatility for the  forward rate. For this
example, all of the Phi's will be taken to be 1.

For the correlation, the following functional form will be used:

Once the functional forms have been specified, these parameters need to be estimated
using market data. One useful approximation, initially developed by Rebonato, is the
following, which computes the Black volatility for a European swaption, given an LMM
with a set of volatility functions and a correlation matrix.

where
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This calculation is done using blackvolbyrebonato to compute analytic values of the
swaption price for model parameters, and consequently, is then used to calibrate the
model. Calibration consists of minimizing the difference between the observed implied
swaption Black volatilities and the predicted Black volatilities.

nRates = 10;

CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));

objfun = @(x) SwaptionBlackVol(relidx) - blackvolbyrebonato(RateSpec,...
    repmat({@(t) ones(size(t)).*(x(1)*t + x(2)).*exp(-x(3)*t) + x(4)},nRates-1,1),...
    CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),x(5)),...
    EurExDatesFull(relidx),EurMatFull(relidx),'Period',1);

x0 = [.2 .05 1 .05 .2];
lb = [0 0 .5 0 .01];
ub = [1 1 2 .3 1];
LMMparams = lsqnonlin(objfun,x0,lb,ub,options);

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality
     0          6        0.156251                         0.483
     1         12      0.00870177       0.188164         0.0339      
     2         18      0.00463441       0.165527        0.00095      
     3         24      0.00331055       0.351017         0.0154      
     4         30      0.00294775      0.0892616       7.47e-05      
     5         36      0.00281565        0.38578        0.00917      
     6         42      0.00278988      0.0145632       4.15e-05      
     7         48      0.00278522       0.115042        0.00116      

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the selected value of the function tolerance.

% Calculate VolFunc for the LMM object.
a = LMMparams(1);
b = LMMparams(2);
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c = LMMparams(3);
d = LMMparams(4);

Beta = LMMparams(5);

VolFunc = repmat({@(t) ones(size(t)).*(a*t + b).*exp(-c*t) + d},nRates-1,1);

% Plot the volatility function
figure
fplot(VolFunc{1},[0 20])
title('Volatility Function')

% Inspect the correlation matrix
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CorrelationMatrix = CorrFunc(meshgrid(1:nRates-1)',meshgrid(1:nRates-1),Beta);
displayCorrelationMatrix(CorrelationMatrix);

Correlation Matrix
1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932 0.923  
0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942 0.932  
0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951 0.942  
0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961 0.951  
0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970 0.961  
0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980 0.970  
0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990 0.980  
0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000 0.990  
0.923 0.932 0.942 0.951 0.961 0.970 0.980 0.990 1.000  

% Create the LMM object and use Monte Carlo simulation to generate the 
% interest-rate paths with LiborMarketModel.simTermStructs.
LMM = LiborMarketModel(RateSpec,VolFunc,CorrelationMatrix,'Period',1);

[LMMZeroRates, ForwardRates] = LMM.simTermStructs(nPeriods,'nTrials',nTrials);

% Examine one simulation
trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(Tenor,SimDates,tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Model'])
xlabel('Tenor (Years)')
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% Price the swaption using the helper function hBermudanSwaption
LMMTenor = 1:10;
LMMBermPrice = hBermudanSwaption(LMMZeroRates,SimDates,LMMTenor,.045,BermudanExerciseDates,BermudanMaturity);

Results
displayResults(nTrials, nPeriods, HW1FBermPrice, LG2FBermPrice, LMMBermPrice);

     # of Monte Carlo Trials:     1000
     # of Time Periods/Trial:        9

HW1F Bermudan Swaption Price:   3.7629
LG2F Bermudan Swaption Price:   3.5496
 LMM Bermudan Swaption Price:   3.4911

 Pricing Bermudan Swaptions with Monte Carlo Simulation

2-155



Bibliography

This example is based on the following books, papers and journal articles:

1 Andersen, L. and V. Piterbarg (2010). Interest Rate Modeling, Atlantic Financial
Press.

2 Brigo, D. and F. Mercurio (2001). Interest Rate Models - Theory and Practice with
Smile, Inflation and Credit (2nd ed. 2006 ed.). Springer Verlag.

3 Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer.
4 Hull, J. (2008). Options, Futures, and Other Derivatives. Prentice Hall.
5 Rebonato, R., K. McKay, and R. White (2010). The Sabr/Libor Market Model: Pricing,

Calibration and Hedging for Complex Interest-Rate Derivatives. John Wiley & Sons.

Utility Functions

function displayCorrelationMatrix(CorrelationMatrix)
fprintf('Correlation Matrix\n');
fprintf([repmat('%1.3f ',1,length(CorrelationMatrix)) ' \n'],CorrelationMatrix);
end

function displayResults(nTrials, nPeriods, HW1FBermPrice, LG2FBermPrice, LMMBermPrice)
fprintf('     # of Monte Carlo Trials: %8d\n'    , nTrials);
fprintf('     # of Time Periods/Trial: %8d\n\n'  , nPeriods);
fprintf('HW1F Bermudan Swaption Price: %8.4f\n', HW1FBermPrice);
fprintf('LG2F Bermudan Swaption Price: %8.4f\n', LG2FBermPrice);
fprintf(' LMM Bermudan Swaption Price: %8.4f\n', LMMBermPrice);
end

See Also
agencyoas | agencyprice | blackvolbyrebonato | blackvolbysabr |
bndfutimprepo | bndfutprice | capbyblk | capbylg2f | convfactor | floorbyblk
| floorbylg2f | hwcalbycap | hwcalbyfloor | optsensbysabr | swaptionbyblk |
swaptionbylg2f | tfutbyprice | tfutbyyield | tfutimprepo | tfutpricebyrepo
| tfutyieldbyrepo

Related Examples
• “Calibrate the SABR Model” on page 2-36
• “Price a Swaption Using the SABR Model” on page 2-42

2 Interest-Rate Derivatives

2-156



• “Computing the Agency OAS for Bonds” on page 6-3
• “Analysis of Bond Futures” on page 7-13
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17
• “Fitting the Diebold Li Model” on page 7-25
• “Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123

More About
• “Managing Present Value with Bond Futures” on page 7-16
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Graphical Representation of Trees

In this section...
“Introduction” on page 2-158
“Observing Interest Rates” on page 2-158
“Observing Instrument Prices” on page 2-162

Introduction
You can use the function treeviewer to display a graphical representation of a tree,
allowing you to examine interactively the prices and rates on the nodes of the tree until
maturity. To get started with this process, first load the data file deriv.mat included in
this toolbox.

load deriv.mat

Note treeviewer price tree diagrams follow the convention that increasing prices
appear on the upper branch of a tree and, consequently, decreasing prices appear on the
lower branch. Conversely, for interest rate displays, decreasing interest rates appear on
the upper branch (prices are rising) and increasing interest rates on the lower branch
(prices are falling).

For information on the use of treeviewer to observe interest rate movement, see
“Observing Interest Rates” on page 2-158. For information on using treeviewer to
observe the movement of prices, see “Observing Instrument Prices” on page 2-162.

Observing Interest Rates
If you provide the name of an interest rate tree to the treeviewer function, it displays a
graphical view of the path of interest rates. For example, here is the treeviewer
representation of all the rates along both the up and down branches of HJMTree.

treeviewer(HJMTree)
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The example in “Isolating a Specific Node” on page 2-92 used bushpath to find the path
of forward rates along an HJM tree by taking the first branch up and then two branches
down the rate tree.

FRates = bushpath(HJMTree.FwdTree, [1 2 2])

FRates =

    1.0356
    1.0364
    1.0526
    1.0674

With the treeviewer function you can display the identical information by clicking along
the same sequence of nodes, as shown next.
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Next is a treeviewer representation of interest rates along several branches of
BDTTree.

treeviewer(BDTTree)
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Note When using treeviewer with recombining trees, such as BDT, BK, and HW, you
must click each node in succession from the beginning to the end. Because these trees
can recombine, treeviewer is unable to complete the path automatically.

The example in “Isolating a Specific Node” on page 2-92 used treepath to find the path
of interest rates taking the first branch up and then two branches down the rate tree.

FRates = treepath(BDTTree.FwdTree, [1 2 2])

FRates =

    1.1000
    1.0979
    1.1377
    1.1606

You can display the identical information by clicking along the same sequence of nodes,
as shown next.
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Observing Instrument Prices
To use treeviewer to display a tree of instrument prices, provide the name of an
instrument set along with the name of a price tree in your call to treeviewer, for
example:

load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)

With treeviewer you select each instrument individually in the instrument portfolio for
display.
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You can use an analogous process to view instrument prices based on the BDT interest
rate tree included in deriv.mat.

load deriv.mat
[BDTPrice, BDTPriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(BDTPriceTree, BDTInstSet)
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Valuation Date Prices

You can use treeviewer instrument-by-instrument to observe instrument prices through
time. For the first 4% bond in the HJM instrument portfolio, treeviewer indicates a
valuation date price of 98.72, the same value obtained by accessing the PriceTree
structure directly.
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As a further example, look at the sixth instrument in the price vector, the 3% cap. At the
valuation date, its value obtained directly from the structure is 6.2831. Use treeviewer
on this instrument to confirm this price.
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Additional Observation Times

The second node represents the first-rate observation time, tObs = 1. This node displays
two states, one representing the branch going up and the other one representing the
branch going down.

Examine the prices of the node corresponding to the up branch.

PriceTree.PBush{2}(:,:,1)

ans =

  100.1563
   99.7309
    0.1007
  100.1563
  100.3782
    3.2594
    0.1007
    3.5597
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As before, you can use treeviewer, this time to examine the price for the 4% bond on
the up branch. treeviewer displays a price of 100.2 for the first node of the up branch,
as expected.

Now examine the corresponding down branch.

PriceTree.PBush{2}(:,:,2)

ans =

   96.3041
   94.1986
         0
   96.3041
  100.3671
    8.6342
         0
   -0.3923

Use treeviewer once again, now to observe the price of the 4% bond on the down
branch. The displayed price of 96.3 conforms to the price obtained from direct access of
the PriceTree structure. You may continue this process as far along the price tree as
you want.
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See Also
bdtprice | bdtsens | bdttimespec | bdttree | bdtvolspec | bkprice | bksens |
bktimespec | bktree | bkvolspec | bondbybdt | bondbybk | bondbyhjm | bondbyhw |
bondbyzero | capbybdt | capbybk | capbyblk | capbyhjm | capbyhw | cfbybdt |
cfbybk | cfbyhjm | cfbyhw | cfbyzero | fixedbybdt | fixedbybk | fixedbyhjm |
fixedbyhw | fixedbyzero | floatbybdt | floatbybk | floatbyhjm | floatbyhw |
floatbyzero | floatdiscmargin | floatmargin | floorbybdt | floorbybk |
floorbyblk | floorbyhjm | floorbyhw | hjmprice | hjmsens | hjmtimespec |
hjmtree | hjmvolspec | hwcalbycap | hwcalbyfloor | hwprice | hwsens |
hwtimespec | hwtree | hwvolspec | instbond | instcap | instcf | instfixed |
instfloat | instfloor | instoptbnd | instoptembnd | instoptemfloat |
instoptfloat | instrangefloat | instswap | instswaption | intenvprice |
intenvsens | intenvset | mmktbybdt | mmktbyhjm | oasbybdt | oasbybk | oasbyhjm
| oasbyhw | optbndbybdt | optbndbybk | optbndbyhjm | optbndbyhw |
optembndbybdt | optembndbybk | optembndbyhjm | optembndbyhw |
optemfloatbybdt | optemfloatbybk | optemfloatbyhjm | optemfloatbyhw |
optfloatbybdt | optfloatbybk | optfloatbyhjm | optfloatbyhw |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
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swapbybdt | swapbybk | swapbyhjm | swapbyhw | swapbyzero | swaptionbybdt |
swaptionbybk | swaptionbyblk | swaptionbyhjm | swaptionbyhw

Related Examples
• “Overview of Interest-Rate Tree Models” on page 2-50
• “Pricing Using Interest-Rate Term Structure” on page 2-72
• “Pricing Using Interest-Rate Tree Models” on page 2-99
• “Understanding Interest-Rate Tree Models” on page 2-79
• “Understanding the Interest-Rate Term Structure” on page 2-55

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Equity Derivatives

• “Understanding Equity Trees” on page 3-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
• “Pricing European and American Spread Options” on page 3-55
• “Hedging Strategies Using Spread Options” on page 3-74
• “Pricing Swing Options using the Longstaff-Schwartz Method” on page 3-82
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-96
• “Pricing Asian Options” on page 3-111
• “Pricing Equity Derivatives Using Trees” on page 3-128
• “Computing Equity Instrument Sensitivities” on page 3-142
• “Equity Derivatives Using Closed-Form Solutions” on page 3-148
• “Pricing European Call Options Using Different Equity Models” on page 3-161
• “Compute the Option Price on a Future” on page 3-170
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Understanding Equity Trees
In this section...
“Introduction” on page 3-2
“Building Equity Binary Trees” on page 3-3
“Building Implied Trinomial Trees” on page 3-8
“Building Standard Trinomial Trees” on page 3-14
“Examining Equity Trees” on page 3-18
“Differences Between CRR and EQP Tree Structures” on page 3-22

Introduction
Financial Instruments Toolbox supports five types of recombining tree models to
represent the evolution of stock prices:

• Cox-Ross-Rubinstein (CRR) model
• Equal probabilities (EQP) model
• Leisen-Reimer (LR) model
• Implied trinomial tree (ITT) model
• Standard trinomial tree (STT) model

For a discussion of recombining trees, see “Rate and Price Trees” on page 2-51.

The CRR, EQP, LR, STT, and ITT models are examples of discrete time models. A discrete
time model divides time into discrete bits; prices can only be computed at these specific
times.

The CRR model is one of the most common methods used to model the evolution of stock
processes. The strength of the CRR model lies in its simplicity. It is a good model when
dealing with many tree levels. The CRR model yields the correct expected value for each
node of the tree and provides a good approximation for the corresponding local volatility.
The approximation becomes better as the number of time steps represented in the tree is
increased.

The EQP model is another discrete time model. It has the advantage of building a tree
with the exact volatility in each tree node, even with small numbers of time steps. It also
provides better results than CRR in some given trading environments, for example, when
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stock volatility is low and interest rates are high. However, this additional precision
causes increased complexity, which is reflected in the number of calculations required to
build a tree.

The LR model is another discrete time model. It has the advantage of producing estimates
close to the Black-Scholes model using only a few steps, while also minimizing the
oscillation.

The ITT model is a CRR-style implied trinomial tree which takes advantage of prices
quoted from liquid options in the market with varying strikes and maturities to build a
tree that more accurately represents the market. An ITT model is commonly used to price
exotic options in such a way that they are consistent with the market prices of standard
options.

The STT model is another discrete time model. It is considered to produce more accurate
results than the binomial model when fewer time steps are modeled. The STT model is
sometimes more stable and accurate than the binomial model when pricing exotic
options.

Building Equity Binary Trees
The tree of stock prices is the fundamental unit representing the evolution of the price of
a stock over a given period of time. The MATLAB functions crrtree, eqptree, and
lrtree create CRR trees, EQP trees, and LR trees, respectively. These functions create
an output tree structure along with information about the parameters used for creating
the tree.

The functions crrtree, eqptree, and lrtree take three structures as input arguments:

• The stock parameter structure StockSpec
• The interest-rate term structure RateSpec
• The tree time layout structure TimeSpec

Calling Sequence for Equity Binary Trees

The calling syntax for crrtree is:

CRRTree = crrtree (StockSpec, RateSpec, TimeSpec)

Similarly, the calling syntax for eqptree is:

EQPTree = eqptree (StockSpec, RateSpec, TimeSpec)
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And, the calling syntax for lrtree is:

LRTree = lrtree(StockSpec, RateSpec, TimeSpec, Strike)

All three functions require the structures StockSpec, RateSpec, and TimeSpec as input
arguments:

• StockSpec is a structure that specifies parameters of the stock whose price evolution
is represented by the tree. This structure, created using the function stockspec,
contains information such as the stock's original price, its volatility, and its dividend
payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create this
structure with the function intenvset.

• TimeSpec is the tree time layout specification. Create these structures with the
functions crrtimespec, eqptimespec, and lrtimespec. The structures contain
information regarding the mapping of relevant dates into the tree structure, plus the
number of time steps used for building the tree.

Specifying the Stock Structure for Equity Binary Trees

The structure StockSpec encapsulates the stock-specific information required for
building the binary tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input
arguments and accepts up to three additional input arguments that depend on the
existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

• Sigma is the decimal annual volatility of the underlying security.
• AssetPrice is the price of the stock at the valuation date.
• DividendType is a character vector specifying the type of dividend paid by the stock.

Allowed values are cash, constant, or continuous.
• DividendAmounts has a value that depends on the specification of DividendType.

For DividendType cash, DividendAmounts is a vector of cash dividends. For
DividendType constant, it is a vector of constant annualized dividend yields. For
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DividendType continuous, it is a scalar representing a continuously annualized
dividend yield.

• ExDividendDates also has a value that depends on the nature of DividendType.
For DividendType cash or constant, ExDividendDates is vector of dividend
dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Binary Tree

Consider a stock with a price of $100 and an annual volatility of 15%. Assume that the
stock pays three cash $5.00 dividends on dates January 01, 2004, July 01, 2005, and
January 01, 2006. You specify these parameters in MATLAB as:
Sigma = 0.15;
AssetPrice = 100;
DividendType = 'cash';
DividendAmounts = [5; 5; 5];
ExDividendDates = {'jan-01-2004', 'july-01-2005', 'jan-01-2006'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... 
DividendAmounts, ExDividendDates)

StockSpec = 

               FinObj: 'StockSpec'
                Sigma: 0.1500
           AssetPrice: 100
         DividendType: 'cash'
      DividendAmounts: [3x1 double]
      ExDividendDates: [3x1 double]

Specifying the Interest-Rate Term Structure for Equity Binary Trees

The RateSpec structure defines the interest rate environment used when building the
stock price binary tree. “Modeling the Interest-Rate Term Structure” on page 2-67
explains how to create these structures using the function intenvset, given the interest
rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Equity Binary Trees

The TimeSpec structure defines the tree layout of the binary tree:

• It maps the valuation and maturity dates to their corresponding times.
• It defines the time of the levels of the tree by dividing the time span between valuation

and maturity into equally spaced intervals. By specifying the number of intervals, you
define the granularity of the tree time structure.
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The syntax for building a TimeSpec structure is:

TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)
TimeSpec = eqptimespec(ValuationDate, Maturity, NumPeriods)

TimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first observation in the
tree (location of the root node). You enter ValuationDate either as a serial date
number (generated with datenum) or a date character vector.

• Maturity is a scalar date marking the maturity of the tree, entered as a serial date
number or a date character vector.

• NumPeriods is a scalar defining the number of time steps in the tree; for example,
NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using a Binary Tree

Consider building a CRR tree, with a valuation date of January 1, 2003, a maturity date of
January 1, 2008, and 20 time steps. You specify these parameters in MATLAB as:

ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
NumPeriods = 20;
TimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods)

TimeSpec = 

           FinObj: 'BinTimeSpec'
    ValuationDate: 731582
         Maturity: 733408
       NumPeriods: 20
            Basis: 0
     EndMonthRule: 1
             tObs: [1x21 double]
             dObs: [1x21 double]

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs.
These two fields represent the observation times and corresponding dates of all tree
levels, with dObs(1) and tObs(1), respectively, representing the root node
(ValuationDate), and dObs(end) and tObs(end) representing the last tree level
(Maturity).
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Note There is no relationship between the dates specified for the tree and the implied
tree level times, and the maturities specified in the interest-rate term structure. The rates
in RateSpec are interpolated or extrapolated as required to meet the time distribution of
the tree.

Examples of Binary Tree Creation

You can now use the StockSpec and TimeSpec structures described previously to build
an equal probability tree (EQPTree), a CRR tree (CRRTree), or an LR tree (LRTree).
First, you must define the interest-rate term structure. For this example, assume that the
interest rate is fixed at 10% annually between the valuation date of the tree (January 1,
2003) until its maturity.

ValuationDate = 'Jan-1-2003';
Maturity = 'Jan-1-2008';
Rate = 0.1;
RateSpec = intenvset('Rates', Rate, 'StartDates', ... 
ValuationDate, 'EndDates', Maturity, 'Compounding', -1);

To build a CRRTree, enter:

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

CRRTree = 

       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x21 double]
         dObs: [1x21 double]
        STree: {1x21 cell}
      UpProbs: [1x20 double]

To build an EQPTree, enter:

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

EQPTree = 

       FinObj: 'BinStockTree'
       Method: 'EQP'
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    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x21 double]
         dObs: [1x21 double]
        STree: {1x21 cell}
      UpProbs: [1x20 double]

Building Implied Trinomial Trees
The tree of stock prices is the fundamental unit representing the evolution of the price of
a stock over a given period of time. The MATLAB function itttree creates an output
tree structure along with the information about the parameters used to create the tree.

The function itttree takes four structures as input arguments:

• The stock parameter structure StockSpec
• The interest-rate term structure RateSpec
• The tree time layout structure TimeSpec
• The stock option specification structure StockOptSpec

Calling Sequence for Implied Trinomial Trees

The calling syntax for itttree is:

ITTTree = itttree (StockSpec,RateSpec,TimeSpec,StockOptSpec)

• StockSpec is a structure that specifies parameters of the stock whose price evolution
is represented by the tree. This structure, created using the function stockspec,
contains information such as the stock's original price, its volatility, and its dividend
payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create this
structure with the function intenvset.

• TimeSpec is the tree time layout specification. Create these structures with the
function itttimespec. This structure contains information regarding the mapping of
relevant dates into the tree structure, plus the number of time steps used for building
the tree.

• StockOptSpec is a structure containing parameters of European stock options
instruments. Create this structure with the function stockoptspec.
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Specifying the Stock Structure for Implied Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for
building the trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input
arguments and accepts up to three additional input arguments that depend on the
existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

• Sigma is the decimal annual volatility of the underlying security.
• AssetPrice is the price of the stock at the valuation date.
• DividendType is a character vector specifying the type of dividend paid by the stock.

Allowed values are cash, constant, or continuous.
• DividendAmounts has a value that depends on the specification of DividendType.

For DividendType cash, DividendAmounts is a vector of cash dividends. For
DividendType constant, it is a vector of constant annualized dividend yields. For
DividendType continuous, it is a scalar representing a continuously annualized
dividend yield.

• ExDividendDates also has a value that depends on the nature of DividendType.
For DividendType cash or constant, ExDividendDates is vector of dividend
dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using an Implied Trinomial Tree

Consider a stock with a price of $100 and an annual volatility of 12%. Assume that the
stock is expected to pay a dividend yield of 6%. You specify these parameters in MATLAB
as:
So=100;
DividendYield = 0.06; 
Sigma=.12;

StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)

StockSpec = 
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             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 100
       DividendType: 'continuous'
    DividendAmounts: 0.0600
    ExDividendDates: []

Specifying the Interest-Rate Term Structure for Implied Trinomial Trees

The structure RateSpec defines the interest rate environment used when building the
stock price binary tree. “Modeling the Interest-Rate Term Structure” on page 2-67
explains how to create these structures using the function intenvset, given the interest
rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Implied Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

• It maps the valuation and maturity dates to their corresponding times.
• It defines the time of the levels of the tree by dividing the time span between valuation

and maturity into equally spaced intervals. By specifying the number of intervals, you
define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = itttimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first observation in the
tree (location of the root node). You enter ValuationDate either as a serial date
number (generated with datenum) or a date character vector.

• Maturity is a scalar date marking the maturity of the tree, entered as a serial date
number or a date character vector.

• NumPeriods is a scalar defining the number of time steps in the tree; for example,
NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using an Implied Trinomial Tree

Consider building an ITT tree, with a valuation date of January 1, 2006, a maturity date of
January 1, 2008, and four time steps. You specify these parameters in MATLAB as:
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ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
 
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec = 

           FinObj: 'ITTTimeSpec'
    ValuationDate: 732678
         Maturity: 733408
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 0.5000 1 1.5000 2]
             dObs: [732678 732860 733043 733225 733408]

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs.
These two fields represent the observation times and corresponding dates of all tree
levels, with dObs(1) and tObs(1), respectively, representing the root node
(ValuationDate), and dObs(end) and tObs(end) representing the last tree level
(Maturity).

Specifying the Option Stock Structure for Implied Trinomial Trees

The StockOptSpec structure encapsulates the option-stock-specific information required
for building the implied trinomial tree. You generate StockOptSpec with the function
stockoptspec. This function requires five input arguments. An optional sixth argument
InterpMethod, specifying the interpolation method, can be included. The syntax for
calling stockoptspec is:
[StockOptSpec] = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

where:

• Optprice is a NINST-by-1 vector of European option prices.
• Strike is a NINST-by-1 vector of strike prices.
• Settle is a scalar date marking the settlement date.
• Maturity is a NINST-by-1 vector of maturity dates.
• OptSpec is a NINST-by-1 cell array of character vectors for the values 'call' or

'put'.
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Option Stock Structure Example Using an Implied Trinomial Tree

Consider the following data quoted from liquid options in the market with varying strikes
and maturity. You specify these parameters in MATLAB as:
Settle =   '01/01/06';

Maturity =    ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];

Strike = [113;
   101;
   100;
    88;
   128;
   112;
   100;
    78;
   144;
   112;
   100;
    69;
   162;
   112;
   100;
    61];

OptPrice =[                 0;
   4.807905472659144;
   1.306321897011867;
   0.048039195057173;
                   0;
   2.310953054191461;
   1.421950392866235;
   0.020414826276740;
                   0;
   5.091986935627730;
   1.346534812295291;
   0.005101325584140;
                   0;
   8.047628153217246;
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   1.219653432150932;
   0.001041436654748];

OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};
    
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec = 

          FinObj: 'StockOptSpec'
        OptPrice: [16x1 double]
          Strike: [16x1 double]
          Settle: 732678
        Maturity: [16x1 double]
         OptSpec: {16x1 cell}
    InterpMethod: 'price'

Note The algorithm for building the ITT tree requires specifying option prices for all tree
nodes. The maturities of those options correspond to those of the tree levels, and the
strike to the prices on the tree nodes. The types of option are Calls for the nodes above
the central nodes, and Puts for those below and including the central nodes.

Clearly, all these options will not be available in the market, hence making interpolation,
and extrapolation necessary to obtain the node option prices. The degree to which the
tree reflects the market will unavoidably be tied to the results of these interpolations and
extrapolations. Keeping in mind that extrapolation is less accurate than interpolation, and
more so the further away the extrapolated points are from the data points, the function
itttree issues a warning with a list of the options for which extrapolation was
necessary.
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Sometimes, it may be desirable to view a list of ideal option prices to form an idea of the
ranges needed. This can be achieved by calling the function itttree specifying only the
first three input arguments. The second output argument is a structure array containing
the list of ideal options needed.

Creating an Implied Trinomial Tree

You can now use the StockSpec, TimeSpec, and StockOptSpec structures described in
“Stock Structure Example Using an Implied Trinomial Tree” on page 3-9, “TimeSpec
Example Using an Implied Trinomial Tree” on page 3-10, and “Option Stock Structure
Example Using an Implied Trinomial Tree” on page 3-12 to build an implied trinomial tree
(ITT). First, you must define the interest rate term structure. For this example, assume
that the interest rate is fixed at 8% annually between the valuation date of the tree
(January 1, 2006) until its maturity.
Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

To build an ITTTree, enter:
ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

ITTTree = 

          FinObj: 'ITStockTree'
       StockSpec: [1x1 struct]
    StockOptSpec: [1x1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [0 0.500000000000000 1 1.500000000000000 2]
            dObs: [732678 732860 733043 733225 733408]
           STree: {1x5 cell}
           Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Building Standard Trinomial Trees
The tree of stock prices is the fundamental unit representing the evolution of the price of
a stock over a given period of time. The MATLAB function stttree creates an output
tree structure along with the information about the parameters used to create the tree.

The function stttree takes three structures as input arguments:
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• The stock parameter structure StockSpec
• The interest-rate term structure RateSpec
• The tree time layout structure TimeSpec

Calling Sequence for Standard Trinomial Trees

The calling syntax for stttree is:

STTTree = stttree (StockSpec,RateSpec,TimeSpec)

• StockSpec is a structure that specifies parameters of the stock whose price evolution
is represented by the tree. This structure, created using the function stockspec,
contains information such as the stock's original price, its volatility, and its dividend
payment information.

• RateSpec is the interest-rate specification of the initial rate curve. Create this
structure with the function intenvset.

• TimeSpec is the tree time layout specification. Create these structures with the
function stttimespec. This structure contains information regarding the mapping of
relevant dates into the tree structure, plus the number of time steps used for building
the tree.

Specifying the Stock Structure for Standard Trinomial Trees

The structure StockSpec encapsulates the stock-specific information required for
building the trinomial tree of an individual stock's price movement.

You generate StockSpec with the function stockspec. This function requires two input
arguments and accepts up to three additional input arguments that depend on the
existence and type of dividend payments.

The syntax for calling stockspec is:

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates)

where:

• Sigma is the decimal annual volatility of the underlying security.
• AssetPrice is the price of the stock at the valuation date.
• DividendType is a character vector specifying the type of dividend paid by the stock.

Allowed values are cash, constant, or continuous.
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• DividendAmounts has a value that depends on the specification of DividendType.
For DividendType cash, DividendAmounts is a vector of cash dividends. For
DividendType constant, it is a vector of constant annualized dividend yields. For
DividendType continuous, it is a scalar representing a continuously annualized
dividend yield.

• ExDividendDates also has a value that depends on the nature of DividendType.
For DividendType cash or constant, ExDividendDates is vector of dividend
dates. For DividendType continuous, ExDividendDates is ignored.

Stock Structure Example Using a Standard Trinomial Tree

Consider a stock with a price of $100 and an annual volatility of 12%. Assume that the
stock is expected to pay a dividend yield of 6%. You specify these parameters in MATLAB
as:

So=100;
DividendYield = 0.06; 
Sigma=.12;

StockSpec = stockspec(Sigma, So, 'continuous', DividendYield)

StockSpec = 

             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 100
       DividendType: 'continuous'
    DividendAmounts: 0.0600
    ExDividendDates: []

Specifying the Interest-Rate Term Structure for Standard Trinomial Trees

The structure RateSpec defines the interest rate environment used when building the
stock price binary tree. “Modeling the Interest-Rate Term Structure” on page 2-67
explains how to create these structures using the function intenvset, given the interest
rates, the starting and ending dates for each rate, and the compounding value.

Specifying the Tree-Time Term Structure for Standard Trinomial Trees

The TimeSpec structure defines the tree layout of the trinomial tree:

• It maps the valuation and maturity dates to their corresponding times.
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• It defines the time of the levels of the tree by dividing the time span between valuation
and maturity into equally spaced intervals. By specifying the number of intervals, you
define the granularity of the tree time structure.

The syntax for building a TimeSpec structure is:

TimeSpec = stttimespec(ValuationDate, Maturity, NumPeriods)

where:

• ValuationDate is a scalar date marking the pricing date and first observation in the
tree (location of the root node). You enter ValuationDate either as a serial date
number (generated with datenum) or a date character vector.

• Maturity is a scalar date marking the maturity of the tree, entered as a serial date
number or a date character vector.

• NumPeriods is a scalar defining the number of time steps in the tree; for example,
NumPeriods = 10 implies 10 time steps and 11 tree levels (0, 1, 2, ..., 9, 10).

TimeSpec Example Using a Standard Trinomial Tree

Consider building an STT tree, with a valuation date of January 1, 2006, a maturity date
of January 1, 2008, and four time steps. You specify these parameters in MATLAB as:

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
 
TimeSpec = stttimespec(ValuationDate, EndDate, NumPeriods)

TimeSpec = 

           FinObj: 'STTTimeSpec'
    ValuationDate: 732678
         Maturity: 733408
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 0.5000 1 1.5000 2]
             dObs: [732678 732860 733043 733225 733408]

Two vector fields in the TimeSpec structure are of particular interest: dObs and tObs.
These two fields represent the observation times and corresponding dates of all tree
levels, with dObs(1) and tObs(1), respectively, representing the root node
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(ValuationDate), and dObs(end) and tObs(end) representing the last tree level
(Maturity).

Creating a Standard Trinomial Tree

You can now use the StockSpec, TimeSpec structures described in “Stock Structure
Example Using an Implied Trinomial Tree” on page 3-9 and “TimeSpec Example Using an
Implied Trinomial Tree” on page 3-10, to build a standard trinomial tree (STT). First, you
must define the interest rate term structure. For this example, assume that the interest
rate is fixed at 8% annually between the valuation date of the tree (January 1, 2006) until
its maturity.
Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

To build an STTTree, enter:
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = 

       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.5000 1 1.5000 2]
         dObs: [732678 732860 733043 733225 733408]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Examining Equity Trees
Financial Instruments Toolbox uses equity binary and trinomial trees to represent prices
of equity options and of underlying stocks. At the highest level, these trees have
structures wrapped around them. The structures encapsulate information required to
interpret information in the tree.

To examine an equity, binary, or trinomial tree, load the data in the MAT-file deriv.mat
into the MATLAB workspace.

load deriv.mat

Display the list of variables loaded from the MAT-file with the whos command.
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Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

Examining a CRRTree

You can examine in some detail the contents of the CRRTree structure contained in this
file.
CRRTree

CRRTree = 

       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [731582 731947 732313 732678 733043]
        STree: {[100]  [110.5171 90.4837]  [122.1403 100 81.8731]  [1x4 double]  [1x5 double]}
      UpProbs: [0.7309 0.7309 0.7309 0.7309]

The Method field of the structure indicates that this is a CRR tree, not an EQP tree.

The fields StockSpec, TimeSpec, and RateSpec hold the original structures passed into
the function crrtree. They contain all the context information required to interpret the
tree data.

The fields tObs and dObs are vectors containing the observation times and dates, that is,
the times and dates of the levels of the tree. In this particular case, tObs reveals that the
tree has a maturity of four years (tObs(end) = 4) and that it has four time steps (the
length of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one day.
This means that all values in tObs that correspond to a given day from 00:00 hours to
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24:00 hours are mapped to the corresponding value in dObs. You can use the function
datestr to convert these MATLAB serial dates into their character vector
representations.

The field UpProbs is a vector representing the probabilities for up movements from any
node in each level. This vector has one element per tree level. All nodes for a given level
have the same probability of an up movement. In the specific case being examined, the
probability of an up movement is 0.7309 for all levels, and the probability for a down
movement is 0.2691 (1 − 0.7309).

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a
cell array with each cell array element containing a vector of prices corresponding to a
tree level. The prices are in descending order, that is, CRRTree.STree{3}(1) represents
the topmost element of the third level of the tree, and CRRTree.STree{3}(end)
represents the bottom element of the same level of the tree.

Examining an ITTTree

You can examine in some detail the contents of the ITTTree structure contained in this
file.

ITTTree 

ITTTree = 

          FinObj: 'ITStockTree'
       StockSpec: [1x1 struct]
    StockOptSpec: [1x1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [0 1 2 3 4]
            dObs: [732678 733043 733408 733773 734139]
           STree: {1x5 cell}
           Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

The fields StockSpec, StockOptSpec, TimeSpec, and RateSpec hold the original
structures passed into the function itttree. They contain all the context information
required to interpret the tree data.

The fields tObs and dObs are vectors containing the observation times and dates and the
times and dates of the levels of the tree. In this particular case, tObs reveals that the tree
has a maturity of four years (tObs(end) = 4) and that it has four time steps (the length
of tObs is five).

The field dObs shows the specific dates for the tree levels, with a granularity of one day.
This means that all values in tObs that correspond to a given day from 00:00 hours to
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24:00 hours are mapped to the corresponding value in dObs. You can use the function
datestr to convert these MATLAB serial dates into their character vector
representations.

The field Probs is a vector representing the probabilities for movements from any node in
each level. This vector has three elements per tree node. In the specific case being
examined, at tObs= 1, the probability for an up movement is 0.4675, and the probability
for a down movement is 0.1934.

Finally, the field STree contains the actual stock tree. It is represented in MATLAB as a
cell array with each cell array element containing a vector of prices corresponding to a
tree level. The prices are in descending order, that is, ITTTree.STree{4}(1) represents
the top element of the fourth level of the tree, and ITTTree.STree{4}(end) represents
the bottom element of the same level of the tree.

Isolating a Specific Node for a CRRTree

The function treepath can isolate a specific set of nodes of a binary tree by specifying
the path used to reach the final node. As an example, consider the nodes tapped by
starting from the root node, then following a down movement, then an up movement, and
finally a down movement. You use a vector to specify the path, with 1 corresponding to an
up movement and 2 corresponding to a down movement. An up-down-up path is then
represented as [2 1 2]. To obtain the values of all nodes tapped by this path, enter:

SVals = treepath(CRRTree.STree, [2 1 2])

SVals =

  100.0000
   90.4837
  100.0000
   90.4837

The first value in the vector SVals corresponds to the root node, and the last value
corresponds to the final node reached by following the path indicated.

Isolating a Specific Node for an ITTTree

The function trintreepath can isolate a specific set of nodes of a trinomial tree by
specifying the path used to reach the final node. As an example, consider the nodes
tapped by starting from the root node, then following an up movement, then a middle
movement, and finally a down movement. You use a vector to specify the path, with 1
corresponding to an up movement, 2 corresponding to a middle movement, and 3
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corresponding to a down movement. An up-down-middle-down path is then represented
as [1 3 2 3]. To obtain the values of all nodes tapped by this path, enter:

pathSVals = trintreepath(ITTTree, [1 3 2 3])

pathSVals =

   50.0000
   66.3448
   50.0000
   50.0000
   37.6819

The first value in the vector pathSVals corresponds to the root node, and the last value
corresponds to the final node reached by following the path indicated.

Differences Between CRR and EQP Tree Structures
In essence, the structures representing CRR trees and EQP trees are similar. If you create
a CRR or an EQP tree using identical input arguments, only a few of the tree structure
fields differ:

• The Method field has a value of 'CRR' or 'EQP' indicating the method used to build
the structure.

• The prices in the STree cell array have the same structure, but the prices within the
cell array are different.

• For EQP, the structure field UpProb always holds a vector with all elements set to 0.5,
while for CRR, these probabilities are calculated based on the input arguments passed
when building the tree.

See Also
crrtimespec | crrtree | eqptimespec | eqptree | intenvset | itttimespec |
itttree | lrtimespec | lrtree | stockoptspec | stockspec | treepath |
trintreepath

Related Examples
• “Pricing Equity Derivatives Using Trees” on page 3-128
• “Creating Instruments or Properties” on page 1-21
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• “Graphical Representation of Equity Derivative Trees” on page 3-140

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
• “Supported Interest-Rate Instruments” on page 2-2
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Supported Equity Derivatives
In this section...
“Asian Option” on page 3-24
“Barrier Option” on page 3-26
“Basket Option” on page 3-27
“Chooser Option” on page 3-28
“Compound Option” on page 3-29
“Convertible Bond” on page 3-30
“Lookback Option” on page 3-31
“Digital Option” on page 3-32
“Rainbow Option” on page 3-34
“Vanilla Option” on page 3-35
“Spread Option” on page 3-38
“Forwards Option” on page 3-38
“Futures Option” on page 3-39

Asian Option
An Asian option is a path-dependent option with a payoff linked to the average value of
the underlying asset during the life (or some part of the life) of the option. They are
similar to lookback options in that there are two types of Asian options: fixed (average
price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the
underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:

•
Fixed call (average price option): max( , )0 S X

av
-

•
Fixed put (average price option): max( , )0 X S

av
-

•
Floating call (average strike option): max( , )0 S S

av
-

•
Floating put (average strike option): max( , )0 S S

av
-
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where:

S
av  is the average price of underlying asset.

S  is the price of the underlying asset.

X  is the strike price (applicable only to fixed Asian options).

S
av  is defined using either a geometric or an arithmetic average.

The following functions support Asian options.

Function Purpose
asianbycrr Price Asian options from a CRR binomial tree.
asianbyeqp Price Asian options from an EQP binomial tree.
asianbyitt Price Asian options using an implied trinomial tree (ITT).
asianbystt Price Asian options using a standard trinomial tree (STT).
instasian Construct an Asian option.
asianbyls Price European or American Asian options using the Longstaff-

Schwartz model.
asiansensbyls Calculate prices and sensitivities of European or American

Asian options using the Longstaff-Schwartz model.
asianbykv Price European geometric Asian options using the Kemna Vorst

model.
asiansensbykv Calculate prices and sensitivities of European geometric Asian

options using the Kemna Vorst model.
asianbylevy Price European arithmetic Asian options using the Levy model.
asiansensbylevy Calculate prices and sensitivities of European arithmetic Asian

options using the Levy model.
asianbyhhm Calculate prices of European discrete arithmetic fixed Asian

options using the Haug, Haug, Margrabe model.
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Function Purpose
asiansensbyhhm Calculate prices and sensitivities of European discrete

arithmetic fixed Asian options using the Haug, Haug, Margrabe
model

asianbytw Calculate prices of European arithmetic fixed Asian options
using the Turnbull Wakeman model.

asiansensbytw Calculate prices and sensitivities of European arithmetic fixed
Asian options using the Turnbull Wakeman model.

Barrier Option
A barrier option is similar to a vanilla put or call option, but its life either begins or ends
when the price of the underlying stock passes a predetermined barrier value. There are
four types of barrier options.

Up Knock-In

This option becomes effective when the price of the underlying stock passes above a
barrier that is above the initial stock price. Once the barrier has knocked in, it will not
knock out even if the price of the underlying instrument moves below the barrier again.

Up Knock-Out

This option terminates when the price of the underlying stock passes above a barrier that
is above the initial stock price. Once the barrier has knocked out, it will not knock in even
if the price of the underlying instrument moves below the barrier again.

Down Knock-In

This option becomes effective when the price of the underlying stock passes below a
barrier that is below the initial stock price. Once the barrier has knocked in, it will not
knock out even if the price of the underlying instrument moves above the barrier again.

Down Knock-Out

This option terminates when the price of the underlying stock passes below a barrier that
is below the initial stock price. Once the barrier has knocked out, it will not knock in even
if the price of the underlying instrument moves above the barrier again.
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Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option.
Knock-outs may pay a rebate when they are knocked out, and knock-ins may pay a rebate
if they expire without ever knocking in.

The following functions support barrier options.

Function Purpose
barrierbycrr Price barrier options from a CRR binomial tree.
barrierbyeqp Price barrier options from an EQP binomial tree.
barrierbyitt Price barrier options using an implied trinomial tree (ITT).
barrierbystt Price barrier options using a standard trinomial tree (STT).
barrierbyfd Price barrier option using finite difference method.
barriersensbyfd Calculate barrier option price and sensitivities using finite

difference method.
barrierbybls Price a European barrier option using Black-Scholes option

pricing model.
barriersensbybls Calculate price and sensitivities for a European barrier option

using Black-Scholes option pricing model.
barrierbyls Price a barrier option using Longstaff-Schwartz model.
barriersensbyls Calculate price and sensitivities for a barrier option using

Longstaff-Schwartz model.
instbarrier Construct a barrier option.

Basket Option
A basket option is an option on a portfolio of several underlying equity assets. Payout for a
basket option depends on the cumulative performance of the collection of the individual
assets. A basket option tends to be cheaper than the corresponding portfolio of plain
vanilla options for these reasons:

• If the basket components correlate negatively, movements in the value of one
component neutralize opposite movements of another component. Unless all the
components correlate perfectly, the basket option is cheaper than a series of individual
options on each of the assets in the basket.
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• A basket option minimizes transaction costs because an investor has to purchase only
one option instead of several individual options.

The payoff for a basket option is as follows:

•
For a call: max( ; )Wi Si K* -Â 0

•
For a put: max( ; )K Wi Si- *Â 0

where:

Si is the price of asset i in the basket.

Wi is the quantity of asset i in the basket.

K is the strike price.

Financial Instruments Toolbox software supports Longstaff-Schwartz and Nengiu Ju
models for pricing basket options. The Longstaff-Schwartz model supports both European,
Bermuda, and American basket options. The Nengiu Ju model only supports European
basket options. If you want to price either an American or Bermuda basket option, use the
functions for the Longstaff-Schwartz model. To price a European basket option, use either
the functions for the Longstaff-Schwartz model or the Nengiu Ju model.

Function Purpose
basketbyls Price basket options using the Longstaff-Schwartz model.
basketsensbyls Calculate price and sensitivities for basket options using the

Longstaff-Schwartz model.
basketbyju Price European basket options using the Nengjiu Ju

approximation model.
basketsensbyju Calculate European basket options price and sensitivity using

the Nengjiu Ju approximation model.
basketstockspec Specify a basket stock structure.

Chooser Option
A chooser option enables the holder to decide before the option expiration date whether
the option is a call or put.
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A chooser option has a specified decision time t1 where the holder has to make the
decision whether the option is a call or put. At the expiration time t2 the option expires. If
the holder chooses a call option, the payout is max ( S − K , 0). For the choice of a put
option, the payout is max ( K − S , 0) where K is the strike price of the option and S is the
equity price at expiry.

Function Purpose
chooserbybls Price a European simple chooser options using Black-Scholes

model.

Compound Option
A compound option is basically an option on an option; it gives the holder the right to buy
or sell another option. With a compound option, a vanilla stock option serves as the
underlying instrument. Compound options thus have two strike prices and two exercise
dates.

There are four types of compound options:

• Call on a call
• Put on a put
• Call on a put
• Put on a call

Note The payoff formulas for compound options are too complex for this discussion. If
you are interested in the details, consult the paper by Mark Rubinstein entitled
“Double Trouble,” published in Risk 5 (1991).

Consider the third type, a call on a put. It gives the holder the right to buy a put option. In
this case, on the first exercise date, the holder of the compound option pay the first strike
price and receives a put option. The put option gives the holder the right to sell the
underlying asset for the second strike price on the second exercise date.

The following functions support compound options.

Function Purpose
compoundbycrr Price compound options from a CRR binomial tree.
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Function Purpose
compoundbyeqp Price compound options from an EQP binomial tree.
compoundbyitt Price compound options using an implied trinomial tree (ITT).
compoundbystt Price compound options using a standard trinomial tree (STT).
instcompound Construct a compound option.

Convertible Bond
A convertible bond is a financial instrument that combines equity and debt features. It is a
bond with the embedded option to turn it into a fixed number of shares. The holder of a
convertible bond has the right, but not the obligation, to exchange the convertible
security for a predetermined number of equity shares at a preset price. The debt
component is derived from the coupon payments and the principal. The equity component
is provided by the conversion feature.

Convertible bonds have several defining features:

• Coupon — The coupon in convertible bonds are typically lower than coupons in vanilla
bonds since investors are willing to take the lower coupon for the opportunity to
participate in the company’s stock via the conversion.

• Maturity — Most convertible bonds are issued with long-stated maturities. Short-term
maturity convertible bonds usually do not have call or put provisions.

• Conversion ratio — Conversion ratio is the number of shares that the holder of the
convertible bond will receive from exercising the call option of the convertible bond:

Conversion ratio = par value convertible bond/conversion price
of equity

For example, a conversion ratio of 25 means a bond can be exchanged for 25 shares of
stock. This also implies a conversion price of $40 (1000/25). This, $40, would be the
price at which the owner would buy the shares. This can be expressed as a ratio or as
the conversion price and is specified in the contract along with other provisions.

• Option type:

• Callable Convertible: a convertible bond that is callable by the issuer. The issuer of
the bond forces conversion, removing the advantage that conversion is at the
discretion of the bondholder. Upon call, the bondholder can either convert the bond
or redeem at the call price. This option enables the issuer to control the price of
the convertible bond and if necessary refinance the debt with a new cheaper one.
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• Puttable Convertible: a convertible bond with a put feature that allows the
bondholder to sell back the bond at a premium on a specific date. This option
protects the holder against rising interest rates by reducing the year to maturity.

Function Purpose
cbondbycrr Price convertible bonds using a CRR binomial tree with the

Tsiveriotis and Fernandes model.
cbondbyeqp Price convertible bonds using an EQP binomial tree with the

Tsiveriotis and Fernandes model.
cbondbyitt Price convertible bonds using an implied trinomial tree with the

Tsiveriotis and Fernandes model.
cbondbystt Price convertible bonds using a standard trinomial tree with

the Tsiveriotis and Fernandes model.
instcbond Construct a cbond instrument for a convertible bond.

Lookback Option
A lookback option is a path-dependent option based on the maximum or minimum value
the underlying asset achieves during the entire life of the option.

Financial Instruments Toolbox software supports two types of lookback options: fixed and
floating. Fixed lookback options have a specified strike price, while floating lookback
options have a strike price determined by the asset path. So, there are a total of four
lookback option types, each with its own characteristic payoff formula:

•
Fixed call: max( , )

max
0 S X-

•
Fixed put: max( , )

min
0 X S-

•
Floating call: max( , )

min
0 S S-

•
Floating put: max( , )

max
0 S S-

where:

S
max

 is the maximum price of underlying stock found along the particular path followed to
the node.
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S
min  is the minimum price of underlying stock found along the particular path followed to

the node.

S  is the price of the underlying stock on the node.

X  is the strike price (applicable only to fixed lookback options).

The following functions support lookback options.

Function Purpose
lookbackbycrr Price lookback options from a CRR binomial tree.
lookbackbyeqp Price lookback options from an EQP binomial tree.
lookbackbyitt Price lookback options using an implied trinomial tree (ITT).
lookbackbystt Price lookback options using standard trinomial tree.
instlookback Construct a lookback option based on an equity tree model.
lookbackbycvgsg Calculate prices of European lookback fixed and floating strike

options using the Conze-Viswanathan and Goldman-Sosin-Gatto
models. For more information, see “Lookback Option” on page
3-49.

lookbacksensbycvgs
g

Calculate prices and sensitivities of European fixed and floating
strike lookback options using the Conze-Viswanathan and
Goldman-Sosin-Gatto models. For more information, see
“Lookback Option” on page 3-49.

lookbackbyls Calculate prices of lookback fixed and floating strike options
using the Longstaff-Schwartz model. For more information, see
“Lookback Option” on page 3-49.

lookbacksensbyls Calculate prices and sensitivities of lookback fixed and floating
strike options using the Longstaff-Schwartz model. For more
information, see “Lookback Option” on page 3-49.

Digital Option
A digital option is an option whose payoff is characterized as having only two potential
values: a fixed payout, when the option is in the money or a zero payout otherwise. This is
the case irrespective of how far the asset price at maturity is above (call) or below (put)
the strike.
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Digital options are attractive to sellers because they guarantee a known maximum loss
when the option is exercised. This overcomes a fundamental problem with the vanilla
options, where the potential loss is unlimited. Digital options are attractive to buyers
because the option payoff is a known constant amount, and this amount can be adjusted
to provide the exact quantity of protection required.

Financial Instruments Toolbox supports four types of digital options:

• Cash-or-nothing option — Pays some fixed amount of cash if the option expires in the
money.

• Asset-or-nothing option — Pays the value of the underlying security if the option
expires in the money.

• Gap option — One strike decides if the option is in or out of money; another strike
decides the size of the payoff.

• Supershare — Pays out a proportion of the assets underlying a portfolio if the asset
lies between a lower and an upper bound at the expiry of the option.

The following functions calculate pricing and sensitivity for digital options.

Function Purpose
cashbybls Calculate the price of cash-or-nothing digital options

using the Black-Scholes model.
assetbybls Calculate the price of asset-or-nothing digital options

using the Black-Scholes model.
gapbybls Calculate the price of gap digital options using the

Black-Scholes model.
supersharebybls Calculate the price of supershare digital options

using the Black-Scholes model.
cashsensbybls Calculate the price and sensitivities of cash-or-

nothing digital options using the Black-Scholes
model.

assetsensbybls Calculate the price and sensitivities of asset-or-
nothing digital options using the Black-Scholes
model.

gapsensbybls Calculate the price and sensitivities of gap digital
options using the Black-Scholes model.

 Supported Equity Derivatives

3-33



Function Purpose
supersharesensbybls Calculate the price and sensitivities of supershare

digital options using the Black-Scholes model.

Rainbow Option
A rainbow option payoff depends on the relative price performance of two or more assets.
A rainbow option gives the holder the right to buy or sell the best or worst of two
securities, or options that pay the best or worst of two assets.

Rainbow options are popular because of the lower premium cost of the structure relative
to the purchase of two separate options. The lower cost reflects the fact that the payoff is
generally lower than the payoff of the two separate options.

Financial Instruments Toolbox supports two types of rainbow options:

• Minimum of two assets — The option holder has the right to buy(sell) one of two risky
assets, whichever one is worth less.

• Maximum of two assets — The option holder has the right to buy(sell) one of two risky
assets, whichever one is worth more.

The following rainbow options speculate/hedge on two equity assets.

Function Purpose
minassetbystulz Calculate the European rainbow option price on

minimum of two risky assets using the Stulz option
pricing model.

minassetsensbystulz Calculate the European rainbow option prices and
sensitivities on minimum of two risky assets using the
Stulz pricing model.

maxassetbystulz Calculate the European rainbow option price on
maximum of two risky assets using the Stulz option
pricing model.

maxassetsensbystulz Calculate the European rainbow option prices and
sensitivities on maximum of two risky assets using the
Stulz pricing model.
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Vanilla Option
A vanilla option is a category of options that includes only the most standard components.
A vanilla option has an expiration date and straightforward strike price. American-style
options and European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max( , )St K- 0

• For a put: max( , )K St- 0

where:

St is the price of the underlying asset at time t.

K is the strike price.

The following functions support specifying or pricing a vanilla option.

Function Purpose
optstockbybaw Calculate the American options prices using the

Barone-Adesi-Whaley option pricing model.
optstocksensbybaw Calculate the American options prices and sensitivities

using the Barone-Adesi-Whaley option pricing model.
optstockbycrr Calculate the price of a European, Bermuda, or

American stock option using a CRR tree.
optstockbyeqp Calculate the price of a European, Bermuda, or

American stock option using an EQP tree.
optstockbyfd Calculate vanilla option prices using finite difference

method.
optstocksensbyfd Calculate vanilla option prices and sensitivities using

finite difference method.
optByLocalVolFD Calculate vanilla option price by local volatility model,

using finite differences.
optSensByLocalVolFD Calculate vanilla option price or sensitivities by local

volatility model, using finite differences.
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Function Purpose
optByHestonFD Calculate vanilla option price by Heston model using

finite differences.
optSensByHestonFD Calculate vanilla option price and sensitivities by

Heston model using finite differences.
optstockbyitt Calculate the price of a European, Bermuda, or

American stock option using an ITT tree.
optstockbystt Calculate the price of a European, Bermuda, or

American stock option using an STT tree.
optstockbylr Calculate the price of a European, Bermuda, or

American stock option using the Leisen-Reimer (LR)
binomial tree model.

optstocksensbylr Calculate the price and sensitivities of a European,
Bermuda, or American stock option using the Leisen-
Reimer (LR) binomial tree model.

optstockbybls Price options using the Black-Scholes option pricing
model.

optstocksensbybls Calculate option prices and sensitivities using the
Black-Scholes option pricing model.

optstockbyrgw Calculate American call option prices using the Roll-
Geske-Whaley option pricing model.

optstocksensbyrgw Calculate American call option prices and sensitivities
using the Roll-Geske-Whaley option pricing model.

optstockbybjs Price American options using the Bjerksund-Stensland
2002 option pricing model.

optstocksensbybjs Calculate American option prices and sensitivities using
the Bjerksund-Stensland 2002 option pricing model.

optstockbyls Price vanilla options using the Longstaff-Schwartz
model.

optstocksensbyls Calculate vanilla option prices and sensitivities using
the Longstaff-Schwartz model.

optByHestonFFT Calculate option price by Heston model using FFT and
FRFT.
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Function Purpose
optSensByHestonFFT Calculate option price and sensitivities by Heston

model using FFT and FRFT.
optByHestonNI Calculate option price by Heston model using

numerical integration.
optSensByHestonNI Calculate option price and sensitivities by Heston

model using numerical integration.
optByBatesFFT Calculate option price by Bates model using FFT and

FRFT.
optSensByBatesFFT Calculate option price and sensitivities by Bates model

using FFT and FRFT.
optByBatesNI Calculate option price by Bates model using numerical

integration.
optSensByBatesNI Calculate option price or sensitivities by Bates model

using numerical integration.
optByMertonFFT Calculate option price by Merton76 model using FFT

and FRFT.
optSensByMertonFFT Calculate option price and sensitivities by Merton76

model using FFT and FRFT.
optByMertonNI Calculate option price by Merton76 model using

numerical integration.
optSensByMertonNI Calculate option price and sensitivities by Merton76

model using numerical integration.
instoptstock Specify a European or Bermuda option.

Bermuda Put and Call Schedule

A Bermuda option resembles a hybrid of American and European options. You exercise it
on predetermined dates only, usually monthly. In Financial Instruments Toolbox software,
you indicate the relevant information for a Bermuda option in two input matrices:

• Strike — Contains the strike price values for the option.
• ExerciseDates — Contains the schedule when you can exercise the option.
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Spread Option
A spread option is an option written on the difference of two underlying assets. For
example, a European call on the difference of two assets X1 and X2 would have the
following pay off at maturity:

max( , )X X K1 2 0- -

where:

K is the strike price.

The following functions support spread options.

Function Purpose
spreadbykirk Price European spread options using the Kirk pricing model.
spreadsensbykirk Calculate European spread option prices and sensitivities using

the Kirk pricing model.
spreadbybjs Price European spread options using the Bjerksund-Stensland

pricing model.
spreadsensbybjs Calculate European spread option prices and sensitivities using

the Bjerksund-Stensland pricing model.
spreadbyfd Price European or American spread options using the Alternate

Direction Implicit (ADI) finite difference method.
spreadsensbyfd Calculate price and sensitivities of European or American

spread options using the Alternate Direction Implicit (ADI)
finite difference method.

spreadbyls Price European or American spread options using Monte Carlo
simulations.

spreadsensbyls Calculate price and sensitivities for European or American
spread options using Monte Carlo simulations.

Forwards Option
A forward option is a non-standardized contract between two parties to buy or to sell an
asset at a specified future time at a price agreed upon today. The buyer of a forward
option contract has the right to hold a particular forward position at a specific price any
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time before the option expires. The forward option seller holds the opposite forward
position when the buyer exercises the option. A call option is the right to enter into a long
forward position and a put option is the right to enter into a short forward position. A
closely related contract is a futures contract. A forward is like a futures in that it specifies
the exchange of goods for a specified price at a specified future date. The table below
displays some of the characteristics of forward and futures contracts.

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no
Margin required)

Daily changes are settled day by day
(Margin required)

Delivery usually takes place Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity
depends on the relationship between the delivery price (K) and the underlying price (ST)
at that time, is:

•
For a long position: f S KT T= -

•
For a short position: f K ST T= -

The following functions support pricing a forwards option.

Function Purpose
optstockbyblk Price options on forwards using the Black option

pricing model.
optstocksensbyblk Determine option prices and sensitivities on forwards

using the Black pricing model.

Futures Option
A future option is a standardized contract between two parties to buy or sell a specified
asset of standardized quantity and quality for a price agreed upon today (the futures
price) with delivery and payment occurring at a specified future date, the delivery date.
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The contracts are negotiated at a futures exchange, which acts as an intermediary
between the two parties. The party agreeing to buy the underlying asset in the future, the
"buyer" of the contract, is said to be "long", and the party agreeing to sell the asset in the
future, the "seller" of the contract, is said to be "short."

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no
Margin required)

Daily changes are settled day by day
(Margin required)

Delivery usually takes place Delivery usually never happens

A futures contract is the delivery of item J at time T and:

• There exists in the market a quoted price F t T( , ) , which is known as the futures price
at time t for delivery of J at time T.

• The price of entering a futures contract is equal to zero.
• During any time interval [t,s], the holder receives the amount F s T F t T( , ) ( , )-  (this
reflects instantaneous marking to market).

• At time T, the holder pays F T T( , )  and is entitled to receive J. Note that F T T( , )

should be the spot price of J at time T.

The following functions support pricing a futures option.

Function Purpose
optstockbyblk Price options on futures using the Black option pricing

model.
optstocksensbyblk Determine option prices and sensitivities on futures

using the Black pricing model.
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See Also
asianbycrr | asianbyeqp | asianbyitt | asianbykv | asianbylevy | asianbyls |
asiansensbykv | asiansensbylevy | asiansensbyls | assetbybls |
assetsensbybls | barrierbycrr | barrierbyeqp | barrierbyitt | basketbyju |
basketbyls | basketsensbyju | basketsensbyls | basketstockspec |
basketstockspec | cashbybls | cashsensbybls | chooserbybls | compoundbycrr
| compoundbyeqp | compoundbyitt | crrprice | crrsens | crrtimespec | crrtree |
eqpprice | eqpsens | eqptimespec | eqptree | gapbybls | gapsensbybls |
impvbybjs | impvbyblk | impvbybls | impvbyrgw | instasian | instbarrier |
instcompound | instlookback | instoptstock | ittprice | ittsens |
itttimespec | itttree | lookbackbycrr | lookbackbycvgsg | lookbackbyeqp |
lookbackbyitt | lookbackbyls | lookbackbyls | lookbacksensbycvgsg |
lookbacksensbyls | lookbacksensbyls | lrtimespec | lrtree |
maxassetbystulz | maxassetsensbystulz | minassetbystulz |
minassetsensbystulz | optpricebysim | optstockbybjs | optstockbyblk |
optstockbybls | optstockbycrr | optstockbyeqp | optstockbyitt |
optstockbylr | optstockbyls | optstockbyrgw | optstocksensbybjs |
optstocksensbyblk | optstocksensbybls | optstocksensbylr |
optstocksensbyls | optstocksensbyrgw | spreadbybjs | spreadbykirk |
spreadbyls | spreadsensbybjs | spreadsensbykirk | spreadsensbyls |
stockspec | supersharebybls | supersharesensbybls | treepath |
trintreepath

Related Examples
• “Understanding Equity Trees” on page 3-2
• “Pricing Equity Derivatives Using Trees” on page 3-128
• “Creating Instruments or Properties” on page 1-21
• “Graphical Representation of Equity Derivative Trees” on page 3-140
• “Compute Option Prices on a Forward” on page 11-1736
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1805
• “Compute the Option Price on a Future” on page 11-1738
• “Pricing European Call Options Using Different Equity Models” on page 3-161
• “Pricing Asian Options” on page 3-111
• “Equity Derivatives Using Closed-Form Solutions” on page 3-148
• “Pricing Using the Bjerksund-Stensland Model” on page 3-156
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More About
• “Basket Option” on page 3-27
• “Asian Option” on page 3-24
• “Spread Option” on page 3-38
• “Vanilla Option” on page 3-35
• “Rainbow Option” on page 3-34
• “Bjerksund-Stensland 2002 Model” on page 3-151
• “Roll-Geske-Whaley Model” on page 3-150
• “Black Model” on page 3-149
• “Digital Option” on page 3-32
• “Supported Energy Derivatives” on page 3-43
• “Supported Interest-Rate Instruments” on page 2-2
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Supported Energy Derivatives
In this section...
“Asian Option” on page 3-43
“Barrier Option” on page 3-45
“Vanilla Option” on page 3-46
“Spread Option” on page 3-48
“Lookback Option” on page 3-49
“Forwards Option” on page 3-51
“Futures Option” on page 3-52

Asian Option
An Asian option is a path-dependent option with a payoff linked to the average value of
the underlying asset during the life (or some part of the life) of the option. They are
similar to lookback options in that there are two types of Asian options: fixed (average
price option) and floating (average strike option). Fixed Asian options have a specified
strike, while floating Asian options have a strike equal to the average value of the
underlying asset over the life of the option.

There are four Asian option types, each with its own characteristic payoff formula:

•
Fixed call (average price option): max( , )0 S X

av
-

•
Fixed put (average price option): max( , )0 X S

av
-

•
Floating call (average strike option): max( , )0 S S

av
-

•
Floating put (average strike option): max( , )0 S S

av
-

where:

S
av  is the average price of underlying asset.

S  is the price of the underlying asset.
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X  is the strike price (applicable only to fixed Asian options).

S
av  is defined using either a geometric or an arithmetic average.

The following functions support Asian options.

Function Purpose
asianbyls Price European or American Asian options using the Longstaff-

Schwartz model.
asiansensbyls Calculate prices and sensitivities of European or American

Asian options using the Longstaff-Schwartz model.
asianbykv Price European geometric Asian options using the Kemna Vorst

model.
asiansensbykv Calculate prices and sensitivities of European geometric Asian

options using the Kemna Vorst model.
asianbylevy Price European arithmetic Asian options using the Levy model.
asiansensbylevy Calculate prices and sensitivities of European arithmetic Asian

options using the Levy model.
asianbyhhm Calculate prices of European discrete arithmetic fixed Asian

options using the Haug, Haug, Margrabe model.
asiansensbyhhm Calculate prices and sensitivities of European discrete

arithmetic fixed Asian options using the Haug, Haug, Margrabe
model

asianbytw Calculate prices of European arithmetic fixed Asian options
using the Turnbull Wakeman model.

asiansensbytw Calculate prices and sensitivities of European arithmetic fixed
Asian options using the Turnbull Wakeman model.

asianbycrr Price an Asian option from a Cox-Ross-Rubinstein binomial tree.
asianbyeqp Price an Asian option from an Equal Probabilities binomial tree.
asianbyitt Price an Asian option using an implied trinomial tree (ITT).
asianbystt Price an Asian option using a standard trinomial tree.
instasian Construct an Asian option.
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Barrier Option
A barrier option is similar to a vanilla put or call option, but its life either begins or ends
when the price of the underlying asset passes a predetermined barrier value. There are
four types of barrier options.

Up Knock-In

This option becomes effective when the price of the underlying asset passes above a
barrier that is above the initial asset price. Once the barrier has knocked in, it will not
knock out even if the price of the underlying instrument moves below the barrier again.

Up Knock-Out

This option terminates when the price of the underlying asset passes above a barrier that
is above the initial stock price. Once the barrier has knocked out, it will not knock in even
if the price of the underlying instrument moves below the barrier again.

Down Knock-In

This option becomes effective when the price of the underlying asset passes below a
barrier that is below the initial stock price. Once the barrier has knocked in, it will not
knock out even if the price of the underlying instrument moves above the barrier again.

Down Knock-Out

This option terminates when the price of the underlying asset passes below a barrier that
is below the initial stock price. Once the barrier has knocked out, it will not knock in even
if the price of the underlying instrument moves above the barrier again.

Rebates

If a barrier option fails to exercise, the seller may pay a rebate to the buyer of the option.
Knock-outs may pay a rebate when they are knocked out, and knock-ins may pay a rebate
if they expire without ever knocking in.

The following functions support barrier options.

Function Purpose
barrierbyfd Price barrier option using finite difference method.
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Function Purpose
barriersensbyfd Calculate barrier option price and sensitivities using finite

difference method.
barrierbyls Price European or American barrier options using Monte Carlo

simulations.
barrierbybls Price European barrier options using Black-Scholes option

pricing model.
barrierbycrr Price a barrier option from a Cox-Ross-Rubinstein binomial

tree.
barrierbyeqp Price a barrier option from an Equal Probabilities binomial tree.
barrierbyitt Price a barrier option using an implied trinomial tree (ITT).
barrierbystt Price a barrier options using a standard trinomial tree.

Vanilla Option
A vanilla option is a category of options that includes only the most standard components.
A vanilla option has an expiration date and straightforward strike price. American-style
options and European-style options are both categorized as vanilla options.

The payoff for a vanilla option is as follows:

• For a call: max( , )St K- 0

• For a put: max( , )K St- 0

where:

St is the price of the underlying asset at time t.

K is the strike price.

The following functions support specifying or pricing a vanilla option.

Function Purpose
optstockbyls Price European, Bermudan, or American vanilla options

using the Longstaff-Schwartz model.
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Function Purpose
optstocksensbyls Calculate European, Bermudan, or American vanilla

option prices and sensitivities using the Longstaff-
Schwartz model.

optstockbyfd Calculate vanilla option prices using finite difference
method.

optstocksensbyfd Calculate vanilla option prices and sensitivities using
finite difference method.

optstockbybaw Calculate American options prices using Barone-Adesi
and Whaley option pricing model.

optstocksensbybaw Calculate American options prices and sensitivities
using Barone-Adesi and Whaley option pricing model.

optstockbyrgw Calculate American call option prices using Roll-Geske-
Whaley option pricing model.

optstocksensbyrgw Calculate American call option prices or sensitivities
using Roll-Geske-Whaley option pricing model.

optByLocalVolFD Calculate vanilla option price by local volatility model,
using finite differences.

optstockbybjs Price American options using Bjerksund-Stensland
2002 option pricing model.

optstocksensbybjs Determine American option prices or sensitivities using
Bjerksund-Stensland 2002 option pricing model.

optSensByLocalVolFD Calculate vanilla option price or sensitivities by local
volatility model, using finite differences.

optByHestonFD Calculate vanilla option price by Heston model using
finite differences.

optSensByHestonFD Calculate vanilla option price and sensitivities by
Heston model using finite differences.

optByBatesFFT Calculate option price by Bates model using FFT and
FRFT.

optByHestonFFT Calculate option price by Heston model using FFT and
FRFT.

optByMertonFFT Calculate option price by Merton76 model using FFT
and FRFT.
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Function Purpose
optstockbycrr Price an option from a Cox-Ross-Rubinstein binomial

tree.
optstockbyeqp Price an option from an Equal Probabilities binomial

tree.
optstockbyitt Price an option using an implied trinomial tree (ITT).
optstockbystt Price an option using a standard trinomial tree.

Spread Option
A spread option is an option written on the difference of two underlying assets. For
example, a European call on the difference of two assets X1 and X2 would have the
following pay off at maturity:

max( , )X X K1 2 0- -

where:

K is the strike price.

The following functions support spread options.

Function Purpose
spreadbykirk Price European spread options using the Kirk pricing model.
spreadsensbykirk Calculate European spread option prices and sensitivities using

the Kirk pricing model.
spreadbybjs Price European spread options using the Bjerksund-Stensland

pricing model.
spreadsensbybjs Calculate European spread option prices and sensitivities using

the Bjerksund-Stensland pricing model.
spreadbyfd Price European or American spread options using the Alternate

Direction Implicit (ADI) and Crank-Nicolson finite difference
methods.
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Function Purpose
spreadsensbyfd Calculate price and sensitivities of European or American

spread options using the Alternate Direction Implicit (ADI) and
Crank-Nicolson finite difference methods.

spreadbyls Price European or American spread options using Monte Carlo
simulations.

spreadsensbyls Calculate price and sensitivities for European or American
spread options using Monte Carlo simulations.

For more information on using spread options, see “Pricing European and American
Spread Options” on page 3-55.

Lookback Option
A lookback option is a path-dependent option based on the maximum or minimum value
the underlying asset (e.g. electricity, stock) achieves during the entire life of the option.
Basically the holder of the option can ‘look back’ over time to determine the payoff. This
type of option provides price protection over a selected period, reduces uncertainties with
the timing of market entry, moderates the need for the ongoing management, and
therefore, is usually more expensive than vanilla options.

Lookback call options give the holder the right to buy the underlying asset at the lowest
price. Lookback put options give the right to sell the underlying asset at the highest price.

Financial Instruments Toolbox software supports two types of lookback options: fixed and
floating. The difference is related to how the strike price is set in the contract. Fixed
lookback options have a specified strike price and the option pays out the maximum of the
difference between the highest (lowest) observed price of the underlying during the life of
the option and the strike. Floating lookback options have a strike price determined at
maturity, and it is set at the lowest (highest) price of the underlying reached during the
life of the option. This means that for a floating strike lookback call (put), the holder has
the right to buy (sell) the underlying asset at its lowest (highest) price observed during
the life of the option. So, there are a total of four lookback option types, each with its own
characteristic payoff formula:

•
Fixed call: max( , )

max
0 S X-

•
Fixed put: max( , )

min
0 X S-
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•
Floating call: max( , )

min
0 S S-

•
Floating put: max( , )

max
0 S S-

where:

S
max

 is the maximum price of underlying asset.

S
min  is the minimum price of underlying asset.

S  is the price of the underlying asset at maturity.

X  is the strike price.

The following functions support lookback options.

Function Purpose
lookbackbycvgsg Calculate prices of European lookback fixed and floating strike

options using the Conze-Viswanathan and Goldman-Sosin-Gatto
models.

lookbacksensbycvgs
g

Calculate prices and sensitivities of European fixed and floating
strike lookback options using the Conze-Viswanathan and
Goldman-Sosin-Gatto models.

lookbackbyls Calculate prices of lookback fixed and floating strike options
using the Longstaff-Schwartz model.

lookbacksensbyls Calculate prices and sensitivities of lookback fixed and floating
strike options using the Longstaff-Schwartz model.

lookbackbycrr Price a lookback option from a Cox-Ross-Rubinstein binomial
tree.

lookbackbyeqp Price a lookback option from an Equal Probabilities binomial
tree.

lookbackbyitt Price a lookback option using an implied trinomial tree (ITT).
lookbackbystt Price a lookback option using a standard trinomial tree.

Lookback options and Asian options are instruments used in the electricity market to
manage purchase timing risk. Electricity purchasers cover part of their expected

3 Equity Derivatives

3-50



electricity consumption on the forward market to avoid the volatility and limited liquidity
of the spot market. Using Asian options as a hedging tool is a passive approach to solving
the purchase timing problem. An Asian option instrument diminishes the wrong timing
risk but it also reduces any potential benefit to the buyer from falling prices. On the other
hand, lookback options allow the purchasers to buy electricity at the lowest price, but as
mentioned before, this instrument is more expensive than Asian and vanilla options.

Forwards Option
A forward option is a non-standardized contract between two parties to buy or to sell an
asset at a specified future time at a price agreed upon today. The buyer of a forward
option contract has the right to hold a particular forward position at a specific price any
time before the option expires. The forward option seller holds the opposite forward
position when the buyer exercises the option. A call option is the right to enter into a long
forward position and a put option is the right to enter into a short forward position. A
closely related contract is a futures contract. A forward is like a futures in that it specifies
the exchange of goods for a specified price at a specified future date. The following table
displays some of the characteristics of forward and futures contracts.

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no
Margin required)

Daily changes are settled day by day
(Margin required)

Delivery usually takes place Delivery usually never happens

The payoff for a forward option, where the value of a forward position at maturity
depends on the relationship between the delivery price (K) and the underlying price (ST)
at that time, is:

•
For a long position: f S KT T= -

•
For a short position: f K ST T= -

The following functions support pricing a forwards option.
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Function Purpose
optstockbyblk Price options on forwards using the Black option

pricing model.
optstocksensbyblk Determine option prices and sensitivities on forwards

using the Black pricing model.

Futures Option
A future option is a standardized contract between two parties to buy or sell a specified
asset of standardized quantity and quality for a price agreed upon today (the futures
price) with delivery and payment occurring at a specified future date, the delivery date.
The contracts are negotiated at a futures exchange, which acts as an intermediary
between the two parties. The party agreeing to buy the underlying asset in the future, the
"buyer" of the contract, is said to be "long", and the party agreeing to sell the asset in the
future, the "seller" of the contract, is said to be "short."

Forwards Futures
Customized contracts Standardized contracts
Over the counter traded Exchange traded
Exposed to default risk Clearing house reduces default risk
Mostly used for hedging Mostly used by hedgers and speculators
Settlement at the end of contract (no
Margin required)

Daily changes are settled day by day
(Margin required)

Delivery usually takes place Delivery usually never happens

A futures contract is the delivery of item J at time T and:

• There exists in the market a quoted price F t T( , ) , which is known as the futures price
at time t for delivery of J at time T.

• The price of entering a futures contract is equal to zero.
• During any time interval [t,s], the holder receives the amount F s T F t T( , ) ( , )-  (this
reflects instantaneous marking to market).

• At time T, the holder pays F T T( , )  and is entitled to receive J. Note that F T T( , )

should be the spot price of J at time T.
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The following functions support pricing a futures option.

Function Purpose
optstockbyblk Price options on futures using the Black option pricing

model.
optstocksensbyblk Determine option prices and sensitivities on futures

using the Black pricing model.

See Also
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg |
lookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls |
optstocksensbyblk | optstocksensbyls | spreadbybjs | spreadbyfd |
spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd |
spreadsensbykirk | spreadsensbyls

Related Examples
• “Pricing European and American Spread Options” on page 3-55
• “Hedging Strategies Using Spread Options” on page 3-74
• “Pricing Swing Options using the Longstaff-Schwartz Method” on page 3-82
• “Compute Option Prices on a Forward” on page 11-1736
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1805
• “Compute the Option Price on a Future” on page 11-1738
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-

96
• “Pricing Asian Options” on page 3-111

More About
• “Forwards Option” on page 3-51
• “Futures Option” on page 3-52
• “Spread Option” on page 3-48
• “Asian Option” on page 3-43

 See Also
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• “Vanilla Option” on page 3-46
• “Lookback Option” on page 3-49
• “Supported Equity Derivatives” on page 3-24
• “Supported Interest-Rate Instruments” on page 2-2

External Websites
• Energy Trading & Risk Management with MATLAB (47 min 31 sec)
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Pricing European and American Spread Options
This example shows how to price and calculate sensitivities for European and American
spread options using various techniques. First, the price and sensitivities for a European
spread option is calculated using closed form solutions. Then, price and sensitivities for
an American spread option is calculated using finite difference and Monte Carlo
simulations. Finally, further analysis is conducted on spread options with a different range
of inputs.

Spread options are options on the difference of two underlying asset prices. For example,
a call option on the spread between two assets has the following payoff at maturity:

where  is the price of the first underlying asset,  is the price of the second

underlying asset, and  is the strike price. At maturity, if the spread  is greater
than the strike price , the option holder exercises the option and gains the difference
between the spread and the strike price. If the spread is less than 0, the option holder
does not exercise the option, and the payoff is 0. Spread options are frequently traded in
the energy market. Two examples are:

• Crack spreads: Options on the spread between refined petroleum products and crude
oil. The spread represents the refinement margin made by the oil refinery by
"cracking" the crude oil into a refined petroleum product.

• Spark spreads: Options on the spread between electricity and some type of fuel. The
spread represents the margin of the power plant, which takes fuel to run its generator
to produce electricity.

Overview of the Pricing Methods

There are several methods to price spread options, as discussed in [1]. This example uses
the closed form, finite difference, and Monte Carlo simulations to price spread options.
The advantages and disadvantages of each method are discussed below:

• Closed form solutions and approximations of partial differential equations (PDE) are
advantageous because they are very fast, and extend well to computing sensitivities
(Greeks). However, closed form solutions are not always available, for example for
American spread options.
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• The finite difference method is a numerical procedure to solve PDEs by discretizing
the price and time variables into a grid. A detailed analysis of this method can be
found in [2]. It can handle cases where closed form solutions are not available. Also,
finite difference extends well to calculating sensitivities because it outputs a grid of
option prices for a range of underlying prices and times. However, it is slower than the
closed form solutions.

• Monte Carlo simulation uses random sampling to simulate movements of the
underlying asset prices. It handles cases where closed solutions do not exist. However,
it usually takes a long time to run, especially if sensitivities are calculated.

Pricing a European Spread Option

The following example demonstrates the pricing of a crack spread option.

A refiner is concerned about its upcoming maintenance schedule and needs to protect
against decreasing crude oil prices and increasing heating oil prices. During the
maintenance the refiner needs to continue providing customers with heating oil to meet
their demands. The refiner's strategy is to use spread options to manage its hedge.

On January 2013, the refiner buys a 1:1 crack spread option by purchasing heating oil
futures and selling crude oil futures. CLF14 WTI crude oil futures is at $100 per barrel
and HOF14 heating oil futures contract is at $2.6190 per gallon.

clear;

% Price, volatility, and dividend of heating oil
Price1gallon = 2.6190;       % $/gallon 
Price1 = Price1gallon*42;    % $/barrel
Vol1 = 0.10;
Div1 = 0.03;

% Price, volatility, and dividend of WTI crude oil
Price2 = 100;     % $/barrel
Vol2 = 0.15;
Div2 = 0.02;

% Correlation of underlying prices
Corr = 0.3;

% Option type
OptSpec = 'call';

% Strike
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Strike = 5;

% Settlement date
Settle = '01-Jan-2013';

% Maturity
Maturity = '01-Jan-2014'; 

% Risk free rate
RiskFreeRate = 0.05;

The pricing functions take an interest-rate term structure and stock structure as inputs.
Also, you need to specify which outputs are of interest.

% Define RateSpec
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', RiskFreeRate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);

% Specify price and sensitivity outputs
OutSpec = {'Price', 'Delta', 'Gamma'};

The Financial Instruments Toolbox™ contains two types of closed form approximations for
calculating price and sensitivities of European spread options: the Kirk's approximation
(spreadbykirk, spreadsensbykirk) and the Bjerksund and Stensland model
(spreadbybjs, spreadsensbybjs) [3].

The function spreadsensbykirk calculates prices and sensitivities for a European
spread option using the Kirk's approximation.

% Kirk's approximation
[PriceKirk, DeltaKirk, GammaKirk] = ...
    spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

PriceKirk = 8.3636

DeltaKirk = 1×2

 Pricing European and American Spread Options

3-57



    0.6108   -0.5590

GammaKirk = 1×2

    0.0225    0.0249

The function spreadsensbybjs calculates the prices and sensitivities for a European
spread option using the Bjerksund and Stensland model. In [3], Bjerksund and Stensland
explains that the Kirk's approximation tends to underprice the spread option when the
strike is close to zero, and overprice when the strike is further away from zero. In
comparison, the model by Bjerksund and Stensland has higher precision.

% Bjerksund and Stensland model
[PriceBJS, DeltaBJS, GammaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

PriceBJS = 8.3662

DeltaBJS = 1×2

    0.6115   -0.5597

GammaBJS = 1×2

    0.0225    0.0248

A comparison of the calculated prices show that the two closed form models produce
similar results for price and sensitivities. In addition to delta and gamma, the functions
can also calculate theta, vega, lambda, and rho.

displayComparison('Kirk', 'BJS', PriceKirk, PriceBJS, DeltaKirk, DeltaBJS, GammaKirk, GammaBJS)

Comparison of prices:

Kirk:    8.363641
BJS :    8.366158

Comparison of delta:

Kirk:    0.610790     -0.558959
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BJS :    0.611469     -0.559670

Comparison of gamma:

Kirk:    0.022533      0.024850
BJS :    0.022495      0.024819

Pricing an American Spread Option

Although the closed form approximations are fast and well suited for pricing European
spread options, they cannot price American spread options. Using the finite difference
method and the Monte Carlo method, an American spread option can be priced. In this
example, an American spread option is priced with the same attributes as the above crack
spread option.

The finite difference method numerically solves a PDE by discretizing the underlying
price and time variables into a grid. The Financial Instrument Toolbox™ contains the
functions spreadbyfd and spreadsensbyfd, which calculate prices and sensitivities for
European and American spread options using the finite difference method. For the finite
difference method, the composition of the grid has a large impact on the quality of the
output and the execution time. Generally, a finely discretized grid will result in outputs
that are closer to the theoretical value, but it comes at the cost of longer execution times.
The composition of the grid is controlled using optional parameters PriceGridSize,
TimeGridSize, AssetPriceMin and AssetPriceMax.

To indicate pricing an American option, add an optional input of AmericanOpt with a
value of 1 to the argument of the function.

% Finite difference method for American spread option
[PriceFD, DeltaFD, GammaFD, PriceGrid, AssetPrice1, ...
    AssetPrice2] = ...
    spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec, ...    
    'PriceGridSize', [500 500], 'TimeGridSize', 100, ...
    'AssetPriceMin', [0 0], 'AssetPriceMax', [2000 2000], ...
    'AmericanOpt', 1);

% Display price and sensitivities
PriceFD

PriceFD = 8.5463

DeltaFD
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DeltaFD = 1×2

    0.6306   -0.5777

GammaFD

GammaFD = 1×2

    0.0233    0.0259

The function spreadsensbyfd also returns a grid that contains the option prices for a
range of underlying prices and times. The grid of option prices at time zero, which is the
option prices at the settle date, can be plotted for a range of underlying prices.

% Plot option prices
figure;
mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
title('American Spread Option Prices for Range of Underlying Prices');
xlabel('Price of underlying asset 1');
ylabel('Price of underlying asset 2');
zlabel('Price of spread option');
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An American style option can be priced by Monte Carlo methods using the least square
method of Longstaff and Schwartz [4]. The Financial Instruments Toolbox™ contains the
functions spreadbyls and spreadsensbyls, that calculate prices and sensitivities of
European and American options using simulations. The Monte Carlo simulation method in
spreadsensbyls generates multiple paths of simulations according to a geometric
Brownian motion (GBM) for the two underlying asset prices. Similar to the finite
difference method where the granularity of the grid determined the quality of the output
and the execution time, the quality of output and execution time of the Monte Carlo
simulation depends on the number of paths (NumTrials) and the number of time periods
per path (NumPeriods). Also, the results obtained by Monte Carlo simulations are not
deterministic. Each run will have different results depending on the simulation outcomes.
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% To indicate that we are pricing an American option using the Longstaff
% and Schwartz method, add an optional input of |AmericanOpt| with a value
% of |1| to the argument of the function.

% Monte Carlo method for American spread option
[PriceMC, DeltaMC, GammaMC] = ...
    spreadsensbyls(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec, ...
    'NumTrials', 1000, 'Antithetic', true, 'AmericanOpt', 1)

PriceMC = 8.4999

DeltaMC = 1×2

    0.6325   -0.5931

GammaMC = 1×2

   -0.0873    0.0391

The results of the two models are compared. The prices and sensitivities calculated by the
Longstaff and Schwartz method will vary at each run, depending on the outcome of the
simulations. It is important to note that the quality of the results from the finite difference
method and the Monte Carlo simulation depend on the optional input parameters. For
example, increasing the number of paths (NumTrials) for the spreadsensbyls function
will result in more precise results at the cost of longer execution times.

displayComparison('Finite Difference', 'Monte Carlo', PriceFD, PriceMC, DeltaFD, DeltaMC, GammaFD, GammaMC)

Comparison of prices:

Finite Difference:    8.546285
Monte Carlo      :    8.499894

Comparison of delta:

Finite Difference:    0.630606     -0.577686
Monte Carlo      :    0.632549     -0.593106

Comparison of gamma:

Finite Difference:    0.023273      0.025852
Monte Carlo      :   -0.087340      0.039120
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Comparing Results for a Range of Strike Prices

As discussed earlier, the Kirk's approximation tends to overprice spread options when the
strike is further away from zero. To confirm this, a spread option is priced with the same
attributes as before, but for a range of strike prices.

% Specify outputs
OutSpec = {'Price', 'Delta'};

% Range of strike prices
Strike = [-25; -15; -5; 0; 5; 15; 25];

The results from the Kirk's approximation and the Bjerksund and Stensland model are
compared against the numerical approximation from the finite difference method. Since
spreadsensbyfd can only price one option at a time, it is called in a loop for each strike
value. The Monte Carlo simulation (spreadsensbyls) with a large number of trial paths
can also be used as a benchmark, but the finite difference is used for this example.

% Kirk's approximation
[PriceKirk, DeltaKirk] = ...
    spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);

% Bjerksund and Stensland model
[PriceBJS, DeltaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);

% Finite difference
PriceFD = zeros(numel(Strike), 1);
DeltaFD = zeros(numel(Strike), 2);
for i = 1:numel(Strike)
    [PriceFD(i), DeltaFD(i,:)] = ...
    spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike(i), Corr, 'OutSpec', OutSpec, ...    
    'PriceGridSize', [500 500], 'TimeGridSize', 100, ...
    'AssetPriceMin', [0 0], 'AssetPriceMax', [2000 2000]);
end

displayComparisonPrices(PriceKirk, PriceBJS, PriceFD, Strike)

Prices for range of strikes:

Kirk         BJS          FD    
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32.707787    32.672353    32.676040
23.605307    23.577099    23.580307
15.236908    15.228510    15.230919
11.560332    11.560332    11.562023
8.363641    8.366158    8.367212
3.689909    3.678862    3.680493
1.243753    1.219079    1.221866

The difference in prices between the closed form and finite difference method is plotted
below. It is clear that as the strike moves further away from 0, the difference between the
Kirk's approximation and finite difference (red line) increases, while the difference
between the Bjerksund and Stensland model and finite difference (blue line) stays at the
same level. As stated in [3], the Kirk's approximation is overpricing the spread option
when the strike is far away from 0.

% Plot of difference in price against the benchmark
figure;
plot(PriceKirk-PriceFD, 'Color', 'red');
hold on;
plot(PriceBJS-PriceFD, 'Color', 'blue');
hold off;
title('Difference in Price Against Finite Difference');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Price');
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Next, the difference in delta between the closed form models and finite difference is
plotted. The top plot shows the difference in delta for the first asset, and the bottom plot
shows the difference in delta for the second asset. As seen from the small increments in
the y-axis of the order 10e-3, it can be seen that all three models (Kirk, BJS, finite
difference) produce similar values for delta.

% Plot of difference in delta of first asset against the benchmark
figure;
subplot(2, 1, 1);
plot(DeltaKirk(:,1)-DeltaFD(:,1), 'Color', 'red');
hold on;
plot(DeltaBJS(:,1)-DeltaFD(:,1), 'Color', 'blue');
hold off;
title('Difference in Delta (Asset 1) Against FD');
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legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Delta');

% Plot of difference in delta of second asset against the benchmark
subplot(2, 1, 2);
plot(DeltaKirk(:,2)-DeltaFD(:,2), 'Color', 'red');
hold on;
plot(DeltaBJS(:,2)-DeltaFD(:,2), 'Color', 'blue');
hold off;
title('Difference in Delta (Asset 2) Against FD');
legend('Kirk', 'BJS', 'Location', 'EastOutside');
xlabel('Strike');
ax = gca;
ax.XTickLabel = Strike;
ylabel('Difference in Delta');
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Analyzing Prices and Vega at Different Levels of Volatility

To further show the type of analysis that can be conducted using these models, the above
spread option is priced at different levels of volatility for the first asset. The price and
vega are compared at three levels of volatility for the first asset: 0.1, 0.3, and 0.5. The
Bjerksund and Stensland model is used for this analysis.

% Strike
Strike = 5;

% Specify output
OutSpec = {'Price', 'Vega'};

% Different levels of volatility for asset 1
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Vol1 = [0.1, 0.3, 0.5];

StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);

% Bjerksund and Stensland model
[PriceBJS, VegaBJS] = ...
    spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
    Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);

displaySummary(Vol1, PriceBJS, VegaBJS)

Prices for different vol levels in asset 1:

8.366158
14.209112
21.795746

Asset 1 vega for different vol levels in asset 1:

15.534849
36.212192
38.794348

Asset 2 vega for different vol levels in asset 1:

29.437036
7.133657
-0.557852

The change in the price and vega with respect to the volatility of the first asset is plotted
below. You can observe that as the volatility of the first asset increases, the price of the
spread option also increases. Also, the changes in vega indicate that the price of the
spread option becomes more sensitive to the volatility of the first asset and less sensitive
to the volatility of the second asset.

figure;

% Plot price for BJS model
subplot(2, 1, 1);
plot(PriceBJS, 'Color', 'red');
title('Price (BJS)');
legend('Price', 'Location', 'EastOutside');
xlabel('Vol of Asset 1');
ax = gca;
ax.XTick = 1:3;
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ax.XTickLabel = Vol1;
ylabel('Price');

% Plot of vega for BJS model
subplot(2, 1, 2);
plot(VegaBJS(:,1), 'Color', 'red');
hold on;
plot(VegaBJS(:,2), 'Color', 'blue');
hold off;
title('Vega (BJS)');
legend('Asset 1', 'Asset 2', 'Location', 'EastOutside');
xlabel('Vol of Asset 1');
ax = gca;
ax.XTick = 1:3;
ax.XTickLabel = Vol1;
ax.YLim = [-1 40];
ylabel('Vega');
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Summary

In this example, European and American spread options are priced and analyzed using
various techniques. The Financial Instruments Toolbox™ provides functions for two types
of closed form solutions (Kirk, BJS), the finite difference method, and the Monte Carlo
simulation method. The closed form solutions are well suited for pricing and sensitivity
calculation of European spread options because they are fast. However, they cannot price
American spread options. The finite difference method and Monte Carlo method can price
both European and American options. However, they are not as fast in pricing European
spread options as compared to closed form solutions.
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Utility Functions

function displayComparison(model1, model2, price1, price2, delta1, delta2, gamma1, gamma2)
% Pad the model name with additional spaces
additionalSpaces = numel(model1) - numel(model2);
if additionalSpaces > 0
    model2 = [model2 repmat(' ', 1, additionalSpaces)];
else
    model1 = [model1 repmat(' ', 1, abs(additionalSpaces))];
end
    
% Comparison of calculated prices
fprintf('Comparison of prices:\n');
fprintf('\n');
fprintf('%s:   % f\n', model1, price1);
fprintf('%s:   % f\n', model2, price2);
fprintf('\n');

% Comparison of Delta
fprintf('Comparison of delta:\n');
fprintf('\n');
fprintf('%s:   % f     % f\n', model1, delta1(1), delta1(2));
fprintf('%s:   % f     % f\n', model2, delta2(1), delta2(2));
fprintf('\n');

% Comparison of Gamma
fprintf('Comparison of gamma:\n');
fprintf('\n');
fprintf('%s:   % f     % f\n', model1, gamma1(1), gamma1(2));
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fprintf('%s:   % f     % f\n', model2, gamma2(1), gamma2(2));
fprintf('\n');
end

function displayComparisonPrices(PriceKirk, PriceBJS, PriceFD, Strike)
% Comparison of calculated prices
fprintf('Prices for range of strikes:\n');
fprintf('\n')
fprintf('Kirk     \tBJS      \tFD    \n');
for i = 1:numel(Strike)
    fprintf('%f\t%f\t%f\n', PriceKirk(i), PriceBJS(i), PriceFD(i));
end
end

function displaySummary(Vol1, PriceBJS, VegaBJS)
% Display price
fprintf('Prices for different vol levels in asset 1:\n');
fprintf('\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', PriceBJS(i));
end
fprintf('\n');

% Display vega for first asset
fprintf('Asset 1 vega for different vol levels in asset 1:\n');
fprintf('\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', VegaBJS(i,1));
end
fprintf('\n');

% Display vega for second asset
fprintf('Asset 2 vega for different vol levels in asset 1:\n');
fprintf('\n');
for i = 1:numel(Vol1)
    fprintf('%f\n', VegaBJS(i,2));
end
end

See Also
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg |
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lookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls |
optstocksensbyblk | optstocksensbyls | spreadbybjs | spreadbyfd |
spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd |
spreadsensbykirk | spreadsensbyls

Related Examples
• “Hedging Strategies Using Spread Options” on page 3-74
• “Pricing Swing Options using the Longstaff-Schwartz Method” on page 3-82
• “Compute Option Prices on a Forward” on page 11-1736
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1805
• “Compute the Option Price on a Future” on page 11-1738
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-

96
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• “Spread Option” on page 3-48
• “Asian Option” on page 3-43
• “Vanilla Option” on page 3-46
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Hedging Strategies Using Spread Options
This example shows different hedging strategies to minimize exposure in the Energy
market using Crack Spread Options.

Understanding Crack Spread Options

In the petroleum industry, refiners are concerned about the difference between their
input costs (crude oil) and output prices (refined products - gasoline, heating oil, diesel
fuel, and so on). The differential between these two underlying commodities is referred to
as a Crack Spread. It represents the profit margin between crude oil and the refined
products.

A Spread option is an option on the spread where the holder has the right, but not the
obligation, to enter into a spot or forward spread contract. Crack Spread Options are
often used to protect against declines in the crack spread or to monetize volatility or price
expectations on the spread.

Example 1: Protecting Margins using a 1:1 Crack Spread Option

A marketer is interested in protecting his gasoline margin since current prices are strong.
A crack spread option strategy is used to maintain profits for the following season. In
March the June WTI crude oil futures are at $91.10 per barrel and RBOB gasoline futures
contract are at $2.72 per gallon. The marketer's strategy is a long crack call involving
purchasing RBOB gasoline futures and selling crude oil futures.

OldFormat = get(0, 'format');  
format bank

% Price and volatility of RBOB gasoline
Price1gallon = 2.72;          % $/gallon
Price1 = Price1gallon * 42;   % $/barrel
Vol1 = 0.39;

% Price and volatility of WTI crude oil
Price2 = 91.10;         % $/barrel
Vol2 = 0.34;

% Assume the following data
% Spread Option
Strike = 20; 
OptSpec = 'call'; 
Settle =   '01-March-2013';
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Maturity = '01-June-2013';
Corr = 0.45;     % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec
Rate = 0.035;  
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1);
StockSpec2 = stockspec(Vol2, Price2);

Price the Crack Spread Option

Use the function spreadbybjs in the Financial Instruments Toolbox™ to price the
spread option using the Bjerksund and Stensland model.

Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
                       Maturity, OptSpec, Strike, Corr)

Price = 
          9.91

The 1:1 implied current crack spread between these two underlyings is $23.14 per barrel.

CrackSpread = Price1 - Price2    % $/barrel

CrackSpread = 
         23.14

Suppose that by expiration day, June crude oil prices decrease to $90.34 per barrel and
gasoline prices rise to $2.89 per gallon. The price changes cause the marketer's profit
margin (the new implied crack spread) to increase from $23.14/barrel to $31.04/barrel:

NewCrackSpread = (2.89 * 42) - 90.34
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NewCrackSpread = 
         31.04

Since the marketer purchased a long crack call on the $20 call, the option is now in the
money by $11.04.

(NewCrackSpread - Strike)

ans = 
         11.04

The marketer paid $9.91 from the long crack call, this protects the margin by $1.13.

(NewCrackSpread - Strike - Price)

ans = 
          1.13

This strategy provides the marketer protection during spread increase scenarios.

Example 2: Creating a Floor with Crack Spread Options

A refiner is interested in covering its fixed and operating costs, but still profit from a
favorable move in the market. In March the May WTI crude oil futures are at $99.43 per
barrel and RBOB gasoline futures contract are at $3.04 per gallon. The refiner believes
that the spread between those commodities of $28.25 per barrel is favorable. Of this, $11
corresponds to operating and fixed costs, and $17.25 is the net refining margin. The
refiner's strategy is to sell the crack spread by selling 10 RBOB gasoline futures and
buying 10 crude oil futures.

% Price and volatility of RBOB gasoline 
Price1gallon = 3.04;          % $/gallon
Price1 = Price1gallon * 42;   % $/barrel
Vol1 = 0.35;
Div1 = 0.0783;

% Price and volatility of WTI crude oil
Price2 = 99.43;         % $/barrel
Vol2 = 0.38;
Div2 = 0.0571;

The refiner purchases 10 May RBOB gasoline crack spread puts with a strike price of $25.

3 Equity Derivatives

3-76



% Spread Option
Strike = 25; 
OptSpec = 'put'; 
Settle =   '01-March-2013';
Maturity = '01-May-2013';
Corr = 0.30;      % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec
Rate = 0.035;  
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);

Price the Crack Spread Option

Use the function spreadbyfd in the Financial Instruments Toolbox™ to price the
American spread option using the finite difference method.

                   
Price = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
                   Maturity, OptSpec, Strike, Corr, 'AmericanOpt', 1)

Price = 
          6.61

By expiration, if the option is exercised, the refiner would have hedged the cost of
purchasing 10000 barrels of crude oil with the revenue of selling 10000 barrels of RBOB
gasoline. The futures contract represents 1000 barrels of crude oil and 42000 gallons of
gasoline.

CostOfHedge = Price * 10000   % Option premium

CostOfHedge = 
      66122.24
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The hedge cost is $66386 to implement and guarantee that neither a fall in RBOB
gasoline prices or an increase in WTI crude oil prices will diminish the refining margin
below $25.

ProfitMargin = 14 * 10000   %$     

ProfitMargin = 
     140000.00

CrackingMargin = ProfitMargin - CostOfHedge 

CrackingMargin = 
      73877.76

This strategy allows a cracking margin of $73613.

Another strategy for the refiner could be to buy the $22 puts at a price of $5.38.

StrikeNew = 22;

PriceNew = spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
                       Maturity, OptSpec, StrikeNew, Corr, 'AmericanOpt', 1)

PriceNew = 
          5.36

This time the hedge would have cost $53823, but it also guarantees a $11 per barrel or a
$56176 cracking margin.

NewCostOfHedge = PriceNew * 10000   % Option premium

NewCostOfHedge = 
      53570.97

NewProfitMargin = 11 * 10000       

NewProfitMargin = 
     110000.00
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CrackingMargin = NewProfitMargin - NewCostOfHedge

CrackingMargin = 
      56429.03

Example 3: Using Collars to Reduce the Cost of Hedging

A refiner is concerned about its cost of hedging and decides to use a collar strategy. In
April the crack spread is trading at $4.23 per barrel. The refiner is not convinced to lock
in this margin, but also wants to protect against price changes causing the refinery
margin to decrease less than $4 per barrel.

% Price and volatility of heating oil
Price1gallon = 2.52;          % $/gallon
Price1 = Price1gallon * 42;   % $/barrel
Vol1 = 0.38;
Div1 = 0.0762;

% Price and volatility of WTI crude oil
Price2 = 101.61;         % $/barrel
Vol2 = 0.34;
Div2 = 0.1169;

To accomplish the collar strategy the refiner sells a call spread option with a strike of
$4.50 and uses the premium income to offset the cost of purchasing a put spread option
with a strike of $4. This allows the refiner to benefit if market prices move up, and
protects it if market prices move down.

% Assume the following data 
Strike = [4.50;4];
OptSpec = {'call';'put'}; 
Settle =   '01-April-2013';
Maturity = '01-June-2013';
Corr = 0.35;       % Correlation of underlying commodities

Define the RateSpec and StockSpec.

% Define RateSpec
Rate = 0.035;  
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rates', Rate, 'Compounding', ...
    Compounding, 'Basis', Basis);
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% Define StockSpec for the two assets
StockSpec1 = stockspec(Vol1, Price1, 'Continuous', Div1);
StockSpec2 = stockspec(Vol2, Price2, 'Continuous', Div2);

Price the Crack Spread Options

Use the function spreadbybjs in the Financial Instruments Toolbox™ to price the spread
options using the Bjerksund and Stensland model.

Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
                       Maturity, OptSpec, Strike, Corr)

Price = 2×1

          7.06
          6.43

The collar strategy allows the refiner to reduce the cost of the hedge to $0.63.

% CostOfHedge = Premium of Call - Premium of Put   
CostOfHedge = Price(1) - Price(2)

CostOfHedge = 
          0.63

The refiner is protected if the crack spread narrows to less than $4. If the crack spread
widens to more than $4.50, the refiner will not benefit over this amount if he has hedged
100% of all its market exposure.

set(0, 'format', OldFormat);

See Also
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg |
lookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls |
optstocksensbyblk | optstocksensbyls | spreadbybjs | spreadbyfd |
spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd |
spreadsensbykirk | spreadsensbyls
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Related Examples
• “Pricing European and American Spread Options” on page 3-55
• “Pricing Swing Options using the Longstaff-Schwartz Method” on page 3-82
• “Compute Option Prices on a Forward” on page 11-1736
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1805
• “Compute the Option Price on a Future” on page 11-1738
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-
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• “Pricing Asian Options” on page 3-111

More About
• “Forwards Option” on page 3-51
• “Futures Option” on page 3-52
• “Spread Option” on page 3-48
• “Asian Option” on page 3-43
• “Vanilla Option” on page 3-46
• “Lookback Option” on page 3-49
• “Supported Equity Derivatives” on page 3-24
• “Supported Interest-Rate Instruments” on page 2-2

External Websites
• Energy Trading & Risk Management with MATLAB (47 min 31 sec)

 See Also
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Pricing Swing Options using the Longstaff-Schwartz
Method

This example shows how to price a swing option using a Monte Carlo simulation and the
Longstaff-Schwartz method. A risk-neutral simulation of the underlying natural gas price
is conducted using a mean-reverting model. The simulation results are used to price a
swing option based on the Longstaff-Schwartz method [6]. This approach uses a
regression technique to approximate the continuation value of the option. A comparison is
made between a polynomial and spline basis to fit the regression. Finally, the resulting
prices are analyzed against lower and upper price boundaries derived from standard
European and American options.

Overview of Swing Options

Swing options are popular financial instruments in the energy market, which provide
flexibility in the volume of the delivered asset. In order for energy consumers to protect
themselves against fluctuations in energy prices, they want to lock in a price by
purchasing a forward contract, called the baseload forward contract. However,
consumers do not know exactly how much energy will be used in the future, and energy
commodities such as electricity and gas cannot easily be stored. Therefore, the consumer
wants the flexibility to change the amount of energy that is delivered at each delivery
date. Swing options provide this flexibility. Thus, the full contract is composed of two
parts: the baseload forward contract, and the swing option component.

Swing options are generally over-the-counter (OTC) contracts that can be highly
customized. Therefore, there are many different types of constraints and penalties (see
[5] for more details). In this example, a swing option is priced where the only constraint is
the daily volume, which is known as the Daily Contract Quantity (DCQ). When a swing
right is exercised, the volume cannot go below the minimum DCQ (minDCQ), or go above
the maximum DCQ (maxDCQ).

There are several methods to price swing options, such as finite differences, simulation,
and dynamic programming based on trees [5]. This example uses the simulation-based
approach with the Longstaff-Schwartz method. The benefit of the simulation-based
approach is that the dynamics used to simulate the underlying asset price are separated
from the pricing algorithm. In the finite difference and tree based methods, the pricing
algorithm must be changed in order to consider pricing with a different underlying price
dynamic.
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Risk-Neutral Simulation of Natural Gas Price

In this example, natural gas is used as the underlying asset with the following mean-
reverting dynamic [8]:

where  is a standard Brownian motion. Applying Ito's Lemma to the logarithm of the
price leads to an Orstein-Uhlenbeck process:

where , , and  is defined as:

 is the mean-reversion level that determines the value at which the simulated values will
revert to in the long run.  is the mean-reversion speed that determines how fast this
reversion occurs.  is the volatility of . We first proceed by simulating the logarithm of
the price. Afterwards, the exponential of the simulated values are taken to obtain the
prices.

The length of the simulation is for a one year period, with the initial price of 3.9 dollars
per MMBtu. The Monte Carlo simulation is conducted for 1,000 trials, with daily periods.
In practice, these parameters are calibrated against market data. In this example,

, , and . The HWV object from the Financial Toolbox™ is used to
simulate the mean-reverting dynamics of the natural gas price.

% Settlement date
Settle = '01-Jun-2014';

% Maturity Date
Maturity = '01-Jun-2015';

% Actual/Actual basis
Basis = 0;
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% Initial log(price in $/MMBtu)
X0 = log(3.9);

% Volatility of log(price)
Sigma = 0.59;

% Number of trials in the Monte Carlo simulation
NumTrials =1000;

% Number of periods (daily)
NumPeriods = daysdif(Settle, Maturity, Basis);

% Daily time step
dt = 1/NumPeriods;

% Mean reversion speed of log(price)
Kappa = 1.2;

% Mean reversion level of log(price)
Theta = 1.7;

% Create HWV object
hwvobj = hwv(Kappa, Theta, Sigma, 'StartState', X0);

The simulation is run and plotted below.

% Set random number generator seed
savedState = rng(0, 'twister');

% Simulate gas prices
[Paths, Times] = hwvobj.simBySolution(NumPeriods, 'NTRIALS', NumTrials, ...
    'DeltaTime', dt);
Paths = squeeze(exp(Paths));

% Restore random number generator state
rng(savedState);

% Plot paths
figure;
plot(Times, Paths);
title('Natural Gas Risk-Neutral Price Simulation');
xlabel('Time');
ylabel('Price');
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In this example, natural gas is used as the underlying asset with a mean-reverting
dynamic. However, the Longstaff-Schwartz algorithm can be used for other underlying
assets, such as electricity, with any underlying price dynamic.

Pricing the Swing Option

We consider a swing option with five swing rights at the strike of $4.69/MMBtu, which
can be exercised daily between the day after the settlement date and the maturity date.
The Daily Contract Quantity (DCQ) is 10,000 MMBtu, which is the average amount of
natural gas that the consumer expects to purchase on a given day. The consumer has the
flexibility to reduce the purchase amount (downswing) in one day to the minimum DCQ of
2,500 MMBtu, or increase the purchase (upswing) to 15,000 MMBtu. The continuously
compounded annual risk-free rate is 1%.
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RateSpec is used to represent the interest-rate term structure. For the sake of simplicity,
we consider a flat interest-rate term structure in this example. The values of RateSpec
can be modified to accommodate any interest-rate curve. The function hswingbyls in
this example assumes a daily exercise if the ExerciseDates input is empty.

% Define RateSpec
rfrate = 0.01;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
                     'EndDates', Maturity, 'Rates', rfrate, ...
                     'Compounding', Compounding, 'Basis', Basis);

% Daily exercise
% hswingbyls assumes daily exercise for empty ExerciseDates
ExerciseDates = [];

% Number of swings
NumSwings = 5;

% Daily Contract Quantity in MMBtu
DCQ = 10000;

% Minimum DCQ constraint in MMBtu
minDCQ = 2500;

% Maximum DCQ constraint in MMBtu
maxDCQ = 15000;

% Strike
Strike = 4.69;

The Longstaff-Schwartz method is a backward iteration algorithm, which steps backward
in time from the maturity date. At each exercise date, the algorithm approximates the
continuation value, which is the value of the option if it is not exercised. This is done by
fitting a regression against the values of the simulated prices and the discounted future
value of the option at the next exercise date. The future value of the option is known as
the algorithm moves backward in time. The continuation value is compared to the sum of
the payoff from immediate exercise (a downswing or upswing) and the continuation value
of a swing option with one less swing right. If this sum is smaller, the option holder's
optimal strategy is to not exercise on that date. The function hswingbyls in this example
uses this method to determine the optimal exercise strategy and the price for swing
options [1,2,7].
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As discussed earlier, the only constraint considered in this example is the minimum and
maximum DCQ. In this case, the optimal early exercise strategy is of a "bang-bang" type.
This means that when it is optimal to upswing or downswing at a certain exercise date,
the option holder should always exercise at the maximum or minimum DCQ to maximize
profit. The "bang-bang" exercise would not be the optimal strategy if, for example, there
is a terminal penalty based on volume. The pricing algorithm would then need to
additionally keep track of all possible volume levels, which significantly adds to the
runtime performance cost.

First, the swing option is priced using a 3rd order polynomial to fit the regression of the
Longstaff-Schwartz method. The function hswingbyls also generates a plot of the
regression between the underlying price and the continuation value at the exercise date
before maturity.

% Price swing option using 3rd order polynomial to fit Longstaff-Schwartz
% regression
tic;
useSpline = false;
SwingPrice = hswingbyls(Paths, Times, RateSpec, Settle, Maturity, ...
    Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline, ...
    [], true)
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SwingPrice = 5.6943e+04

lsPolyTime = toc;

The above plot of the regression fit shows that the 3rd order polynomial does not fit the
continuation value perfectly, especially near the hinge and at the extreme points. We now
use the csaps function to fit the regression using a cubic smoothing spline with a
smoothing parameter of 0.7. The Curve Fitting Toolbox™ is required to run the remainder
of the example.

% Price swing option using smoothed splines to fit Longstaff-Schwartz
% regression
tic;
useSpline = true;
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smoothingParam = 0.7;
SwingPriceSpline = hswingbyls(Paths, Times, RateSpec, Settle, Maturity, ...
    Strike, ExerciseDates, NumSwings, DCQ, minDCQ, maxDCQ, useSpline, ...
    smoothingParam, true)

SwingPriceSpline = 6.0729e+04

lsSplineTime = toc;

The plot of the regression shows that the cubic smoothing spline has a better fit against
the data, thus obtaining a more accurate value for the continuation values. However, the
comparison below shows that using a cubic smoothing spline takes longer than a 3rd
order polynomial.
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% Print comparison of running times
displayRunningTimes(lsPolyTime, lsSplineTime)

Comparison of running times:

3rd order polynomial: 4.25 sec
Spline              : 12.41 sec

Also, it is important to note that the price represents solely the optionality component.
Hence, the price of the baseload forward contract is not included in the above calculated
price. Because we used a fixed strike price, the baseload contract has a non-zero value,
which can be calculated by:

where  are the exercise dates (see [3] for more details). The full price of the
contract, including the baseload and the swing option, is calculated below using the swing
option price from the smoothed cubic spline.

% Obtain discount factors
RS2 = intenvset(RateSpec, 'StartTimes', 0, 'EndTimes', Times(2:end));
D = intenvget(RS2,'Disc');

% Calculate baseload price
BaseLoadPrice = DCQ.*mean(Paths(2:end,:)-Strike,2)'*D;

% Calculate full contract price, based on results from cubic spline LS
FullContractPrice = BaseLoadPrice + SwingPriceSpline

FullContractPrice = 1.2479e+05

Price Bounds

A lower bound for the swing option is a strip of European options, and the upper bound is
a strip of American options [4]. Compared to European options, swing options have an
early exercise premium at each exercise date, thus the price should be higher. The price
is lower than the American option strips, because only a single swing right can be
exercised at each exercise date. More than one strip can be exercised in a single day
using American options.
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The prices for the strips of the lower and upper bounds are calculated below to check that
the swing option prices are within these bounds. The European strip prices are calculated
against the last five exercise dates.

% Obtain discount factor for the last NumSwings exercise dates
D = D(end-NumSwings+1:end);

% European lower bound
idx = size(Paths, 1):-1:(size(Paths, 1) - NumSwings + 1);
putEuro = D'*mean(max(Strike - Paths(idx,:), 0),2);
callEuro = D'*mean(max(Paths(idx,:) - Strike, 0),2);
lowerBound = ((DCQ-minDCQ).*putEuro+(maxDCQ-DCQ).*callEuro);

% American upper bound
[putAmer, callAmer] = hamericanPrice(Paths, Times, RateSpec, Strike);
upperBound = NumSwings.*((DCQ-minDCQ).*putAmer+(maxDCQ-DCQ).*callAmer);

% Print price and lower/upper bounds
displaySummary(SwingPriceSpline, lowerBound, upperBound);

Comparison to lower and upper bounds:

Lower bound (European) : 44412.14
Swing Option Price     : 60729.00
Upper bound (American) : 68181.42

The prices calculated using the Longstaff-Schwartz algorithm are within the lower and
upper bounds. The plot below shows a comparison between the swing option and the
upper and lower bounds as the number of swings increases. When the number of swings
is 1, the swing option is equivalent to an American option. In the case of daily exercise
opportunity (NumSwings = 365), the swing option is equivalent to the strip of European
options with daily maturity.
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Conclusion

The example shows the use of the Longstaff-Schwartz method to price a swing option
where the underlying asset follows a mean-reverting dynamic. A 3rd order polynomial and
a smoothed cubic spline are used to fit the regression in the Longstaff-Schwartz algorithm
to approximate the continuation value. It was shown that the smoothed cubic spline fits
the data better at the cost of slower performance. Finally, the resulting swing option
prices were checked against the lower bound of a strip of European options and an upper
bound of a strip of American options.
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Utility Functions

function displaySummary(SwingPriceSpline, lowerBound, upperBound)
fprintf('Comparison to lower and upper bounds:\n');
fprintf('\n')
fprintf('Lower bound (European) : %.2f\n', lowerBound);
fprintf('Swing Option Price     : %.2f\n', SwingPriceSpline);
fprintf('Upper bound (American) : %.2f\n\n', upperBound); 
end

function displayRunningTimes(lsPolyTime, lsSplineTime)
fprintf('Comparison of running times:\n');
fprintf('\n')
fprintf('3rd order polynomial: %.2f sec\n', lsPolyTime);
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fprintf('Spline              : %.2f sec\n\n', lsSplineTime);
end

See Also
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg |
lookbacksensbyls | optpricebysim | optstockbyblk | optstockbyls |
optstocksensbyblk | optstocksensbyls | spreadbybjs | spreadbyfd |
spreadbykirk | spreadbyls | spreadsensbybjs | spreadsensbyfd |
spreadsensbykirk | spreadsensbyls

Related Examples
• “Pricing European and American Spread Options” on page 3-55
• “Hedging Strategies Using Spread Options” on page 3-74
• “Compute Option Prices on a Forward” on page 11-1736
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1805
• “Compute the Option Price on a Future” on page 11-1738
• “Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion” on page 3-
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• “Pricing Asian Options” on page 3-111

More About
• “Forwards Option” on page 3-51
• “Futures Option” on page 3-52
• “Spread Option” on page 3-48
• “Asian Option” on page 3-43
• “Vanilla Option” on page 3-46
• “Lookback Option” on page 3-49
• “Supported Equity Derivatives” on page 3-24
• “Supported Interest-Rate Instruments” on page 2-2
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External Websites
• Energy Trading & Risk Management with MATLAB (47 min 31 sec)

 See Also
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Simulating Electricity Prices with Mean-Reversion and
Jump-Diffusion

This example shows how to simulate electricity prices using a mean-reverting model with
seasonality and a jump component. The model is calibrated under the real-world
probability using historical electricity prices. The market price of risk is obtained from
futures prices. A risk-neutral Monte Carlo simulation is conducted using the calibrated
model and the market price of risk. The simulation results are used to price a Bermudan
option with electricity prices as the underlying.

Overview of the Model

Electricity prices exhibit jumps in prices at periods of high demand when additional, less
efficient electricity generation methods, are brought on-line to provide a sufficient supply
of electricity. In addition, they have a prominent seasonal component, along with
reversion to mean levels. Therefore, these characteristics should be incorporated into a
model of electricity prices [2].

In this example, electricity price is modeled as:

where  is the spot price of electricity. The logarithm of electricity price is modeled with

two components:  and . The component  is the deterministic seasonal part of

the model, and  is the stochastic part of the model. Trigonometric functions are used to

model  as follows [3]:

where  are constant parameters, and  is the annualized time factors. The

stochastic component  is modeled as an Ornstein-Uhlenbeck process (mean-reverting)
with jumps:
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The parameters  and  are the mean-reversion parameters. Parameter  is the

volatility, and  is a standard Brownian motion. The jump size is , with a

normally distributed mean , and a standard deviation . The Poisson process 
has a jump intensity of .

Electricity Prices

Sample electricity prices from January 1, 2010 to November 11, 2013 are loaded and
plotted below. Prices contain the electricity prices, and PriceDates contain the dates
associated with the prices. The logarithm of the prices and annual time factors are
calculated.

% Load electricity prices and futures prices
load('electricity_prices.mat');

% Plot electricity prices
figure;
plot(PriceDates, Prices);
datetick();
title('Electricity Prices');
xlabel('Date');
ylabel('Price ($)');
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% Obtain log of prices
logPrices = log(Prices);

% Obtain annual time factors from dates
PriceTimes = yearfrac(PriceDates(1), PriceDates);

Calibration

First, the deterministic seasonality part is calibrated using the least squares method.

Since the seasonality function is linear with respect to the parameters , the backslash
operator (mldivide) is used. After the calibration, the seasonality is removed from the
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logarithm of price. The logarithm of price and seasonality trends are plotted below. Also,
the de-seasonalized logarithm of price is plotted.

% Calibrate parameters for the seasonality model
seasonMatrix = @(t) [sin(2.*pi.*t) cos(2.*pi.*t) sin(4.*pi.*t) ...
    cos(4.*pi.*t) t ones(size(t, 1), 1)];
C = seasonMatrix(PriceTimes);
seasonParam = C\logPrices;

% Plot log price and seasonality line
figure;
subplot(2, 1, 1);
plot(PriceDates, logPrices);
datetick();
title('log(price) and Seasonality');
xlabel('Date');
ylabel('log(Prices)');
hold on;
plot(PriceDates, C*seasonParam, 'r');
hold off;
legend('log(Price)', 'seasonality');

% Plot de-seasonalized log price
X = logPrices-C*seasonParam;
subplot(2, 1, 2);
plot(PriceDates, X);
datetick();
title('log(price) with Seasonality Removed');
xlabel('Date');
ylabel('log(Prices)');
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The second stage is to calibrate the stochastic part. The model for  needs to be
discretized to conduct the calibration. To discretize, assume that there is a Bernoulli
process for the jump events. That is, there is at most one jump per day since this example
is calibrating against daily electricity prices. The discretized equation is:

with probability  and,
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with probability , where  and  are independent standard normal random

variables, and . The density function of  given  is [1,4]:

The parameters  can be calibrated by minimizing the negative log
likelihood function:

The first inequality constraint, , is equivalent to . The volatilities  and 
must be positive. In the last inequality,  is between 0 and 1, because it represents the
probability of a jump occurring in  time. In this example, assume that  is one day.
Therefore, there is at most 365 jumps in one year. The mle function from the Statistics
and Machine Learning Toolbox™ is well suited to solve the above maximum likelihood
problem.

% Prices at t, X(t)
Pt = X(2:end);

% Prices at t-1, X(t-1)
Pt_1 = X(1:end-1);

% Discretization for daily prices
dt = 1/365;
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% PDF for discretized model
mrjpdf = @(Pt, a, phi, mu_J, sigmaSq, sigmaSq_J, lambda) ...
    lambda.*exp((-(Pt-a-phi.*Pt_1-mu_J).^2)./ ...
    (2.*(sigmaSq+sigmaSq_J))).* (1/sqrt(2.*pi.*(sigmaSq+sigmaSq_J))) + ...
    (1-lambda).*exp((-(Pt-a-phi.*Pt_1).^2)/(2.*sigmaSq)).* ...
    (1/sqrt(2.*pi.*sigmaSq));

% Constraints: 
% phi < 1 (k > 0)
% sigmaSq > 0
% sigmaSq_J > 0
% 0 <= lambda <= 1
lb = [-Inf -Inf -Inf 0 0 0];
ub = [Inf 1 Inf Inf Inf 1];

% Initial values
x0 = [0 0 0 var(X) var(X) 0.5];

% Solve maximum likelihood
params = mle(Pt,'pdf',mrjpdf,'start',x0,'lowerbound',lb,'upperbound',ub,...
    'optimfun','fmincon');

% Obtain calibrated parameters
alpha = params(1)/dt

alpha = -20.1060

kappa = (1-params(2))/dt

kappa = 188.2535

mu_J = params(3)

mu_J = 0.2044

sigma = sqrt(params(4)/dt);
sigma_J = sqrt(params(5))

sigma_J = 0.2659

lambda = params(6)/dt

lambda = 98.3357
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Monte Carlo Simulation

The calibrated parameters and the discretized model allow us to simulate electricity
prices under the real-world probability. The simulation is conducted for approximately 2
years with 10,000 trials. It exceeds 2 years to include all the dates in the last month of
simulation. This is because the expected simulation prices for the futures contract expiry
date is required in the next section to calculate the market price of risk. The seasonality is
added back on the simulated paths. A plot for a single simulation path is plotted below.

rng default;

% Simulate for about 2 years
nPeriods = 365*2+20;
nTrials = 10000;
n1 = randn(nPeriods,nTrials);
n2 = randn(nPeriods, nTrials);
j = binornd(1, lambda*dt, nPeriods, nTrials);
SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
    SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
                sigma*sqrt(dt)*n1(i,:) + j(i,:).*(mu_J+sigma_J*n2(i,:));
end

% Add back seasonality
SimPriceDates = daysadd(PriceDates(end),0:nPeriods-1);
SimPriceTimes = yearfrac(PriceDates(1), SimPriceDates);
CSim = seasonMatrix(SimPriceTimes);
logSimPrices = SimPrices + repmat(CSim*seasonParam,1,nTrials);

% Plot logarithm of Prices and simulated logarithm of Prices
figure;
subplot(2, 1, 1);
plot(PriceDates, logPrices);
hold on;
plot(SimPriceDates(2:end), logSimPrices(2:end,1), 'red');
seasonLine = seasonMatrix([PriceTimes; SimPriceTimes(2:end)])*seasonParam;
plot([PriceDates; SimPriceDates(2:end)], seasonLine, 'green');
hold off;
datetick();
title('Actual log(price) and Simulated log(price)');
xlabel('Date');
ylabel('log(price)');
legend('market', 'simulation');

 Simulating Electricity Prices with Mean-Reversion and Jump-Diffusion

3-103



% Plot prices and simulated prices
PricesSim = exp(logSimPrices);
subplot(2, 1, 2);
plot(PriceDates, Prices);
hold on;
plot(SimPriceDates, PricesSim(:,1), 'red');
hold off;
datetick();
title('Actual Prices and Simulated Prices');
xlabel('Date');
ylabel('Price ($)');
legend('market', 'simulation');
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Calibration of the Market Price of Risk

Up to this point, the parameters were calibrated under the real-world probability.
However, to price options, you need the simulation under the risk-neutral probability. To
obtain this, calculate the market price of risk from futures prices to derive the risk-
neutral parameters. Suppose that there are monthly futures contracts available on the
market, which are settled daily during the contract month. For example, such futures for
the PJM electricity market are listed on the Chicago Mercantile Exchange [5].

The futures are settled daily during the contract month. Therefore, you can obtain daily
futures values by assuming the futures value is constant for the contract month. The
expected futures prices from the real-world measure are also needed to calculate the
market price of risk. This can be obtained from the simulation conducted in the previous
section.

% Obtain daily futures prices
FutPricesDaily = zeros(size(SimPriceDates));
for i=1:nPeriods
    idx = find(year(SimPriceDates(i)) == year(FutExpiry) & ...
        month(SimPriceDates(i)) == month(FutExpiry));
    FutPricesDaily(i) = FutPrices(idx);
end

% Calculate expected futures price under real-world measure
SimPricesExp = mean(PricesSim, 2);

To calibrate the market price of risk against market futures values, use the following
equation:

where  is the observed futures value at time , and  is the expected value under the
real-world measure at time . The equation was obtained using the same methodology as
described in [3]. This example assumes that the market price of risk is fully driven by the

Brownian motion. The market price of risk, , can be solved by discretizing the above
equation and solving a system of linear equations.

% Setup system of equations
t0 = yearfrac(PriceDates(1), FutValuationDate);
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tz = SimPriceTimes-t0;
b = -log(FutPricesDaily(2:end) ./ SimPricesExp(2:end)) ./ ...
    (sigma.*exp(-kappa.*tz(2:end)));
A = (1/kappa).*(exp(kappa.*tz(2:end)) - exp(kappa.*tz(1:end-1)));
A = tril(repmat(A', size(A,1), 1));

% Precondition to stabilize numerical inversion
P = diag(1./diag(A));
b = P*b;
A = P*A;

% Solve for market price of risk
riskPremium = A\b;

Simulation of Risk-Neutral Prices

Once  is obtained, risk-neutral simulation can be conducted using the following
dynamics:

with probability  and

with probability .

nTrials = 10000;
n1 = randn(nPeriods, nTrials);
n2 = randn(nPeriods, nTrials);
j = binornd(1, lambda*dt, nPeriods, nTrials);

SimPrices = zeros(nPeriods, nTrials);
SimPrices(1,:) = X(end);
for i=2:nPeriods
    SimPrices(i,:) = alpha*dt + (1-kappa*dt)*SimPrices(i-1,:) + ...
        sigma*sqrt(dt)*n1(i,:) - sigma*dt*riskPremium(i-1) + ...
        j(i,:).*(mu_J+sigma_J*n2(i,:));
end

% Add back seasonality
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CSim = seasonMatrix(SimPriceTimes);
logSimPrices = SimPrices + repmat(CSim*seasonParam,1,nTrials);

% Convert log(Price) to Price
PricesSim = exp(logSimPrices);

The expected values from the risk-neutral simulation are plotted against the market
futures values. This confirms that the risk-neutral simulation closely reproduces the
market futures values.

% Obtain expected values from the risk-neutral simulation
SimPricesExp = mean(PricesSim,2);
fexp = zeros(size(FutExpiry));
for i = 1:size(FutExpiry,1)
    idx = SimPriceDates == FutExpiry(i);    
    if sum(idx)==1
        fexp(i) = SimPricesExp(idx);
    end
end

% Plot expected values from the simulation against market futures prices
figure;
subplot(2,1,1);
plot(FutExpiry, FutPrices(1:size(FutExpiry,1)),'-*');
hold on;
plot(FutExpiry, fexp, '*r');
datetick();
hold off;
title('Market Futures Prices and Simulated Futures Prices');
xlabel('Date');
ylabel('Price');
legend('market', 'simulation', 'Location', 'NorthWest');
subplot(2,1,2);
plot(SimPriceDates(2:end), riskPremium);
datetick();
title('Market Price of Risk');
xlabel('Date');
ylabel('Market Price of Risk');
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Pricing a Bermudan Option

The risk-neutral simulated values are used as input into the function optpricebysim in
the Financial Instruments Toolbox™ to price a European, Bermudan, or American option
on electricity prices. Below, the price is calculated for a two-year Bermudan call option
with two exercise opportunities. The first exercise is after one year, and the second is at
the maturity of the option.

% Settle, maturity of option
Settle = FutValuationDate;
Maturity = addtodate(FutValuationDate, 2, 'year');

% Create interest rate term structure
riskFreeRate = 0.01;
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Basis = 0;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', Maturity, 'Rate', riskFreeRate, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Cutoff simulation at maturity
endIdx = find(SimPriceDates == Maturity);
SimPrices = PricesSim(1:endIdx,:);
Times = SimPriceTimes(1:endIdx) - SimPriceTimes(1);

% Bermudan call option with strike 60, two exercise opportunities, after
% one year and at maturity.
OptSpec = 'call';
Strike = 60;
ExerciseTimes = [Times(366) Times(end)];
Price = optpricebysim(RateSpec, SimPrices, Times, OptSpec, Strike, ...
    ExerciseTimes)

Price = 1.1085
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Pricing Asian Options
This example shows how to price a European Asian option using six methods in the
Financial Instruments Toolbox™. This example demonstrates four closed form
approximations (Kemna-Vorst, Levy, Turnbull-Wakeman, and Haug-Haug-Margrabe), a
lattice model (Cox-Ross-Rubinstein), and Monte Carlo simulation. All these methods
involve some tradeoffs between numerical accuracy and computational efficiency. This
example also demonstrates how variations in spot prices, volatility, and strike prices
affect option prices on European Vanilla and Asian options.

Overview of Asian Options

Asian options are securities with payoffs that depend on the average value of an
underlying asset over a specific period of time. Underlying assets can be stocks,
commodities, or financial indices.

Two types of Asian options are found in the market: average price options and average
strike options. Average price options have a fixed strike value and the average used is the
asset price. Average strike options have a strike equal to the average value of the
underlying asset.

The payoff at maturity of an average price European Asian option is:

 for a call

 for a put

The payoff at maturity of an average strike European Asian option is:

 for a call

 for a put

where Savg is the average price of underlying asset, St is the price at maturity of
underlying asset, and K is the strike price.

The average can be arithmetic or geometric.
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Pricing Asian Options Using Closed Form Approximations

The Financial Instruments Toolbox™ supports four closed form approximations for
European Average Price options. The Kemna-Vorst method is based on the geometric
mean of the price of the underlying during the life of the option [1]. The Levy and
Turnbull-Wakeman models provide a closed form pricing solution to continuous arithmetic
averaging options [2,3]. The Haug-Haug-Margrabe approximation is used for pricing
discrete arithmetic averaging options [4].

All the pricing functions asianbykv, asianbylevy, asianbytw, and asianbyhhm take
an interest-rate term structure and stock structure as inputs.

Consider the following example:

% Create RateSpec from the interest rate term structure
StartDates = '12-March-2014';
EndDates = '12-March-2020';
Rates = 0.035;   
Compounding = -1;
Basis = 1;

RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
    'EndDates', EndDates, 'Rates', Rates, 'Compounding', ...
    Compounding, 'Basis', Basis);

% Define StockSpec with the underlying asset information
Sigma = 0.20;
AssetPrice = 100;

StockSpec = stockspec(Sigma, AssetPrice);

% Define the Asian option
Settle = '12-March-2014';
ExerciseDates = '12-March-2015';
Strike = 90;
OptSpec = 'call';

% Kemna-Vorst closed form model
PriceKV = asianbykv(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);

% Levy model approximation
PriceLevy = asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);
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% Turnbull-Wakeman approximation
PriceTW = asianbytw(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);

% Haug-Haug-Margrabe approximation
PriceHHM = asianbyhhm(RateSpec, StockSpec, OptSpec, Strike, Settle,...
    ExerciseDates);     
                 
% Comparison of calculated prices for the geometric and arithmetic options
% using different closed form algorithms.
displayPricesClosedForm(PriceKV, PriceLevy, PriceTW, PriceHHM)

Comparison of Asian Arithmetic and Geometric Prices:

Kemna-Vorst:        11.862580
Levy:               12.164734
Turnbull-Wakeman:   12.164734
Haug-Haug-Margrabe: 12.108746

Computing Asian Options Prices Using the Cox-Ross-Rubinstein Model

In addition to closed form approximations, the Financial Instruments Toolbox™ supports
pricing European Average Price options using CRR trees via the function asianbycrr.

The lattice pricing function asianbycrr takes an interest-rate tree ( CRRTree ) and
stock structure as inputs. You can price the previous options by building a CRRTree using
the interest-rate term structure and stock specification from the example above.

% Create the time specification of the tree
NPeriods = 20;
TreeValuationDate = '12-March-2014';
TreeMaturity = '12-March-2024';
TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);

% Build the tree
CRRTree =  crrtree(StockSpec, RateSpec, TimeSpec);

% Price the European Asian option using the CRR lattice model.
% The function 'asianbycrr' computes prices of arithmetic and geometric
% Asian options.
AvgType = {'arithmetic';'geometric'};
AmericanOpt = 0;
PriceCRR20 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates,...
                        AmericanOpt, AvgType);
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% Increase the numbers of periods in the tree and compare results
NPeriods = 40;
TimeSpec = crrtimespec(TreeValuationDate, TreeMaturity, NPeriods);
CRRTree =  crrtree(StockSpec, RateSpec, TimeSpec);

PriceCRR40 = asianbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDates,...
                        AmericanOpt, AvgType);
                    
% Display prices
displayPricesCRR(PriceCRR20, PriceCRR40)

Asian Prices using the CRR lattice model:

PriceArithmetic(CRR20): 11.934380
PriceArithmetic(CRR40): 12.047243
PriceGeometric (CRR20): 11.620899
PriceGeometric (CRR40): 11.732037

The results above compare the findings from calculating both geometric and arithmetic
Asian options, using CRR trees with 20 and 40 levels. As the number of levels increases,
the results approach the closed form solutions.

Calculating Prices of Asian Options Using Monte Carlo Simulation

Another method to price European Average Price options with the Financial Instruments
Toolbox™ is via Monte Carlo simulations.

The pricing function asianbyls takes an interest-rate term structure and stock structure
as inputs. The output and execution time of the Monte Carlo simulation depends on the
number of paths ( NumTrials ) and the number of time periods per path ( NumPeriods ).

You can price the same options of previous examples using Monte Carlo.

% Simulation Parameters
NumTrials = 500;
NumPeriods = 200;

% Price the arithmetic option 
PriceAMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                     ExerciseDates,'NumTrials', NumTrials, ...
                     'NumPeriods', NumPeriods);

% Price the geometric option 
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PriceGMC = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                     ExerciseDates,'NumTrials', NumTrials, ...
                     'NumPeriods', NumPeriods, 'AvgType', AvgType(2));

% Use the antithetic variates method to value the options
Antithetic = true;
PriceAMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                    ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
                    NumPeriods, 'Antithetic', Antithetic);

PriceGMCAntithetic = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                    ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
                    NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
                
% Display prices
displayPricesMonteCarlo(PriceAMC, PriceAMCAntithetic, PriceGMC, PriceGMCAntithetic)

Asian Prices using Monte Carlo Method:

Arithmetic Asian
Standard Monte Carlo:           12.304046
Variate Antithetic Monte Carlo: 12.304046

Geometric Asian
Standard Monte Carlo:           12.048434
Variate Antithetic Monte Carlo: 12.048434

The use of variate antithetic accelerates the conversion process by reducing the variance.

You can create a plot to display the difference between the geometric Asian price using
the Kemna-Vorst model, standard Monte Carlo, and antithetic Monte Carlo.

nTrials = [50:5:100 110:10:250 300:50:500 600:100:2500]';
PriceKVVector = PriceKV * ones(size(nTrials));
PriceGMCVector = nan(size(nTrials));
PriceGMCAntitheticVector = nan(size(nTrials));
TimeGMCAntitheticVector = nan(length(nTrials),1);
TimeGMCVector = nan(length(nTrials),1);
idx = 1;
for iNumTrials = nTrials'
    PriceGMCVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,'NumTrials', iNumTrials, 'NumPeriods',...
                        NumPeriods,'AvgType', AvgType(2));

    PriceGMCAntitheticVector(idx) = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
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                        ExerciseDates,'NumTrials', iNumTrials, 'NumPeriods',...
                        NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(nTrials, [PriceKVVector PriceGMCVector PriceGMCAntitheticVector]);
title 'Variance Reduction by Antithetic'
xlabel 'Number of Simulations'
ylabel 'Asian Option Price'
legend('Kemna-Vorst', 'Standard Monte Carlo', 'Variate Antithetic Monte Carlo ', 'location', 'northeast');

The graph above shows how oscillation in simulated price is reduced by using variate
antithetic.
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Compare Pricing Model Results

Prices calculated by the Monte Carlo method varies depending on the outcome of the
simulations. Increase NumTrials and analyze the results.

NumTrials = 2000;

PriceAMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates,...
         'NumTrials', NumTrials, 'NumPeriods', NumPeriods, 'Antithetic', Antithetic);

PriceGMCAntithetic2000 = asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                    ExerciseDates,'NumTrials', NumTrials, 'NumPeriods',...
                    NumPeriods, 'Antithetic', Antithetic,'AvgType', AvgType(2));
                
% Comparison of calculated Asian call prices
displayComparisonAsianCallPrices(PriceLevy, PriceTW, PriceHHM, PriceCRR40, PriceAMCAntithetic, PriceAMCAntithetic2000, PriceKV, PriceGMCAntithetic, PriceGMCAntithetic2000)

Comparison of Asian call prices:

Arithmetic Asian
Levy:                     12.164734
Turnbull-Wakeman:         12.164734
Haug-Haug-Margrabe:       12.108746
Cox-Ross-Rubinstein:      12.047243
Monte Carlo(500 trials):  12.304046
Monte Carlo(2000 trials): 12.196848

Geometric Asian
Kemna-Vorst:              11.862580
Cox-Ross-Rubinstein:      11.732037
Monte Carlo(500 trials):  12.048434
Monte Carlo(2000 trials): 11.932017

The table above contrasts the results from closed approximation models against price
simulations implemented via CRR trees and Monte Carlo.

Asian and Vanilla Call Options

Asian options are popular instruments since they tend to be less expensive than
comparable Vanilla calls and puts. This is because the volatility in the average value of an
underlier tends to be lower than the volatility of the value of the underlier itself.

The Financial Instruments Toolbox™ supports several algorithms for pricing vanilla
options. Let us compare the price of Asian options against their Vanilla counterpart.
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First, compute the price of a European Vanilla Option using the Black Scholes model.

PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, ExerciseDates,...
                         OptSpec, Strike);
                     
% Comparison of calculated call prices.
displayComparisonVanillaAsian('Prices', PriceBLS, PriceKV, PriceLevy, PriceTW, PriceHHM)

Comparison of Vanilla and Asian Prices:

Vanilla BLS:              15.743809
Asian Kemna-Vorst:        11.862580
Asian Levy:               12.164734
Asian Turnbull-Wakeman:   12.164734
Asian Haug-Haug-Margrabe: 12.108746

Both geometric and arithmetic Asians price lower than their Vanilla counterpart.

You can analyze options prices at different levels of the underlying asset. Using the
Financial Instruments Toolbox™, it is possible to observe the effect of different
parameters on the price of the options. Consider for example, the effect of variations in
the price of the underlying asset.

StockPrices = (50:5:150)';
PriceBLS = nan(size(StockPrices));
PriceKV = nan(size(StockPrices));
PriceLevy = nan(size(StockPrices));
PriceTW = nan(size(StockPrices));
PriceHHM = nan(size(StockPrices));
idx = 1;
for So = StockPrices'
    SP = stockspec(Sigma, So);
    PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates,...
                                  OptSpec, Strike);
                              
    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle,...
                             ExerciseDates);                                  
                     
    PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, Strike, Settle,...
                                 ExerciseDates);

    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle,...
                             ExerciseDates);
                         
    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, Strike, Settle,...
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                             ExerciseDates);                             
    
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [PriceBLS PriceKV PriceLevy PriceTW PriceHHM]);
xlabel 'Spot Price ($)'
ylabel 'Option Price ($)'
title 'Call Price Comparison'
legend('Vanilla', 'Geometric Asian', 'Continuous Arithmetic Asian (1)', 'Continuous Arithmetic Asian (2)', 'Discrete Arithmetic Asian', 'location', 'northwest');

It can be observed that the price of the Asian option is cheaper than the price of the
Vanilla option.
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Also, it is possible to observe the effect of changes in the volatility of the underlying asset.
The table below shows what happens to Asian and Vanilla option prices when the constant
volatility changes.

Call Option (ITM)

Strike = 90 AssetPrice = 100

--------------------------------------------------------------------
-----------------

Volatility Haug-Haug-Margrabe Turnbull-Wakeman Levy Kemna-Vorst BLS

10% 11.3946 11.3987 11.3987 11.3121 13.4343

20% 12.1087 12.1647 12.1647 11.8626 15.7438

30% 13.5374 13.6512 13.6512 13.0338 18.8770

40% 15.2823 15.4464 15.4464 14.4086 22.2507

A comparison of the calculated prices show that Asian options are less sensitive to
volatility changes, since averaging reduces the volatility of the value of the underlying
asset. Also, Asian options that use arithmetic average are more expensive than those that
use geometric average.

Now, examine the effect of strike on option prices.

Strikes = (90:5:120)';
NStrike = length(Strikes);
PriceBLS = nan(size(Strikes));
PriceKV = nan(size(Strikes));
PriceLevy = nan(size(Strikes));
PriceTW = nan(size(Strikes));
PriceHHM = nan(size(Strikes));
idx = 1;
for ST = Strikes'
    SP = stockspec(Sigma, AssetPrice);
    PriceBLS(idx) = optstockbybls(RateSpec, SP, Settle, ExerciseDates,...
                                  OptSpec, ST);
                     
    PriceKV(idx) = asianbykv(RateSpec, SP, OptSpec, ST, Settle,...
                             ExerciseDates);                                  
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    PriceLevy(idx) = asianbylevy(RateSpec, SP, OptSpec, ST, Settle,...
                                 ExerciseDates);

    PriceTW(idx) = asianbytw(RateSpec, SP, OptSpec, ST, Settle,...
                             ExerciseDates);                             
                                 
    PriceHHM(idx) = asianbyhhm(RateSpec, SP, OptSpec, ST, Settle,...
                             ExerciseDates);     
    
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(Strikes, [PriceBLS PriceKV PriceLevy PriceTW PriceHHM]);
xlabel 'Strike Price ($)'
ylabel 'Option Price ($)'
title 'Effect of Strike on Option Prices'
legend('Vanilla', 'Geometric Asian', 'Continuous Arithmetic Asian (1)', 'Continuous Arithmetic Asian (2)', 'Discrete Arithmetic Asian', 'location', 'northeast');
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The figure above displays the option price with respect to strike price. Since call option
value decreases as strike price increases, the Asian call curve is under the Vanilla call
curve. It can be observed that the Asian call option is less expensive than the Vanilla call.

Hedging

Hedging is an insurance to minimize exposure to market movements on the value of a
position or portfolio. As the underlying changes, the proportions of the instruments
forming the portfolio may need to be adjusted to keep the sensitivities within the desired
range. Delta measures the option price sensitivity to changes in the price of the
underlying.

3 Equity Derivatives

3-122



Assume that you have a portfolio of two options with the same strike and maturity. You
can use the Financial Instruments Toolbox™ to compute Delta for the Vanilla and
Average Price options.

OutSpec = 'Delta';

% Vanilla option using Black Scholes 
DeltaBLS = optstocksensbybls(RateSpec, StockSpec, Settle, ExerciseDates,...
                             OptSpec, Strike, 'OutSpec', OutSpec);

% Asian option using Kemna-Vorst method
DeltaKV = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,  'OutSpec', OutSpec);                         
                             
% Asian option using Levy model
DeltaLevy = asiansensbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                            ExerciseDates,  'OutSpec', OutSpec);

% Asian option using Turnbull-Wakeman model
DeltaTW = asiansensbytw(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,  'OutSpec', OutSpec);
                    
% Asian option using Haug-Haug-Margrabe model
DeltaHHM = asiansensbyhhm(RateSpec, StockSpec, OptSpec, Strike, Settle,...
                        ExerciseDates,  'OutSpec', OutSpec);                        

% Delta Comparison
displayComparisonVanillaAsian('Delta', DeltaBLS, DeltaKV, DeltaLevy, DeltaTW, DeltaHHM)

Comparison of Vanilla and Asian Delta:

Vanilla BLS:              0.788666
Asian Kemna-Vorst:        0.844986
Asian Levy:               0.852806
Asian Turnbull-Wakeman:   0.852806
Asian Haug-Haug-Margrabe: 0.857864

The following graph demonstrates the behavior of Delta for the Vanilla and Asian options
as a function of the underlying price.

StockPrices = (40:5:120)';
NStockPrices = length(StockPrices);
DeltaBLS = nan(size(StockPrices));
DeltaKV = nan(size(StockPrices));
DeltaLevy = nan(size(StockPrices));
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DeltaTW = nan(size(StockPrices));
DeltaHHM = nan(size(StockPrices));

idx = 1;
for SPrices = StockPrices'
    SP = stockspec(Sigma, SPrices);
    DeltaBLS(idx) = optstocksensbybls(RateSpec, SP, Settle, ...
                    ExerciseDates, OptSpec, Strike, 'OutSpec', OutSpec);

    DeltaKV(idx) = asiansensbykv(RateSpec, SP, OptSpec, Strike, ...
                   Settle, ExerciseDates,'OutSpec', OutSpec);                
                
    DeltaLevy(idx) = asiansensbylevy(RateSpec, SP, OptSpec, Strike,...
                     Settle, ExerciseDates, 'OutSpec', OutSpec);

    DeltaTW(idx) = asiansensbytw(RateSpec, SP, OptSpec, Strike, ...
                   Settle, ExerciseDates,'OutSpec', OutSpec);
               
    DeltaHHM(idx) = asiansensbyhhm(RateSpec, SP, OptSpec, Strike, ...
                   Settle, ExerciseDates,'OutSpec', OutSpec);
               
    idx = idx+1;
end

figure('menubar', 'none', 'numbertitle', 'off')
plot(StockPrices, [DeltaBLS DeltaKV DeltaLevy DeltaTW DeltaHHM]);
xlabel 'Spot Price ($)'
ylabel 'Call Delta'
title 'Delta Comparison (Strike Price = $90)'
legend('Vanilla', 'Geometric Asian', 'Continuous Arithmetic Asian (1)', 'Continuous Arithmetic Asian (2)', 'Discrete Arithmetic Asian', 'location', 'northwest');
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A Vanilla, or Asian, in the money (ITM) call option is more sensitive to price movements
than an out of the money (OTM) option. If the asset price is deep in the money, then it is
more likely to be exercised. The opposite occurs for an out of the money option. Asian
delta is lower for out of the money options and is higher for in the money options than its
Vanilla European counterpart. The geometric Asian delta is lower than the arithmetic
Asian delta.
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Utility Functions

function displayPricesClosedForm(PriceKV, PriceLevy, PriceTW, PriceHHM)
fprintf('Comparison of Asian Arithmetic and Geometric Prices:\n');
fprintf('\n');
fprintf('Kemna-Vorst:        %f\n', PriceKV);
fprintf('Levy:               %f\n', PriceLevy);
fprintf('Turnbull-Wakeman:   %f\n', PriceTW);
fprintf('Haug-Haug-Margrabe: %f\n', PriceHHM);
end

function displayPricesCRR(PriceCRR20, PriceCRR40)
fprintf('Asian Prices using the CRR lattice model:\n');
fprintf('\n');
fprintf('PriceArithmetic(CRR20): %f\n', PriceCRR20(1));
fprintf('PriceArithmetic(CRR40): %f\n', PriceCRR40(1));
fprintf('PriceGeometric (CRR20): %f\n', PriceCRR20(2));
fprintf('PriceGeometric (CRR40): %f\n', PriceCRR40(2));
end

function displayPricesMonteCarlo(PriceAMC, PriceAMCAntithetic, PriceGMC, PriceGMCAntithetic)
fprintf('Asian Prices using Monte Carlo Method:\n');
fprintf('\n');
fprintf('Arithmetic Asian\n');
fprintf('Standard Monte Carlo:           %f\n', PriceAMC);
fprintf('Variate Antithetic Monte Carlo: %f\n\n', PriceAMCAntithetic);
fprintf('Geometric Asian\n');
fprintf('Standard Monte Carlo:           %f\n', PriceGMC);
fprintf('Variate Antithetic Monte Carlo: %f\n', PriceGMCAntithetic);
end

function displayComparisonAsianCallPrices(PriceLevy, PriceTW, PriceHHM, PriceCRR40, PriceAMCAntithetic, PriceAMCAntithetic2000, PriceKV, PriceGMCAntithetic, PriceGMCAntithetic2000)
fprintf('Comparison of Asian call prices:\n');
fprintf('\n');
fprintf('Arithmetic Asian\n');
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fprintf('Levy:                     %f\n', PriceLevy);
fprintf('Turnbull-Wakeman:         %f\n', PriceTW);
fprintf('Haug-Haug-Margrabe:       %f\n', PriceHHM);
fprintf('Cox-Ross-Rubinstein:      %f\n', PriceCRR40(1));
fprintf('Monte Carlo(500 trials):  %f\n', PriceAMCAntithetic);
fprintf('Monte Carlo(2000 trials): %f\n', PriceAMCAntithetic2000);
fprintf('\n');
fprintf('Geometric Asian\n');
fprintf('Kemna-Vorst:              %f\n', PriceKV);
fprintf('Cox-Ross-Rubinstein:      %f\n', PriceCRR40(2));
fprintf('Monte Carlo(500 trials):  %f\n', PriceGMCAntithetic);
fprintf('Monte Carlo(2000 trials): %f\n', PriceGMCAntithetic2000);
end

function displayComparisonVanillaAsian(type, BLS, KV, Levy, TW, HHM)
fprintf('Comparison of Vanilla and Asian %s:\n', type);
fprintf('\n');
fprintf('Vanilla BLS:              %f\n', BLS);
fprintf('Asian Kemna-Vorst:        %f\n', KV);
fprintf('Asian Levy:               %f\n', Levy);
fprintf('Asian Turnbull-Wakeman:   %f\n', TW);
fprintf('Asian Haug-Haug-Margrabe: %f\n', HHM);
end

 Pricing Asian Options

3-127



Pricing Equity Derivatives Using Trees
In this section...
“Computing Instrument Prices” on page 3-128
“Computing Prices Using CRR” on page 3-129
“Computing Prices Using EQP” on page 3-131
“Computing Prices Using ITT” on page 3-133
“Computing Prices Using STT” on page 3-135
“Examining Output from the Pricing Functions” on page 3-137
“Graphical Representation of Equity Derivative Trees” on page 3-140

Computing Instrument Prices
The portfolio pricing functions crrprice, eqpprice, and ittprice calculate the price
of any set of supported instruments based on a binary equity price tree, an implied
trinomial price tree, or a standard trinomial tree. These functions are capable of pricing
the following instrument types:

• Vanilla stock options

• American and European puts and calls
• Exotic options

• Asian
• Barrier
• Compound
• Lookback
• Stock options (Bermuda put and call schedules)

The syntax for calling the function crrprice is:

[Price, PriceTree] = crrprice(CRRTree, InstSet, Options)

The syntax for eqpprice is:

[Price, PriceTree] = eqpprice(EQPTree, InstSet, Options)
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The syntax for ittprice is:

Price = ittprice(ITTTree, ITTInstSet, Options)

The syntax for sttprice is:

[Price, PriceTree] = sttprice(STTTree, InstSet, Name, Value)

These functions require two input arguments: the equity price tree and the set of
instruments, InstSet, and allow a third optional argument.

Required Arguments

CRRTree is a CRR equity price tree created using crrtree. EQPTree is an equal
probability equity price tree created using eqptree. ITTTree is an ITT equity price tree
created using itttree. STTTree is a standard trinomial equity price tree created using
stttree. See “Building Equity Binary Trees” on page 3-3 and “Building Implied
Trinomial Trees” on page 3-8 to learn how to create these structures.

InstSet is a structure that represents the set of instruments to be priced independently
using the model.

Optional Argument

You can enter a third optional argument, Options, used when pricing barrier options. For
more specific information, see “Pricing Options Structure” on page B-2.

These pricing functions internally classify the instruments and call the appropriate
individual instrument pricing function for each of the instrument types. The CRR pricing
functions are asianbycrr, barrierbycrr, compoundbycrr, lookbackbycrr, and
optstockbycrr. A similar set of functions exists for EQP, ITT, and STT pricing. You can
also use these functions directly to calculate the price of sets of instruments of the same
type. See the reference pages for these individual functions for further information.

Computing Prices Using CRR
Consider the following example, which uses the portfolio and stock price data in the MAT-
file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat
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Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.
Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

CRRTree and CRRInstSet are the required input arguments to call the function
crrprice.

Use instdisp to examine the set of instruments contained in the variable CRRInstSet.

instdisp(CRRInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    105    01-Jan-2003    01-Jan-2005    1           Call1 10      
2     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     130     01-Jan-2003    01-Jan-2006    1            put      5       01-Jan-2003    01-Jan-2005    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
6     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
8     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       

Note Because of space considerations, the compound option above (Index 4) has been
condensed to fit the page. The instdisp command displays all compound option fields
on your computer screen.
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The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the
price vector returned by crrprice.

Now use crrprice to calculate the price of each instrument in the instrument set.

Price = crrprice(CRRTree, CRRInstSet)

Price =

    8.2863
    2.5016
   12.1272
    3.3241
    7.6015
   11.7772
    4.1797
    3.4219

Computing Prices Using EQP
Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.
Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
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  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

EQPTree and EQPInstSet are the input arguments required to call the function
eqpprice.

Use the command instdisp to examine the set of instruments contained in the variable
EQPInstSet.

instdisp(EQPInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    105    01-Jan-2003    01-Jan-2005    1           Call1 10      
2     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     130     01-Jan-2003    01-Jan-2006    1            put      5       01-Jan-2003    01-Jan-2005    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
6     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
8     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
 
>> instdisp(EQPInstSet)
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    105    01-Jan-2003    01-Jan-2005    1           Call1 10      
2     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     130     01-Jan-2003    01-Jan-2006    1            put      5       01-Jan-2003    01-Jan-2005    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
6     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
8     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
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Note Because of space considerations, the compound option above (Index 4) has been
condensed to fit the page. The instdisp command displays all compound option fields
on your computer screen.

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the
price vector returned by eqpprice.

Now use eqpprice to calculate the price of each instrument in the instrument set.

Price = eqpprice(EQPTree, EQPInstSet)

Price =

    8.4791
    2.6375
   12.2632
    3.5091
    8.7941
   12.9577
    4.7444
    3.9178

Computing Prices Using ITT
Consider the following example, which uses the portfolio and stock price data in the MAT-
file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.
Name              Size            Bytes  Class     Attributes
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  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     

ITTTree and ITTInstSet are the input arguments required to call the function
ittprice. Use the command instdisp to examine the set of instruments contained in
the variable ITTInstSet.

instdisp(ITTInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    95     01-Jan-2006    31-Dec-2008    1           Call1 10      
2     OptStock put     80     01-Jan-2006    01-Jan-2010    0           Put1   4      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    85     01-Jan-2006    31-Dec-2008    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     99      01-Jan-2006    01-Jan-2010    1            put      5       01-Jan-2006    01-Jan-2010    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    85     01-Jan-2006    01-Jan-2008    0           Lookback1 7       
6     Lookback call    85     01-Jan-2006    01-Jan-2010    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    55     01-Jan-2006    01-Jan-2008    0           arithmetic NaN      NaN     Asian1 5       
8     Asian call    55     01-Jan-2006    01-Jan-2010    0           arithmetic NaN      NaN     Asian2 7       

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

3 Equity Derivatives

3-134



Each instrument has a corresponding index that identifies the instrument prices in the
price vector returned by ittprice.

Now use ittprice to calculate the price of each instrument in the instrument set.

Price = ittprice(ITTTree, ITTInstSet)

Price =

    1.6506
   10.6832
    2.4074
    3.2294
    0.5426
    6.1845
    3.2052
    6.6074

Computing Prices Using STT
Consider the following example, which uses the portfolio and stock price data in the MAT-
file deriv.mat included in the toolbox. Load the data into the MATLAB workspace.

load deriv.mat

Use the MATLAB whos command to display a list of the variables loaded from the MAT-
file.
 Name              Size            Bytes  Class     Attributes

  BDTInstSet        1x1             27344  struct              
  BDTTree           1x1              7322  struct              
  BKInstSet         1x1             27334  struct              
  BKTree            1x1              8532  struct              
  CRRInstSet        1x1             21066  struct              
  CRRTree           1x1              7086  struct              
  EQPInstSet        1x1             21066  struct              
  EQPTree           1x1              7086  struct              
  HJMInstSet        1x1             27336  struct              
  HJMTree           1x1              8334  struct              
  HWInstSet         1x1             27334  struct              
  HWTree            1x1              8532  struct              
  ITTInstSet        1x1             21070  struct              
  ITTTree           1x1             12660  struct              
  STTInstSet        1x1             21070  struct              
  STTTree           1x1              7782  struct              
  ZeroInstSet       1x1             17458  struct              
  ZeroRateSpec      1x1              2152  struct     
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STTTree and STTInstSet are the input arguments required to call the function
sttprice. Use the command instdisp to examine the set of instruments contained in
the variable STTInstSet.

instdisp(STTInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    100    01-Jan-2009    01-Jan-2011    1           Call1 10      
2     OptStock put      80    01-Jan-2009    01-Jan-2012    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2009    01-Jan-2012    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     95      01-Jan-2009    01-Jan-2012    1            put      5       01-Jan-2009    01-Jan-2011    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    90     01-Jan-2009    01-Jan-2012    0           Lookback1 7       
6     Lookback call    95     01-Jan-2009    01-Jan-2013    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    100    01-Jan-2009    01-Jan-2012    0           arithmetic NaN      NaN     Asian1 4       
8     Asian call    100    01-Jan-2009    01-Jan-2013    0           arithmetic NaN      NaN     Asian2 6       
 

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Each instrument has a corresponding index that identifies the instrument prices in the
price vector returned by sttprice.

Now use sttprice to calculate the price of each instrument in the instrument set.

Price = sttprice(STTTree, STTInstSet)

Price =

    4.5025
    3.0603
    3.7977
    1.7090
   11.7296
   12.9120

3 Equity Derivatives

3-136



    1.6905
    2.6203

Examining Output from the Pricing Functions
The prices in the output vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the valuation date of the equity tree. The instrument
indexing within Price is the same as the indexing within InstSet.

In the CRR example, the prices in the Price vector correspond to the instruments in this
order.
InstNames = instget(CRRInstSet, 'FieldName','Name')

InstNames =

Call1
Put1
Barrier1
Compound1 
Lookback1  
Lookback2  
Asian1     
Asian2     

So, in the Price vector, the fourth element, 3.3241, represents the price of the fourth
instrument (Compound1), and the sixth element, 11.7772, represents the price of the
sixth instrument (Lookback2).

In the ITT example, the prices in the Price vector correspond to the instruments in this
order.
InstNames = instget(ITTInstSet, 'FieldName','Name')

InstNames =

Call1
Put1
Barrier1
Compound1 
Lookback1  
Lookback2  
Asian1     
Asian2     
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So, in the Price vector, the first element, 1.650, represents the price of the first
instrument (Call1), and the eighth elements, 6.607, represents the price of the eighth
instrument (Asian2).

Price Tree Output for CRR

If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = crrprice(CRRTree, CRRInstSet)

you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.
PriceTree =
FinObj: 'BinPriceTree'
PTree: {[8x1 double] [8x2 double] [8x3 double] [8x4 double] [8x5 double]}
tObs: [0 1 2 3 4]
dObs: [731582 731947 732313 732678 733043]

The first field of this structure, FinObj, indicates that this structure represents a price
tree. The second field, PTree, is the tree holding the prices of the instruments in each
node of the tree. Finally, the third and fourth fields, tObs and dObs, represent the
observation time and date of each level of PTree, with tObs using units in terms of
compounding periods.

Using the command-line interface, you can directly examine PriceTree.PTree, the field
within the PriceTree structure that contains the price tree with the price vectors at
every state. The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{1}

ans =
8.2863
2.5016
12.1272
3.3241
7.6015
11.7772
4.1797
3.4219

With this interface, you can observe the prices for all instruments in the portfolio at a
specific time.

The function eqpprice also returns a price tree that you can examine in the same way.
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Price Tree Output for ITT

If you call a pricing function with two output arguments, for example:

[Price, PriceTree] = ittprice(ITTTree, ITTInstSet)

you generate a price tree structure along with the price information.

This price tree structure PriceTree holds all pricing information.
PriceTree = 

    FinObj: 'TrinPriceTree'
     PTree: {[8x1 double]  [8x3 double]  [8x5 double]  [8x7 double]  [8x9 double]}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

The first field of this structure, FinObj, indicates that this structure represents a
trinomial price tree. The second field, PTree is the tree holding the prices of the
instruments in each node of the tree. Finally, the third and fourth fields, tObs and dObs,
represent the observation time and date of each level of PTree, with tObs using units in
terms of compounding periods.

Using the command-line interface, you can directly examine PriceTree.PTree, the field
within the PriceTree structure that contains the price tree with the price vectors at
every state. The first node represents tObs = 0, corresponding to the valuation date.

PriceTree.PTree{1}

ans =

    1.6506
   10.6832
    2.4074
    3.2294
    0.5426
    6.1845
    3.2052
    6.6074

With this interface, you can observe the prices for all instruments in the portfolio at a
specific time.

Prices for Lookback and Asian Options for Equity Trees

Lookback options and Asian options are path-dependent, and, as such, there are no
unique prices for any node except the root node. So, the corresponding values for
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lookback and Asian options in the price tree are set to NaN, the only exception being the
root node. This becomes apparent if you examine the prices in the second node (tobs =
1) of the CRR price tree:

PriceTree.PTree{2}

ans =

   11.9176         0
    0.9508    7.1914
   16.4600    2.6672
    2.5896    5.0000
       NaN       NaN
       NaN       NaN
       NaN       NaN
       NaN       NaN

Examining the prices in the second node (tobs = 1) of the ITT price tree displays:

PriceTree.PTree{2}  

 ans =

    3.9022         0         0
    6.3736   13.3743   22.1915
    5.6914         0         0
    2.7663    3.8594    5.0000
       NaN       NaN       NaN
       NaN       NaN       NaN
       NaN       NaN       NaN
       NaN       NaN       NaN

Graphical Representation of Equity Derivative Trees
You can use the function treeviewer to display a graphical representation of a tree,
allowing you to examine interactively the prices and rates on the nodes of the tree until
maturity. The graphical representations of CRR, EQP, and LR trees are equivalent to
Black-Derman-Toy (BDT) trees, given that they are all binary recombining trees. The
graphical representations of ITT and STT trees are equivalent to Hull-White (HW) trees,
given that they are all trinomial recombining trees. See “Graphical Representation of
Trees” on page 2-158 for an overview on the use of treeviewer with CRR trees, EQP
trees, LR trees, ITT trees, and STT trees and their corresponding option price trees.
Follow the instructions for BDT trees.
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See Also
asianbycrr | asianbyeqp | asianbyitt | asianbystt | barrierbycrr |
barrierbyeqp | barrierbyitt | barrierbystt | compoundbycrr | compoundbyeqp
| compoundbyitt | compoundbystt | crrprice | crrsens | crrtimespec | crrtree |
eqpprice | eqpsens | eqptimespec | eqptree | instasian | instbarrier |
instcompound | instlookback | instoptstock | ittprice | ittsens |
itttimespec | itttree | lookbackbycrr | lookbackbyeqp | lookbackbyitt |
lookbackbystt | lrtimespec | lrtree | optstockbycrr | optstockbyeqp |
optstockbyitt | optstockbylr | optstockbystt | optstocksensbylr |
stockspec | sttprice | sttsens | treepath | trintreepath

Related Examples
• “Understanding Equity Trees” on page 3-2
• “Computing Equity Instrument Sensitivities” on page 3-142
• “Creating Instruments or Properties” on page 1-21
• “Graphical Representation of Equity Derivative Trees” on page 3-140
• “Pricing European Call Options Using Different Equity Models” on page 3-161
• “Pricing Asian Options” on page 3-111

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
• “Supported Interest-Rate Instruments” on page 2-2
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Computing Equity Instrument Sensitivities
Sensitivities can be reported either as dollar price changes or percentage price changes.
The delta, gamma, and vega sensitivities that the toolbox computes are dollar
sensitivities.

The functions crrsens, eqpsens, ittsens, and sttsens compute the delta, gamma,
and vega sensitivities of instruments using a stock tree. They also optionally return the
calculated price for each instrument. The sensitivity functions require the same two input
arguments used by the pricing functions (CRRTree and CRRInstSet for CRR, EQPTree
and EQPInstSet for EQP, ITTTree and ITTInstSet for ITT, and STTTree and
STTInstSet for STT).

As with the instrument pricing functions, the optional input argument Options is also
allowed. You would include this argument if you want a sensitivity function to generate a
price for a barrier option as one of its outputs and want to control the method that the
toolbox uses to perform the pricing operation. See “Pricing Options Structure” on page B-
2 or the derivset function for more information.

For path-dependent options (lookback and Asian), delta and gamma are computed by
finite differences in calls to crrprice, eqpprice, ittprice, and sttprice. For the
other options (stock option, barrier, and compound), delta and gamma are computed from
the CRR, EQP, ITT, and STT trees and the corresponding option price tree. (See Chriss,
Neil, Black-Scholes and Beyond, pp. 308–312.)

CRR Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, InstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.

format bank
All = [Delta, Gamma, Vega, Price]
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All =

      0.59            0.04       53.45          8.29
     -0.31            0.03       67.00          2.50
      0.69            0.03       67.00         12.13
     -0.12           -0.01      -98.08          3.32
     -0.40       -45926.32       88.18          7.60
     -0.42      -112143.15      119.19         11.78
      0.60        45926.32       49.21          4.18
      0.82       112143.15       41.71          3.42

As with the prices, each row of the sensitivity vectors corresponds to the similarly
indexed instrument in CRRInstSet. To view the per-dollar sensitivities, divide each dollar
sensitivity by the corresponding instrument price.

All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

       0.07         0.00        6.45        8.29
      -0.12         0.01       26.78        2.50
       0.06         0.00        5.53       12.13
      -0.04        -0.00      -29.51        3.32
      -0.05     -6041.77       11.60        7.60
      -0.04     -9522.02       10.12       11.78
       0.14     10987.98       11.77        4.18
       0.24     32771.92       12.19        3.42

ITT Sensitivities Example
The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet, Options)

Using the example data in deriv.mat, calculate the sensitivity of the instruments.

load deriv.mat

warning('off', 'fininst:itttree:Extrapolation');
[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.
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format bank
All = [Delta, Gamma, Vega, Price]

All =

          0.24          0.03         19.35          1.65
         -0.43          0.02         49.69         10.68
          0.35          0.04         12.29          2.41
         -0.07          0.00          6.73          3.23
          0.63     142945.66         38.90          0.54
          0.60      22703.21         68.92          6.18
          0.32    -142945.66         18.48          3.21
          0.67     -22703.21         17.75          6.61

As with the prices, each row of the sensitivity vectors corresponds to the similarly
indexed instrument in ITTInstSet.

Note In this example, the extrapolation warnings are turned off before calculating the
sensitivities to avoid displaying many warnings on the Command Window as the
sensitivities are calculated.

If the extrapolation warnings are turned on

warning('on', 'fininst:itttree:Extrapolation');

and ittsens is rerun, the extrapolation warnings scroll as the command executes:

[Delta, Gamma, Vega, Price] = ittsens(ITTTree, ITTInstSet)

Warning: The option set specified in StockOptSpec was too narrow for the
generated tree.
This made extrapolation necessary. Below is a list of the options that were
outside of the
range of those specified in StockOptSpec.

Option Type: 'call'   Maturity: 01-Jan-2007  Strike=67.2897
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=37.1528
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=27.6066
Option Type: 'put'   Maturity: 31-Dec-2008  Strike=20.5132
Option Type: 'call'   Maturity: 01-Jan-2010  Strike=164.0157
Option Type: 'put'   Maturity: 01-Jan-2010  Strike=15.2424
 
> In itttree>InterpOptPrices (line 680)
  In itttree (line 285)
  In stocktreesens>stocktreevega (line 193)
  In stocktreesens (line 94)
  In ittsens (line 79) 

Delta =
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          0.24
         -0.43
          0.35
         -0.07
          0.63
          0.60
          0.32
          0.67

Gamma =

          0.03
          0.02
          0.04
          0.00
     142945.66
      22703.21
    -142945.66
     -22703.21

Vega =

         19.35
         49.69
         12.29
          6.73
         38.90
         68.92
         18.48
         17.75

Price =

          1.65
         10.68
          2.41
          3.23
          0.54
          6.18
          3.21
          6.61

These warnings are a consequence of having to extrapolate to find the option price of the
tree nodes. In this example, the set of inputs options was too narrow for the shift in the
tree nodes introduced by the disturbance used to calculate the sensitivities. As a
consequence extrapolation for some of the nodes was needed. Since the input data is
quite close the extrapolated data, the error introduced by extrapolation is fairly low.

STT Sensitivities Example

The calling syntax for the sensitivity function is:

[Delta, Gamma, Vega, Price] = sttsens(STTTree, InstSet, Name, Value)
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Using the example data in deriv.mat, calculate the sensitivity of the instruments.

load deriv.mat
[Delta, Gamma, Vega, Price] = sttsens(STTTree, STTInstSet);

You can conveniently examine the sensitivities and the prices by arranging them into a
single matrix.

format bank
All = [Delta, Gamma, Vega, Price]

All =

          0.53          0.02         52.90          4.50
         -0.09          0.00         42.44          3.06
          0.47          0.03         25.98          3.80
         -0.06          0.00         -9.53          1.71
          0.23    -186495.25         70.38         11.73
          0.33    -191186.43         92.92         12.91
          0.57     186495.25         25.81          1.69
          0.66     191186.43         37.88          2.62

See Also
asianbycrr | asianbyeqp | asianbyitt | asianbystt | barrierbycrr |
barrierbyeqp | barrierbyitt | barrierbystt | compoundbycrr | compoundbyeqp
| compoundbyitt | compoundbystt | crrprice | crrsens | crrtimespec | crrtree |
eqpprice | eqpsens | eqptimespec | eqptree | instasian | instbarrier |
instcompound | instlookback | instoptstock | ittprice | ittsens |
itttimespec | itttree | lookbackbycrr | lookbackbyeqp | lookbackbyitt |
lookbackbystt | lrtimespec | lrtree | optstockbycrr | optstockbyeqp |
optstockbyitt | optstockbylr | optstockbystt | optstocksensbylr |
stockspec | sttprice | sttsens | treepath | trintreepath

Related Examples
• “Understanding Equity Trees” on page 3-2
• “Pricing Equity Derivatives Using Trees” on page 3-128
• “Graphical Representation of Equity Derivative Trees” on page 3-140
• “Creating Instruments or Properties” on page 1-21
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• “Graphical Representation of Equity Derivative Trees” on page 3-140
• “Pricing European Call Options Using Different Equity Models” on page 3-161
• “Pricing Asian Options” on page 3-111

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
• “Supported Interest-Rate Instruments” on page 2-2
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Equity Derivatives Using Closed-Form Solutions

In this section...
“Introduction” on page 3-148
“Black-Scholes Model” on page 3-148
“Black Model” on page 3-149
“Roll-Geske-Whaley Model” on page 3-150
“Bjerksund-Stensland 2002 Model” on page 3-151
“Barone-Adesi-Whaley Model” on page 3-151
“Pricing Using the Black-Scholes Model” on page 3-152
“Pricing Using the Black Model” on page 3-154
“Pricing Using the Roll-Geske-Whaley Model” on page 3-155
“Pricing Using the Bjerksund-Stensland Model” on page 3-156
“Compute American Option Prices Using the Barone-Adesi and Whaley Option Pricing
Model” on page 3-158

Introduction
Financial Instruments Toolbox supports four types of closed-form solutions and analytical
approximations to calculate price and sensitivities (greeks) of vanilla options:

• Black-Scholes model
• Black model
• Roll-Geske-Whaley model
• Bjerksund-Stensland 2002 model

Black-Scholes Model
The Black-Scholes model is one of the most commonly used models to price European
calls and puts. It serves as a basis for many closed-form solutions used for pricing options.
The standard Black-Scholes model is based on the following assumptions:

• There are no dividends paid during the life of the option.
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• The option can only be exercised at maturity.
• The markets operate under a Markov process in continuous time.
• No commissions are paid.
• The risk-free interest rate is known and constant.
• Returns on the underlying stocks are log-normally distributed.

Note The Black-Scholes model implemented in Financial Instruments Toolbox software
allows dividends. The following three dividend methods are supported:

• Cash dividend
• Continuous dividend yield
• Constant dividend yield

However, not all Black-Scholes closed-form pricing functions support all three dividend
methods. For more information on specifying the dividend methods, see stockspec.

Closed-form solutions based on a Black-Scholes model support the following tasks.

Task Function
Price European options with different dividends
using the Black-Scholes option pricing model.

optstockbybls

Calculate European option prices and sensitivities
using the Black-Scholes option pricing model.

optstocksensbybls

Calculate implied volatility on European options
using the Black-Scholes option pricing model.

impvbybls

Price European simple chooser options using Black-
Scholes model.

chooserbybls

For an example using the Black-Scholes model, see “Pricing Using the Black-Scholes
Model” on page 3-152.

Black Model
Use the Black model for pricing European options on physical commodities, forwards or
futures. The Black model supported by Financial Instruments Toolbox software is a
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special case of the Black-Scholes model. The Black model uses a forward price as an
underlier in place of a spot price. The assumption is that the forward price at maturity of
the option is log-normally distributed.

Closed-form solutions for a Black model support the following tasks.

Task Function
Price European options on futures using the Black
option pricing model.

optstockbyblk

Calculate European option prices and sensitivities on
futures using the Black option pricing model.

optstocksensbyblk

Calculate implied volatility for European options
using the Black option pricing model.

impvbyblk

For an example using the Black model, see “Pricing Using the Black Model” on page 3-
154.

Roll-Geske-Whaley Model
Use the Roll-Geske-Whaley approximation method to price American call options paying a
single cash dividend. This model is based on the modification of the observed stock price
for the present value of the dividend and also supports a compound option to account for
the possibility of early exercise. The Roll-Geske-Whaley model has drawbacks due to an
escrowed dividend price approach which may lead to arbitrage. For further explanation,
see Options, Futures, and Other Derivatives by John Hull.

Closed-form solutions for a Roll-Geske-Whaley model support the following tasks.

Task Function
Price American call options with a single cash
dividend using the Roll-Geske-Whaley option pricing
model.

optstockbyrgw

Calculate American call prices and sensitivities
using the Roll-Geske-Whaley option pricing model.

optstocksensbyrgw

Calculate implied volatility for American call options
using the Roll-Geske-Whaley option pricing model.

impvbyrgw
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For an example using the Roll-Geske-Whaley model, see “Pricing Using the Roll-Geske-
Whaley Model” on page 3-155.

Bjerksund-Stensland 2002 Model
Use the Bjerksund-Stensland 2002 model for pricing American puts and calls with
continuous dividend yield. This model works by dividing the time to maturity of the option
in two separate parts, each with its own flat exercise boundary (trigger price). The
Bjerksund-Stensland 2002 method is a generalization of the Bjerksund and Stensland
1993 method and is considered to be computationally efficient. For further explanation,
see Closed Form Valuation of American Options by Bjerksund and Stensland.

Closed-form solutions for a Bjerksund-Stensland 2002 model support the following tasks.

Task Function
Price American options with continuous dividend
yield using the Bjerksund-Stensland 2002 option
pricing model.

optstockbybjs

Calculate American options prices and sensitivities
using the Bjerksund-Stensland 2002 option pricing
model.

optstocksensbybjs

Calculate implied volatility for American options
using the Bjerksund-Stensland 2002 option pricing
model.

impvbybjs

For an example using the Bjerksund-Stensland 2002 model, see “Pricing Using the
Bjerksund-Stensland Model” on page 3-156.

Barone-Adesi-Whaley Model
The Barone-Adesi-Whaley model is used for pricing American vanilla options. Closed-form
solutions for a Barone-Adesi-Whaley model support the following tasks.

Task Function
Calculate the prices of an American call and put
options using the Barone-Adesi-Whaley
approximation model.

optstockbybaw
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Task Function
Calculate the prices and sensitivities of an American
call and put options using the Barone-Adesi-Whaley
approximation model.

optstocksensbybaw

Calculate the implied volatility for American options
using the Barone-Adesi-Whaley model.

impvbybaw

For an example using the Barone-Adesi-Whaley model, see “Compute American Option
Prices Using the Barone-Adesi and Whaley Option Pricing Model” on page 3-158.

Pricing Using the Black-Scholes Model
Consider a European stock option with an exercise price of $40 on January 1, 2008 that
expires on July 1, 2008. Assume that the underlying stock pays dividends of $0.50 on
March 1 and June 1. The stock is trading at $40 and has a volatility of 30% per annum.
The risk-free rate is 4% per annum. Using this data, calculate the price of a call and a put
option on the stock using the Black-Scholes option pricing model:

Strike = 40;
AssetPrice = 40;
Sigma = .3;
Rates = 0.04;
Settle = 'Jan-01-08';
Maturity = 'Jul-01-08';

Div1 = 'March-01-2008';
Div2 = 'Jun-01-2008';

Create RateSpec and StockSpec:
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, 0.50,{Div1,Div2});

Define two options, one call and one put:

OptSpec = {'call'; 'put'};

Calculate the price of the European options:
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =
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    3.2063
    3.4027

The first element of the Price vector represents the price of the call ($3.21); the second
is the price of the put ($3.40). Use the function optstocksensbybls to compute six
sensitivities for the Black-Scholes model: delta, gamma, vega, lambda, rho, and theta
and the price of the option.

The selection of output parameters and their order is determined by the optional input
parameter OutSpec. This parameter is a cell array of character vectors, each one
specifying a desired output parameter. The order in which these output parameters are
returned by the function is the same as the order of the character vectors contained in
OutSpec.

As an example, consider the same options as the previous example. To calculate their
Delta, Rho, Price, and Gamma, build the cell array OutSpec as follows:
OutSpec = {'delta', 'rho', 'price', 'gamma'};

[Delta, Rho, Price, Gamma] =optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

    0.5328
   -0.4672

Rho =

    8.7902
  -10.8138

Price =

    3.2063
    3.4027

Gamma =

    0.0480
    0.0480
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Pricing Using the Black Model
Consider two European call options on a futures contract with exercise prices of $20 and
$25 that expire on September 1, 2008. Assume that on May 1, 2008 the contract is
trading at $20 and has a volatility of 35% per annum. The risk-free rate is 4% per annum.
Using this data, calculate the price of the call futures options using the Black model:

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

Create RateSpec and StockSpec:
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice);

Define the call option:

OptSpec = {'call'};

Calculate price and all sensitivities of the European futures options:
OutSpec = {'All'} 

[Delta, Gamma, Vega, Lambda, Rho, Theta, Price] = optstocksensbyblk(RateSpec,...
StockSpec, Settle, Maturity, OptSpec, Strike, 'OutSpec', OutSpec);

Price =

    1.5903
    0.3037

The first element of the Price vector represents the price of the call with an exercise
price of $20 ($1.59); the second is the price of the call with an exercise price of $25
($2.89).

The function impvbyblk is used to compute the implied volatility using the Black option
pricing model. Assuming that the previous European call futures are trading at $1.5903
and $0.3037, you can calculate their implied volatility:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec,  Strike, Price);
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As expected, you get volatilities of 35%. If the call futures were trading at $1.50 and
$0.50 in the market, the implied volatility would be 33% and 42%:

Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec,  Strike, [1.50;0.5])

Volatility =

    0.3301
    0.4148

Pricing Using the Roll-Geske-Whaley Model
Consider two American call options, with exercise prices of $110 and $100 on June 1,
2008, that expire on June 1, 2009. Assume that the underlying stock pays dividends of
$0.001 on December 1, 2008. The stock is trading at $80 and has a volatility of 20% per
annum. The risk-free rate is 6% per annum. Using this data, calculate the price of the
American calls using the Roll-Geske-Whaley option pricing model:

AssetPrice = 80;
Settle = 'Jun-01-2008';
Maturity = 'Jun-01-2009';
Strike = [110; 100];

Rate = 0.06;
Sigma  = 0.2;

DivAmount = 0.001;
DivDate = 'Dec-01-2008';

Create RateSpec and StockSpec:
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Calculate the call prices:
Price  = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike)

Price =

    0.8398
    2.0236
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The first element of the Price vector represents the price of the call with an exercise
price of $110 ($0.84); the second is the price of the call with an exercise price of $100
($2.02).

Pricing Using the Bjerksund-Stensland Model
Consider four American stock options (two calls and two puts) with an exercise price of
$100 that expire on July 1, 2008. Assume that the underlying stock pays a continuous
dividend yield of 4% as of January 1, 2008. The stock has a volatility of 20% per annum
and the risk-free rate is 8% per annum. Using this data, calculate the price of the
American calls and puts assuming the following current prices of the stock: $80, $90 (for
the calls) and $100 and $110 (for the puts):

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
AssetPrice = [80; 90; 100; 110];
DivYield = 0.04;

Rate = 0.08;
Sigma = 0.20;

Create RateSpec and StockSpec:
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

Define the option type:

OptSpec = {'call'; 'call'; 'put'; 'put'};

Compute the option prices:
Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price =

    0.4144
    2.1804
    4.7253
    1.7164

The first two elements of the Price vector represent the price of the calls ($0.41 and
$2.18), the last two elements represent the price of the put options ($4.72 and $1.72).
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Use the function optstocksensbybjs to compute six sensitivities for the Bjerksund-
Stensland model: delta, gamma, vega, lambda, rho, and theta and the price of the
option. The selection of output parameters and their order is determined by the optional
input parameter OutSpec. This parameter is a cell array of character vectors, each one
specifying a desired output parameter. The order in which these output parameters are
returned by the function is the same as the order of the character vectors contained in
OutSpec. As an example, consider the same options as the previous example. To calculate
their delta, gamma, and price, build the cell array OutSpec as follows:

OutSpec = {'delta', 'gamma', 'price'};

The outputs of optstocksensbybjs are in the same order as in OutSpec.
[Delta, Gamma, Price]= optstocksensbybjs(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta =

    0.0843
    0.2912
    0.4803
    0.2261

Gamma =

    0.0136
    0.0267
    0.0304
    0.0217

Price =

    0.4144
    2.1804
    4.7253
    1.7164

For more information on the Bjerksund-Stensland model, see “Closed-Form Solutions
Modeling” on page C-4.

 Equity Derivatives Using Closed-Form Solutions

3-157



Compute American Option Prices Using the Barone-Adesi and
Whaley Option Pricing Model
Consider an American call option with an exercise price of $120. The option expires on
Jan 1, 2018. The stock has a volatility of 14% per annum, and the annualized continuously
compounded risk-free rate is 4% per annum as of Jan 1, 2016. Using this data, calculate
the price of the American call, assuming the price of the stock is $125 and pays a
dividend of 2%.

StartDate  = 'Jan-1-2016';
EndDate = 'jan-1-2018';
Basis = 1;
Compounding = -1;
Rates = 0.04;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',StartDate,'StartDate',StartDate,'EndDate',EndDate, ...
'Rates',Rates,'Basis',Basis,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9231
            Rates: 0.0400
         EndTimes: 2
       StartTimes: 0
         EndDates: 737061
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

Dividend = 0.02;
AssetPrice = 125;
Volatility = 0.14;

StockSpec = stockspec(Volatility,AssetPrice,'Continuous',Dividend)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
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              Sigma: 0.1400
         AssetPrice: 125
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Define the American option.

OptSpec = 'call';
Strike = 120;
Settle = 'Jan-1-2016';
Maturity = 'jan-1-2018';

Compute the price for the American option.

Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Price = 14.5180

See Also
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | assetbybls | assetsensbybls | basketbyju | basketbyls |
basketsensbyju | basketsensbyls | basketstockspec | basketstockspec |
cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls |
impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg |
lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | maxassetbystulz |
maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybaw | optstockbybjs | optstockbyblk |
optstockbybls | optstockbyls | optstockbyrgw | optstocksensbybaw |
optstocksensbybjs | optstocksensbyblk | optstocksensbybls |
optstocksensbyls | optstocksensbyrgw | spreadbybjs | spreadbykirk |
spreadbyls | spreadsensbybjs | spreadsensbykirk | spreadsensbyls |
supersharebybls | supersharesensbybls

Related Examples
• “Pricing European Call Options Using Different Equity Models” on page 3-161
• “Compute the Option Price on a Future” on page 3-170

 See Also

3-159



• “Pricing European Call Options Using Different Equity Models”
• “Pricing Asian Options” on page 3-111

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Pricing European Call Options Using Different Equity
Models

This example illustrates how the Financial Instruments Toolbox™ is used to price
European vanilla call options using different equity models.

The example compares call option prices using the Cox-Ross-Rubinstein model, the
Leisen-Reimer model and the Black-Scholes closed formula.

Define the Call Instrument

Consider a European call option, with an exercise price of $30 on January 1, 2010. The
option expires on Sep 1, 2010. Assume that the underlying stock provides no dividends.
The stock is trading at $25 and has a volatility of 35% per annum. The annualized
continuously compounded risk-free rate is 1.11% per annum.

% Option
Settle = 'Jan-01-2010';
Maturity = 'Sep-01-2010';
Strike = 30;
OptSpec = 'call';

% Stock
AssetPrice = 25;   
Sigma = .35;

Create the Interest Rate Term Structure

StartDates = '01 Jan 2010';          
EndDates =   '01 Jan 2013';
Rates = 0.0111;
ValuationDate = '01 Jan 2010';
Compounding = -1;

RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDates,...
                     'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDate);

Create the Stock Structure

Suppose we want to create two scenarios. The first one assumes that AssetPrice is
currently $25, the option is out of the money (OTM). The second scenario assumes that
the option is at the money (ATM), and therefore AssetPriceATM = 30.
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AssetPriceATM = 30; 

StockSpec = stockspec(Sigma, AssetPrice);
StockSpecATM = stockspec(Sigma, AssetPriceATM);

Price the Options Using the Black-Scholes Closed Formula

Use the function optstockbybls in the Financial Instruments Toolbox to compute the
price of the European call options.

% Price the option with AssetPrice = 25
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);

% Price the option with AssetPrice = 30
PriceBLSATM = optstockbybls(RateSpec, StockSpecATM, Settle, Maturity, OptSpec, Strike);

Build the Cox-Ross-Rubinstein Tree
% Create the time specification of the tree
NumPeriods = 15;

CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriods);

% Build the tree
CRRTree = crrtree(StockSpec, RateSpec, CRRTimeSpec);
CRRTreeATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);

Build the Leisen-Reimer Tree
% Create the time specification of the tree
LRTimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriods);

% Use the default method 'PP1' (Peizer-Pratt method 1 inversion)to build
% the tree
LRTree = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike);
LRTreeATM = lrtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);

Price the Options Using the Cox-Ross-Rubinstein (CRR) Model
PriceCRR = optstockbycrr(CRRTree, OptSpec, Strike, Settle, Maturity); 
PriceCRRATM = optstockbycrr(CRRTreeATM, OptSpec, Strike, Settle, Maturity);

Price the Options Using the Leisen-Reimer (LR) Model
PriceLR = optstockbylr(LRTree, OptSpec, Strike, Settle, Maturity); 
PriceLRATM = optstockbylr(LRTreeATM, OptSpec, Strike, Settle, Maturity);
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Compare BLS, CRR and LR Results

sprintf('PriceBLS: \t%f\nPriceCRR: \t%f\nPriceLR:\t%f\n', PriceBLS, ...
    PriceCRR, PriceLR)

ans = 
    'PriceBLS:     1.275075
     PriceCRR:     1.294979
     PriceLR:    1.275838
     '

sprintf('\t== ATM ==\nPriceBLS ATM: \t%f\nPriceCRR ATM: \t%f\nPriceLR ATM:\t%f\n', PriceBLSATM, ...
    PriceCRRATM,   PriceLRATM)

ans = 
    '    == ATM ==
     PriceBLS ATM:     3.497891
     PriceCRR ATM:     3.553938
     PriceLR ATM:    3.498571
     '

Convergence of CRR and LR Models to a BLS Solution

The following tables compare call option prices using the CRR and LR models against the
results obtained with the Black-Scholes formula.

While the CRR binomial model and the Black-Scholes model converge as the number of
time steps gets large and the length of each step gets small, this convergence, except for
at the money options, is anything but smooth or uniform.

The tables below show that the Leisen-Reimer model reduces the size of the error with
even as few steps of 45.

Strike = 30, Asset Price = 30

-------------------------------------

#Steps LR CRR

15 3.4986 3.5539

25 3.4981 3.5314
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45 3.4980 3.5165

65 3.4979 3.5108

85 3.4979 3.5077

105 3.4979 3.5058

201 3.4979 3.5020

501 3.4979 3.4996

999 3.4979 3.4987

Strike = 30, Asset Price = 25

-------------------------------------

#Steps LR CRR

15 1.2758 1.2950

25 1.2754 1.2627

45 1.2751 1.2851

65 1.2751 1.2692

85 1.2751 1.2812

105 1.2751 1.2766

201 1.2751 1.2723

501 1.2751 1.2759

999 1.2751 1.2756

Analyze the Effect of the Number of Periods on the Price of the Options

The following graphs show how convergence changes as the number of steps in the
binomial calculation increases, as well as, the impact on convergence to changes to the
stock price. Observe that the Leisen-Reimer model removes the oscillation and produces
estimates close to the Black-Scholes model using only a small number of steps.
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NPoints = 300;

% Cox-Ross-Rubinstein
NumPeriodCRR  = 5 : 1 : NPoints; 
NbStepCRR     = length(NumPeriodCRR);
PriceCRR = nan(NbStepCRR, 1);
PriceCRRATM = PriceCRR;

for i = 1 : NbStepCRR
    CRRTimeSpec = crrtimespec(ValuationDate, Maturity, NumPeriodCRR(i));
    CRRT = crrtree(StockSpec, RateSpec, CRRTimeSpec);
    PriceCRR(i) = optstockbycrr(CRRT, OptSpec, Strike,ValuationDate, Maturity) ;
    
    CRRTATM = crrtree(StockSpecATM, RateSpec, CRRTimeSpec);
    PriceCRRATM(i) = optstockbycrr(CRRTATM, OptSpec, Strike,ValuationDate, Maturity) ;
end

% Now with Leisen-Reimer
NumPeriodLR  = 5 : 2 : NPoints; 
NbStepLR     = length(NumPeriodLR);
PriceLR = nan(NbStepLR, 1);
PriceLRATM = PriceLR;

for i = 1 : NbStepLR
    LRTimeSpec = lrtimespec(ValuationDate, Maturity, NumPeriodLR(i));
    LRT = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike);
    PriceLR(i) = optstockbylr(LRT, OptSpec, Strike,ValuationDate, Maturity) ;
    
    LRTATM = lrtree(StockSpecATM, RateSpec, LRTimeSpec, Strike);
    PriceLRATM(i) = optstockbylr(LRTATM, OptSpec, Strike,ValuationDate, Maturity) ;
end

First scenario: Out of the Money call option

% For Cox-Ross-Rubinstein
plot(NumPeriodCRR, PriceCRR);
hold on;
plot(NumPeriodCRR, PriceBLS*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);

% For Leisen-Reimer
plot(NumPeriodLR, PriceLR, 'Color',[0.9 0 0], 'linewidth', 1.5);

% Concentrate in the area of interest by clipping on the Y axis at 5x the
% LR Price:
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YLimDelta = 5*abs(PriceLR(1) - PriceBLS);
ax = gca;
ax.YLim = [PriceBLS-YLimDelta PriceBLS+YLimDelta];

% Annotate Plot
titleString = sprintf('\nConvergence of CRR and LR models to a BLS Solution (OTM)\nStrike = %d,  Asset Price = %d', Strike , AssetPrice);
title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')

Second scenario: At the Money call option
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% For Cox-Ross-Rubinstein
figure;
plot(NumPeriodCRR, PriceCRRATM);
hold on;
plot(NumPeriodCRR, PriceBLSATM*ones(NbStepCRR,1),'Color',[0 0.9 0], 'linewidth', 1.5);

% For Leisen-Reimer
plot(NumPeriodLR, PriceLRATM, 'Color',[0.9 0 0], 'linewidth', 1.5);

% Concentrate in the area of interest by clipping on the Y axis at 5x the
% LR Price:
YLimDelta = 5*abs(PriceLRATM(1) - PriceBLSATM);
ax = gca;
ax.YLim = [PriceBLSATM-YLimDelta PriceBLSATM+YLimDelta];
% Annotate Plot
titleString = sprintf('\nConvergence of CRR and LR models to a BLS Solution (ATM)\nStrike = %d,  Asset Price = %d', Strike , AssetPriceATM);
title(titleString)
ylabel('Option Price')
xlabel('Number of Steps')
legend('CRR', 'BLS', 'LR', 'Location', 'NorthEast')
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See Also
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | assetbybls | assetsensbybls | basketbyju | basketbyls |
basketsensbyju | basketsensbyls | basketstockspec | basketstockspec |
cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls |
impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg |
lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | maxassetbystulz |
maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybjs | optstockbyblk | optstockbybls |
optstockbyls | optstockbyrgw | optstocksensbybaw | optstocksensbybjs |
optstocksensbyblk | optstocksensbybls | optstocksensbyls |
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optstocksensbyrgw | spreadbybjs | spreadbykirk | spreadbyls |
spreadsensbybjs | spreadsensbykirk | spreadsensbyls | supersharebybls |
supersharesensbybls

Related Examples
• “Equity Derivatives Using Closed-Form Solutions” on page 3-148
• “Compute the Option Price on a Future” on page 3-170
• “Pricing Asian Options” on page 3-111

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Compute the Option Price on a Future
Consider a call European option on the Crude Oil Brent futures. The option expires on
December 1, 2014 with an exercise price of $120. Assume that on April 1, 2014 futures
price is at $105, the annualized continuously compounded risk-free rate is 3.5% per
annum and volatility is 22% per annum. Using this data, compute the price of the option.

Define the RateSpec.

ValuationDate = 'January-1-2014';
EndDates = 'January-1-2015';
Rates = 0.035;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 105;
Sigma = 0.22;
StockSpec  = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 105
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
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Define the option.

Settle = 'April-1-2014';
Maturity = 'Dec-1-2014'; 
Strike = 120;
OptSpec = {'call'};

Price the futures call option.

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2.5847

See Also
asianbykv | asianbylevy | asianbyls | asiansensbykv | asiansensbylevy |
asiansensbyls | assetbybls | assetsensbybls | basketbyju | basketbyls |
basketsensbyju | basketsensbyls | basketstockspec | basketstockspec |
cashbybls | cashsensbybls | chooserbybls | gapbybls | gapsensbybls |
impvbybjs | impvbyblk | impvbybls | impvbyrgw | lookbackbycvgsg |
lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls | maxassetbystulz |
maxassetsensbystulz | minassetbystulz | minassetsensbystulz |
optpricebysim | optstockbybaw | optstockbybjs | optstockbyblk |
optstockbybls | optstockbyls | optstockbyrgw | optstocksensbybaw |
optstocksensbybjs | optstocksensbyblk | optstocksensbybls |
optstocksensbyls | optstocksensbyrgw | spreadbybjs | spreadbykirk |
spreadbyls | spreadsensbybjs | spreadsensbykirk | spreadsensbyls |
supersharebybls | supersharesensbybls

Related Examples
• “Equity Derivatives Using Closed-Form Solutions” on page 3-148
• “Pricing European Call Options Using Different Equity Models”
• “Pricing Asian Options” on page 3-111

More About
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43
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Hedging Portfolios

• “Hedging” on page 4-2
• “Hedging Functions” on page 4-4
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-17
• “Specifying Constraints with ConSet” on page 4-32
• “Hedging with Constrained Portfolios” on page 4-37
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Hedging
Hedging is an important consideration in modern finance. Whether or not to hedge, how
much portfolio insurance is adequate, and how often to rebalance a portfolio are
important considerations for traders, portfolio managers, and financial institutions alike.

If there were no transaction costs, financial professionals would prefer to rebalance
portfolios continually, thereby minimizing exposure to market movements. However, in
practice, the transaction costs associated with frequent portfolio rebalancing may be
expensive. Therefore, traders and portfolio managers must carefully assess the cost
required to achieve a particular portfolio sensitivity (for example, maintaining delta,
gamma, and vega neutrality). Thus, the hedging problem involves the fundamental
tradeoff between portfolio insurance and the cost of such insurance coverage.

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation” on page 1-8
• “Adding Instruments to an Existing Portfolio” on page 1-11
• “Instrument Constructors” on page 1-20
• “Creating Instruments or Properties” on page 1-21
• “Searching or Subsetting a Portfolio” on page 1-23
• “Hedging Functions” on page 4-4
• “Hedging with hedgeopt” on page 4-5
• “Self-Financing Hedges with hedgeslf” on page 4-12
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-17
• “Specifying Constraints with ConSet” on page 4-32
• “Portfolio Rebalancing” on page 4-34
• “Hedging with Constrained Portfolios” on page 4-37
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More About
• “Instrument Constructors” on page 1-20

 See Also
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Hedging Functions

In this section...
“Introduction” on page 4-4
“Hedging with hedgeopt” on page 4-5
“Self-Financing Hedges with hedgeslf” on page 4-12

Introduction
Hedging is an investment to reduce the risk of adverse price movements in an asset.
Financial Instruments Toolbox offers two functions for assessing the fundamental hedging
tradeoff, hedgeopt and hedgeslf.

The first function, hedgeopt, addresses the most general hedging problem. It allocates
an optimal hedge to satisfy either of two goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities.
• Minimize portfolio sensitivities for a given set of maximum target costs.

hedgeopt allows investors to modify portfolio allocations among instruments according
to either of the goals. The problem is cast as a constrained linear least-squares problem.
For additional information about hedgeopt, see “Hedging with hedgeopt” on page 4-5.

The second function, hedgeslf, attempts to allocate a self-financing hedge among a
portfolio of instruments. In particular, hedgeslf attempts to maintain a constant
portfolio value consistent with reduced portfolio sensitivities (that is, the rebalanced
portfolio is hedged against market moves and is closest to being self-financing). If
hedgeslf cannot find a self-financing hedge, it rebalances the portfolio to minimize
overall portfolio sensitivities. For additional information on hedgeslf, see “Self-
Financing Hedges with hedgeslf” on page 4-12.

The examples in this section consider the delta, gamma, and vega sensitivity measures. In
this toolbox, when you work with interest-rate derivatives, delta is the price sensitivity
measure of shifts in the forward yield curve, gamma is the delta sensitivity measure of
shifts in the forward yield curve, and vega is the price sensitivity measure of shifts in the
volatility process. See bdtsens or hjmsens for details on the computation of sensitivities
for interest-rate derivatives.
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For equity exotic options, the underlying instrument is the stock price instead of the
forward yield curve. So, delta now represents the price sensitivity measure of shifts in the
stock price, gamma is the delta sensitivity measure of shifts in the stock price, and vega is
the price sensitivity measure of shifts in the volatility of the stock. See crrsens,
eqpsens, ittsens, or sttsens for details on the computation of sensitivities for equity
derivatives.

For examples showing the computation of sensitivities for interest-rate based derivatives,
see “Computing Instrument Sensitivities” on page 2-74. Likewise, for examples showing
the computation of sensitivities for equity exotic options, see “Computing Equity
Instrument Sensitivities” on page 3-142.

Note The delta, gamma, and vega sensitivities that the toolbox calculates are dollar
sensitivities.

Hedging with hedgeopt

Note The numerical results in this section are displayed in the MATLAB bank format.
Although the calculations are performed in floating-point double precision, only two
decimal places are displayed.

To illustrate the hedging facility, consider the portfolio HJMInstSet obtained from the
example file deriv.mat. The portfolio consists of eight instruments: two bonds, one bond
option, one fixed-rate note, one floating-rate note, one cap, one floor, and one swap.

Both hedging functions require some common inputs, including the current portfolio
holdings (allocations), and a matrix of instrument sensitivities. To create these inputs,
load the example portfolio into memory

load deriv.mat;

compute price and sensitivities
[Delta, Gamma, Vega, Price] = hjmsens(HJMTree, HJMInstSet);

Warning: Not all cash flows are aligned with the tree. Result will
be approximated.

and extract the current portfolio holdings.
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Holdings = instget(HJMInstSet, 'FieldName', 'Quantity');

For convenience place the delta, gamma, and vega sensitivity measures into a matrix of
sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the
portfolio, and each column with a different sensitivity measure.

To summarize the portfolio information

disp([Price  Holdings  Sensitivities])

 98.72       100.00       -272.65       1029.90       0.00
 97.53        50.00       -347.43       1622.69      -0.04
  0.05       -50.00         -8.08        643.40      34.07
 98.72        80.00       -272.65       1029.90       0.00
100.55         8.00         -1.04          3.31          0
  6.28        30.00        294.97       6852.56      93.69
  0.05        40.00        -47.16       8459.99      93.69
  3.69        10.00       -282.05       1059.68       0.00

The first column above is the dollar unit price of each instrument, the second is the
holdings of each instrument (the quantity held or the number of contracts), and the third,
fourth, and fifth columns are the dollar delta, gamma, and vega sensitivities, respectively.

The current portfolio sensitivities are a weighted average of the instruments in the
portfolio.

TargetSens  = Holdings' * Sensitivities

TargetSens =

     -61910.22     788946.21       4852.91

Maintaining Existing Allocations

To illustrate using hedgeopt, suppose that you want to maintain your existing portfolio.
The first form of hedgeopt minimizes the cost of hedging a portfolio given a set of target
sensitivities. If you want to maintain your existing portfolio composition and exposure,
you should be able to do so without spending any money. To verify this, set the target
sensitivities to the current sensitivities.

FixedInd = [1 2 3 4 5 6 7 8];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,Holdings, FixedInd, [], [], TargetSens)
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Holdings =

        100.00
         50.00
        -50.00
         80.00
          8.00
         30.00
         40.00
         10.00

Sens =

     -61910.22     788946.21       4852.91

Cost =

             0

Quantity =

  Columns 1 through 6

        100.00         50.00        -50.00         80.00          8.00         30.00

  Columns 7 through 8

         40.00         10.00

Portfolio composition and sensitivities are unchanged, and the cost associated with doing
nothing is zero. The cost is defined as the change in portfolio value. This number cannot
be less than zero because the rebalancing cost is defined as a nonnegative number.

If Value0 and Value1 represent the portfolio value before and after rebalancing,
respectively, the zero cost can also be verified by comparing the portfolio values.

Value0 = Holdings' * Price

Value0 =

     23674.62
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Value1 = Quantity * Price

Value1 =

     23674.62

Partially Hedged Portfolio

Building on the example in “Maintaining Existing Allocations” on page 4-6, suppose you
want to know the cost to achieve an overall portfolio dollar sensitivity of [-23000 -3300
3000], while allowing trading only in instruments 2, 3, and 6 (holding the positions of
instruments 1, 4, 5, 7, and 8 fixed). To find the cost, first set the target portfolio dollar
sensitivity.

TargetSens = [-23000 -3300 3000];

Then, specify the instruments to be fixed.

FixedInd = [1 4 5 7 8];

Finally, call hedgeopt

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

and again examine the results.

Sens =

     -23000.00      -3300.00       3000.00

Cost =

      19174.02

Quantity' =

        100.00
       -141.03
        137.26
         80.00
          8.00
        -57.96
         40.00
         10.00
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Recompute Value1, the portfolio value after rebalancing.

Value1 = Quantity * Price

Value1 =

      4500.60

As expected, the cost, $19174.02, is the difference between Value0 and Value1,
$23674.62 — $4500.60. Only the positions in instruments 2, 3, and 6 have been changed.

Fully Hedged Portfolio

The example in “Partially Hedged Portfolio” on page 4-8 illustrates a partial hedge, but
perhaps the most interesting case involves the cost associated with a fully hedged
portfolio (simultaneous delta, gamma, and vega neutrality). In this case, set the target
sensitivity to a row vector of 0s and call hedgeopt again. The following example uses
data from “Hedging with hedgeopt” on page 4-5.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... 
Holdings, FixedInd, [], [], TargetSens);

Examining the outputs reveals that you have obtained a fully hedged portfolio

Sens =

         -0.00          -0.00          -0.00

but at an expense of over $20,000.

Cost =

      23055.90

The positions required to achieve a fully hedged portfolio

Quantity' =

        100.00
       -182.36
        -19.55
         80.00
          8.00
        -32.97
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         40.00
         10.00

result in the new portfolio value

Value1 = Quantity * Price

Value1 =

      618.72

Minimizing Portfolio Sensitivities

The examples in “Fully Hedged Portfolio” on page 4-9 illustrate how to use hedgeopt to
determine the minimum cost of hedging a portfolio given a set of target sensitivities. In
these examples, portfolio target sensitivities are treated as equality constraints during the
optimization process. You tell hedgeopt what sensitivities you want, and it tells you what
it will cost to get those sensitivities.

A related problem involves minimizing portfolio sensitivities for a given set of maximum
target costs. For this goal, the target costs are treated as inequality constraints during
the optimization process. You tell hedgeopt the most you are willing spend to insulate
your portfolio, and it tells you the smallest portfolio sensitivities you can get for your
money.

To illustrate this use of hedgeopt, compute the portfolio dollar sensitivities along the
entire cost frontier. From the previous examples, you know that spending nothing
replicates the existing portfolio, while spending $23,055.90 completely hedges the
portfolio.

Assume, for example, you are willing to spend as much as $50,000, and want to see what
portfolio sensitivities will result along the cost frontier. Assume that the same instruments
are held fixed, and that the cost frontier is evaluated from $0 to $50,000 at increments of
$1000.

MaxCost = [0:1000:50000];

Now, call hedgeopt.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price, ... 
Holdings, FixedInd, [], MaxCost);

With this data, you can plot the required hedging cost versus the funds available (the
amount you are willing to spend)
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plot(MaxCost/1000, Cost/1000, 'red'), grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Actual Rebalancing Cost ($1000''s)')
title ('Rebalancing Cost Profile')

Rebalancing Cost Profile

and the portfolio dollar sensitivities versus the funds available.

figure
plot(MaxCost/1000, Sens(:,1), '-red')
hold('on')
plot(MaxCost/1000, Sens(:,2), '-.black')
plot(MaxCost/1000, Sens(:,3), '--blue')
grid
xlabel('Funds Available for Rebalancing ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
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Funds Available for Rebalancing

Self-Financing Hedges with hedgeslf
The figures “Rebalancing Cost Profile” on page 4-11 and “Funds Available for
Rebalancing” on page 4-12 indicate that there is no benefit because the funds available
for hedging exceed $23,055.90, the point of maximum expense required to obtain
simultaneous delta, gamma, and vega neutrality. You can also find this point of delta,
gamma, and vega neutrality using hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... 
Holdings, FixedInd);

Sens =

         -0.00
         -0.00
         -0.00
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Value1 =

      618.72

Quantity =

        100.00
       -182.36
        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00

Similar to hedgeopt, hedgeslf returns the portfolio dollar sensitivities and instrument
quantities (the rebalanced holdings). However, in contrast, the second output parameter
of hedgeslf is the value of the rebalanced portfolio, from which you can calculate the
rebalancing cost by subtraction.

Value0 - Value1

ans =

      23055.90

In this example, the portfolio is clearly not self-financing, so hedgeslf finds the best
possible solution required to obtain zero sensitivities.

There is, in fact, a third calling syntax available for hedgeopt directly related to the
results shown above for hedgeslf. Suppose, instead of directly specifying the funds
available for rebalancing (the most money you are willing to spend), you want to simply
specify the number of points along the cost frontier. This call to hedgeopt samples the
cost frontier at 10 equally spaced points between the point of minimum cost (and
potentially maximum exposure) and the point of minimum exposure (and maximum cost).

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, 10)

Sens =
     -32784.46       2231.83     -49694.33
     -29141.74       1983.85     -44172.74
     -25499.02       1735.87     -38651.14
     -21856.30       1487.89     -33129.55
     -18213.59       1239.91     -27607.96
     -14570.87        991.93     -22086.37
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     -10928.15        743.94     -16564.78
      -7285.43        495.96     -11043.18
      -3642.72        247.98      -5521.59
          0.00         -0.00          0.00

Cost =
          0.00
       2561.77
       5123.53
       7685.30
      10247.07
      12808.83
      15370.60
      17932.37
      20494.14
      23055.90

Now plot this data.

figure
plot(Cost/1000, Sens(:,1), '-red')
hold('on')
plot(Cost/1000, Sens(:,2), '-.black')
plot(Cost/1000, Sens(:,3), '--blue')
grid
xlabel('Rebalancing Cost ($1000''s)')
ylabel('Delta, Gamma, and Vega Portfolio Dollar Sensitivities')
title ('Portfolio Sensitivities Profile')
legend('Delta', 'Gamma', 'Vega', 0)
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Rebalancing Cost

In this calling form, hedgeopt calls hedgeslf internally to determine the maximum cost
needed to minimize the portfolio sensitivities ($23,055.90), and evenly samples the cost
frontier between $0 and $23,055.90.

Both hedgeopt and hedgeslf cast the optimization problem as a constrained linear
least squares problem. Depending on the instruments and constraints, neither function is
guaranteed to converge to a solution. In some cases, the problem space may be
unbounded, and additional instrument equality constraints, or user-specified constraints,
may be necessary for convergence. See “Hedging with Constrained Portfolios” on page 4-
37 for additional information.

See Also
hedgeopt | hedgeslf
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Related Examples
• “Portfolio Creation” on page 1-8
• “Adding Instruments to an Existing Portfolio” on page 1-11
• “Instrument Constructors” on page 1-20
• “Creating Instruments or Properties” on page 1-21
• “Searching or Subsetting a Portfolio” on page 1-23
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-17
• “Specifying Constraints with ConSet” on page 4-32
• “Portfolio Rebalancing” on page 4-34
• “Hedging with Constrained Portfolios” on page 4-37

More About
• “Instrument Constructors” on page 1-20
• “Hedging” on page 4-2
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Pricing and Hedging a Portfolio Using the Black-
Karasinski Model

This example illustrates how MATLAB® can be used to create a portfolio of interest-rate
derivatives securities, and price it using the Black-Karasinski interest-rate model. The
example also shows some hedging strategies to minimize exposure to market movements.

Create the Interest-Rate Term Structure Based on Reported Data

The structure RateSpec is an interest-rate term structure that defines the initial rate
specification from which the tree rates are derived. Use the information of annualized
zero coupon rates in the table below to populate the RateSpec structure.

  From             To           Rate
27 Feb 2007    27 Feb 2008      0.0493
27 Feb 2007    27 Feb 2009      0.0459
27 Feb 2007    27 Feb 2010      0.0450
27 Feb 2007    27 Feb 2012      0.0446
27 Feb 2007    27 Feb 2014      0.0445
27 Feb 2007    27 Feb 2017      0.0450
27 Feb 2007    27 Feb 2027      0.0473

This data could be retrieved from the Federal Reserve Statistical Release page by using
the Datafeed Toolbox™. In this case, the Datafeed Toolbox™ will connect to FRED® and
pull back the rates of the following treasury notes.

  Terms    Symbol
 =======   ======
    1   =  DGS1
    2   =  DGS2
    3   =  DGS3
    5   =  DGS5
    7   =  DGS7
    10  =  DGS10
    20  =  DGS20

Create the connection object:

  c = fred;

Create the symbol fetch list:

FredNames   = { ...
  'DGS1'; ...      % 1  Year
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  'DGS2'; ...      % 2  Year
  'DGS3'; ...      % 3  Year
  'DGS5'; ...      % 5  Year
  'DGS7'; ...      % 7  Year
  'DGS10'; ...     % 10 Year
  'DGS20'};        % 20 Year

Define the Terms:

Terms = [ 1; ...      % 1  Year
          2; ...      % 2  Year
          3; ...      % 3  Year
          5; ...      % 5  Year
          7; ...      % 7  Year
         10; ...      % 10 Year
         20];         % 20 Year

Set the StartDate to Feb 27, 2007:

  StartDate = datenum('Feb-27-2007');

  FredRet = fetch(c,FredNames,StartDate);

Set the ValuationDate based on the StartDate:

  ValuationDate = StartDate;

  EndDates = [];

  Rates =[];

Create the EndDates:

  for idx = 1:length(FredRet)

   %Pull the rates associated with Feb 27, 2007. All the Fred Rates come
   %back as percents
   Rates = [Rates; ...
       FredRet(idx).Data(1,2) / 100];

    %Determine the EndDates by adding the Term to the year of the
    %StartDate
    EndDates = [EndDates; ...
       round(datenum(...
           year(StartDate)+ Terms(idx,1), ...
           month(StartDate),...
           day(StartDate)))];
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  end

Use the function intenvset to create the RateSpec with the following data:

Compounding = 1;
StartDate = '27-Feb-2007';
Rates = [0.0493; 0.0459; 0.0450; 0.0446; 0.0446; 0.0450; 0.0473];
EndDates = {'27-Feb-2008'; '27-Feb-2009';'27-Feb-2010'; '27-Feb-2012';...
            '27-Feb-2014' ; '27-Feb-2017'; '27-Feb-2027'};
ValuationDate = StartDate;

RateSpec = intenvset('Compounding',Compounding,'StartDates', StartDate,...
                     'EndDates', EndDates, 'Rates', Rates,'ValuationDate', ValuationDate)

RateSpec = 

  struct with fields:

           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [7x1 double]
            Rates: [7x1 double]
         EndTimes: [7x1 double]
       StartTimes: [7x1 double]
         EndDates: [7x1 double]
       StartDates: 733100
    ValuationDate: 733100
            Basis: 0
     EndMonthRule: 1

Specify the Volatility Model

Create the structure VolSpec that specifies the volatility process with the following data.

Volatility = [0.011892; 0.01563; 0.02021; 0.02125; 0.02165; 0.02065; 0.01803];
Alpha = [0.0001];
VolSpec = bkvolspec(ValuationDate, EndDates, Volatility, EndDates(end), Alpha)

VolSpec = 

  struct with fields:
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             FinObj: 'BKVolSpec'
      ValuationDate: 733100
           VolDates: [7x1 double]
           VolCurve: [7x1 double]
         AlphaCurve: 1.0000e-04
         AlphaDates: 740405
    VolInterpMethod: 'linear'

Specify the Time Structure of the Tree

The structure TimeSpec specifies the time structure for an interest-rate tree. This
structure defines the mapping between the observation times at each level of the tree and
the corresponding dates.

TimeSpec = bktimespec(ValuationDate, EndDates)

TimeSpec = 

  struct with fields:

           FinObj: 'BKTimeSpec'
    ValuationDate: 733100
         Maturity: [7x1 double]
      Compounding: -1
            Basis: 0
     EndMonthRule: 1

Create the BK Tree

Use the previously computed values for RateSpec, VolSpec, and TimeSpec to create
the BK tree.

BKTree = bktree(VolSpec, RateSpec, TimeSpec)

BKTree = 

  struct with fields:

      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
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    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 5 7 10]
        dObs: [733100 733465 733831 734196 734926 735657 736753]
      CFlowT: {1x7 cell}
       Probs: {1x6 cell}
     Connect: {1x6 cell}
     FwdTree: {1x7 cell}

Observe the Interest-Rate Tree.

Visualize the interest rate evolution along the tree by looking at the output structure
BKTree. The function bktree returns an inverse discount tree, which you can convert
into an interest rate tree with the cvtree function.

BKTreeR = cvtree(BKTree)

BKTreeR = 

  struct with fields:

      FinObj: 'BKRateTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 5 7 10]
        dObs: [733100 733465 733831 734196 734926 735657 736753]
      CFlowT: {1x7 cell}
       Probs: {1x6 cell}
     Connect: {1x6 cell}
    RateTree: {1x7 cell}

Look at the upper, middle and lower branch paths of the tree:

OldFormat = get(0, 'format');
format short

%Rate at root node:
RateRoot      = trintreepath(BKTreeR, 0)

%Rates along upper branch:
RatePathUp    = trintreepath(BKTreeR, [1 1 1 1 1 1])

 Pricing and Hedging a Portfolio Using the Black-Karasinski Model

4-21



%Rates along middle branch:
RatePathMiddle = trintreepath(BKTreeR, [2 2 2 2 2 2])

%Rates along lower branch:
RatePathDown = trintreepath(BKTreeR, [3 3 3 3 3 3])

RateRoot =

    0.0481

RatePathUp =

    0.0481
    0.0425
    0.0446
    0.0478
    0.0510
    0.0555
    0.0620

RatePathMiddle =

    0.0481
    0.0416
    0.0423
    0.0430
    0.0436
    0.0449
    0.0484

RatePathDown =

    0.0481
    0.0408
    0.0401
    0.0388
    0.0373
    0.0363
    0.0378
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You can also display a graphical representation of the tree to examine interactively the
rates on the nodes of the tree until maturity. The function treeviewer displays the
structure of the rate tree in the left window. The tree visualization in the right window is
blank, but by selecting Table/Diagram and clicking on the nodes you can examine the
rates along the paths.

treeviewer(BKTreeR);

Create an Instrument Portfolio

Create a portfolio consisting of two bonds instruments and an option on the 5% bond.

% Two Bonds
CouponRate = [0.04;0.05];
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Settle = '27 Feb 2007';
Maturity = {'27 Feb 2009';'27 Feb 2010'};
Period = 1;

% American Option on the 5% Bond
OptSpec = {'call'};
Strike = 98;
ExerciseDates = '27 Feb 2010';
AmericanOpt = 1;

InstSet = instadd('Bond', CouponRate, Settle,  Maturity, Period);
InstSet = instadd(InstSet,'OptBond', 2, OptSpec, Strike, ExerciseDates, AmericanOpt);

% Assign Names and Holdings
Holdings = [10; 15;3];
Names = {'4% Bond'; '5% Bond'; 'Option 98'};

InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Quantity'}, 'Data', Holdings );
InstSet = instsetfield(InstSet, 'Index',1:3, 'FieldName', {'Name'}, 'Data', Names );

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Quantity Name     
1     Bond 0.04       27-Feb-2007    27-Feb-2009    1      0     1            NaN       NaN             NaN            NaN       100  10       4% Bond  
2     Bond 0.05       27-Feb-2007    27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  15       5% Bond  
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Quantity Name     
3     OptBond 2        call    98     27-Feb-2010    1           3        Option 98
 

Price the Portfolio Using the BK Model

Calculate the price of each instrument in the portfolio.

[Price, PTree] = bkprice(BKTree, InstSet)

Price =

   98.8841
  101.3470
    3.3470
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PTree = 

  struct with fields:

     FinObj: 'BKPriceTree'
      PTree: {1x8 cell}
     AITree: {1x8 cell}
       tObs: [0 1 2 3 5 7 10 20]
    Connect: {1x6 cell}
      Probs: {1x6 cell}

The prices in the output vector Price correspond to the prices at observation time zero
(tObs = 0), which is defined as the Valuation Date of the interest-rate tree.

In the Price vector, the first element, 98.884, represents the price of the first instrument
(4% Bond); the second element, 101.347, represents the price of the second instrument
(5% Bond), and 3.347 represents the price of the American call option.

You can also display a graphical representation of the price tree to examine the prices on
the nodes of the tree until maturity.

treeviewer(PTree,InstSet);
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Add More Instruments to the Existing Portfolio

Add instruments to the existing portfolio: cap, floor, floating rate note, vanilla swap and a
puttable and callable bond.

% Cap
StrikeC =0.035;
InstSet = instadd(InstSet,'Cap', StrikeC, Settle, '27 Feb 2010');

% Floor
StrikeF =0.05;
InstSet = instadd(InstSet,'Floor', StrikeF, Settle, '27 Feb 2009');

% Floating Rate Note
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InstSet = instadd(InstSet,'Float', 30, Settle, '27 Feb 2009');

% Vanilla Swap
 LegRate =[0.04 5];
 InstSet = instadd(InstSet,'Swap', LegRate, Settle, '27 Feb 2010');

% Puttable and Callable Bonds
InstSet = instadd(InstSet,'OptEmBond', CouponRate, Settle, '27 Feb 2010', {'put';'call'},...
                  Strike, '27 Feb 2010','AmericanOpt', 1, 'Period', 1);

% Process Names and Holdings
Holdings = [15 ;5 ;8; 7; 9; 4];
Names = {'3.5% Cap';'5% Floor';'30BP Float';'4%/5BP Swap'; 'PuttBond'; 'CallBond' };

InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Quantity'}, 'Data', Holdings );
InstSet = instsetfield(InstSet, 'Index',4:9, 'FieldName', {'Name'}, 'Data', Names );

Examine the set of instruments contained in the variable InstSet.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Quantity Name     
1     Bond 0.04       27-Feb-2007    27-Feb-2009    1      0     1            NaN       NaN             NaN            NaN       100  10       4% Bond  
2     Bond 0.05       27-Feb-2007    27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  15       5% Bond  
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt Quantity Name     
3     OptBond 2        call    98     27-Feb-2010    1           3        Option 98
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Quantity Name       
4     Cap  0.035  27-Feb-2007    27-Feb-2010    1        0     100       15       3.5% Cap   
 
Index Type  Strike Settle         Maturity       FloorReset Basis Principal Quantity Name       
5     Floor 0.05   27-Feb-2007    27-Feb-2009    1          0     100       5        5% Floor   
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate Quantity Name       
6     Float 30     27-Feb-2007    27-Feb-2009    1          0     100       1            Inf     -Inf      8        30BP Float 
 
Index Type LegRate   Settle         Maturity       LegReset Basis Principal LegType EndMonthRule StartDate Quantity Name       
7     Swap [0.04  5] 27-Feb-2007    27-Feb-2010    [NaN]    0     100       [NaN]   1            NaN       7        4%/5BP Swap
 
Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates                Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt Quantity Name       
8     OptEmBond 0.04       27-Feb-2007    27-Feb-2010    put     98     27-Feb-2007   27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  1           9        PuttBond   
9     OptEmBond 0.05       27-Feb-2007    27-Feb-2010    call    98     27-Feb-2007   27-Feb-2010    1      0     1            NaN       NaN             NaN            NaN       100  1           4        CallBond   
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Hedging

The idea behind hedging is to minimize exposure to market movements. As the underlying
changes, the proportions of the instruments forming the portfolio may need to be
adjusted to keep the sensitivities within the desired range.

Calculate sensitivities using the BK model.

[Delta, Gamma, Vega, Price] = bksens(BKTree, InstSet);

Get the current portfolio holdings.

Holdings = instget(InstSet, 'FieldName', 'Quantity');

Create a matrix of sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the
portfolio, and each column with a different sensitivity measure.

Display the information.

format bank
disp([Price  Holdings  Sensitivities])

         98.88         10.00       -185.47        528.47             0
        101.35         15.00       -277.51       1045.05         -0.00
          3.35          3.00       -223.52      11843.32         -0.00
          2.77         15.00        250.04       2921.11             0
          0.75          5.00       -132.97      11566.69             0
        100.56          8.00         -0.80          2.02             0
         -1.53          7.00       -272.08       1027.85             0
         98.60          9.00       -168.92      21712.82         -0.00
         98.00          4.00        -53.99     -10798.27             0

The first column above is the dollar unit price of each instrument, the second column is
the number of contracts of each instrument, and the third, fourth, and fifth columns are
the dollar delta, gamma, and vega sensitivities.

The current portfolio sensitivities are a weighted average of the instruments in the
portfolio.

TargetSens  = Holdings' * Sensitivities

4 Hedging Portfolios

4-28



TargetSens =

      -7249.21     317573.92         -0.00

Obtain a Neutral Sensitivity Portfolio

Suppose you want to obtain a delta, gamma and vega neutral portfolio. The function
hedgeslf finds the reallocation in a portfolio of financial instruments closest to being
self-financing (maintaining constant portfolio value).

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price,Holdings)

Sens =

         -0.00
          0.00
         -0.00

Value1 =

       4637.54

Quantity =

         10.00
          5.26
         -5.11
          7.06
         -3.05
         12.45
         -7.36
          8.47
         10.37

The function hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the
rebalanced portfolio (Value1) and the new allocation for each instrument (Quantity). If
Value0 and Value1 represent the portfolio value before and after rebalancing, you can
verify the cost by comparing the portfolio values.

 Pricing and Hedging a Portfolio Using the Black-Karasinski Model

4-29



Value0 = Holdings' * Price

Value0 =

       4637.54

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega
neutrality) and self-financing (the values of the portfolio before and after balancing
(Value0 and Value1) are the same.

Adding Constraints to Hedge a Portfolio

Suppose that you want to place upper and lower bounds on the individual instruments in
the portfolio. Let's say that you want to bound the position of all instruments to within +/-
11 contracts.

Applying these constraints disallows the current positions in the fifth and eighth
instruments. All other instruments are currently within the upper/lower bounds.

% Specify the lower and upper bounds
LowerBounds = [-11  -11  -11  -11  -11  -11  -11  -11  -11];
UpperBounds = [ 11   11   11   11   11   11   11   11   11];

% Use the function portcons to build the constraints
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

% Apply the constraints to the portfolio
[Sens, Value, Quantity1] = hedgeslf(Sensitivities, Price, Holdings, [], ConSet)

Sens =

             0
             0
             0

Value =

             0

Quantity1 =
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             0
             0
             0
             0
             0
             0
             0
             0
             0

Observe that the hedgeslf function enforces the bounds on the fifth and eighth
instruments, and the portfolio continues to be fully hedged and self-financing.

set(0, 'format', OldFormat);

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation” on page 1-8
• “Adding Instruments to an Existing Portfolio” on page 1-11
• “Instrument Constructors” on page 1-20
• “Creating Instruments or Properties” on page 1-21
• “Searching or Subsetting a Portfolio” on page 1-23
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
• “Specifying Constraints with ConSet” on page 4-32
• “Portfolio Rebalancing” on page 4-34
• “Hedging with Constrained Portfolios” on page 4-37

More About
• “Instrument Constructors” on page 1-20
• “Hedging” on page 4-2
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Specifying Constraints with ConSet
In this section...
“Introduction” on page 4-32
“Setting Constraints” on page 4-32
“Portfolio Rebalancing” on page 4-34

Introduction
Both hedgeopt and hedgeslf accept an optional input argument, ConSet, that allows
you to specify a set of linear inequality constraints for instruments in your portfolio. The
examples in this section are brief. For additional information regarding portfolio
constraint specifications, refer to “Analyzing Portfolios” (Financial Toolbox).

Setting Constraints
For the first example of setting constraints, return to the fully hedged portfolio example
that used hedgeopt to determine the minimum cost of obtaining simultaneous delta,
gamma, and vega neutrality (target sensitivities all 0). Recall that when hedgeopt
computes the cost of rebalancing a portfolio, the input target sensitivities you specify are
treated as equality constraints during the optimization process. The situation is
reproduced next for convenience.

TargetSens = [0 0 0];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

The outputs provide a fully hedged portfolio

Sens =
         -0.00          -0.00          -0.00

at an expense of over $23,000.

Cost =
      23055.90

The positions required to achieve this fully hedged portfolio are

Quantity' =
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        100.00
       -182.36
        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00

Suppose now that you want to place some upper and lower bounds on the individual
instruments in your portfolio. You can specify these constraints, along with a variety of
general linear inequality constraints, with Financial Toolbox™ function portcons.

As an example, assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as
before, you want to bound the position of all instruments to within +/- 180 contracts (for
each instrument, you cannot short or long more than 180 contracts). Applying these
constraints disallows the current position in the second instrument (short 182.36). All
other instruments are currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors
and then calling portcons.

LowerBounds = [-180 -180 -180 -180 -180 -180 -180 -180];
UpperBounds = [ 180  180   180 180  180  180  180  180];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens, ConSet);

Examine the outputs and see that they are all set to NaN, indicating that the problem,
given the constraints, is not solvable. Intuitively, the results mean that you cannot obtain
simultaneous delta, gamma, and vega neutrality with these constraints at any price.

To see how close you can get to portfolio neutrality with these constraints, call hedgeslf.

[Sens, Value1, Quantity] = hedgeslf(Sensitivities, Price,... 
Holdings, FixedInd, ConSet);

Sens =

       -352.43
         21.99
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       -498.77

Value1 =

      855.10

Quantity =

        100.00
       -180.00
        -37.22
         80.00
          8.00
        -31.86
         40.00
         10.00

hedgeslf enforces the lower bound for the second instrument, but the sensitivity is far
from neutral. The cost to obtain this portfolio is

Value0 - Value1

ans =

      22819.52

Portfolio Rebalancing
As a final example of user-specified constraints, rebalance the portfolio using the second
hedging goal of hedgeopt. Assume that you are willing to spend as much as $20,000 to
rebalance your portfolio, and you want to know what minimum portfolio sensitivities you
can get for your money. In this form, recall that the target cost ($20,000) is treated as an
inequality constraint during the optimization process.

For reference, start up hedgeopt without any user-specified linear inequality constraints.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], 20000);

Sens =

      -4345.36        295.81      -6586.64
Cost =
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      20000.00

Quantity' =

        100.00
       -151.86
       -253.47
         80.00
          8.00
        -18.18 
         40.00
         10.00

This result corresponds to the $20,000 point along the Portfolio Sensitivities Profile
shown in the figure “Rebalancing Cost” on page 4-15.

Assume that, in addition to holding instruments 1, 4, 5, 7, and 8 fixed as before, you want
to bound the position of all instruments to within +/- 150 contracts (for each instrument,
you cannot short more than 150 contracts and you cannot long more than 150 contracts).
These bounds disallow the current position in the second and third instruments (-151.86
and -253.47). All other instruments are currently within the upper/lower bounds.

As before, you can generate these constraints by first specifying the lower and upper
bounds vectors and then calling portcons.

LowerBounds = [-150 -150 -150 -150 -150 -150 -150 -150];
UpperBounds = [ 150  150  150  150  150  150  150  150];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, again call hedgeopt with ConSet as the last input.

[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings,FixedInd, [], 20000, [], ConSet);

Sens =

      -8818.47        434.43      -4010.79

Cost =

      19876.89

Quantity' =

 Specifying Constraints with ConSet

4-35



        100.00
       -150.00
       -150.00
         80.00
          8.00
        -28.32
         40.00
         10.00

With these constraints, hedgeopt enforces the lower bound for the second and third
instruments. The cost incurred is $19,876.89.

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation” on page 1-8
• “Adding Instruments to an Existing Portfolio” on page 1-11
• “Instrument Constructors” on page 1-20
• “Creating Instruments or Properties” on page 1-21
• “Searching or Subsetting a Portfolio” on page 1-23
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-17
• “Hedging with Constrained Portfolios” on page 4-37

More About
• “Instrument Constructors” on page 1-20
• “Hedging” on page 4-2
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Hedging with Constrained Portfolios
In this section...
“Overview” on page 4-37
“Example: Fully Hedged Portfolio” on page 4-37
“Example: Minimize Portfolio Sensitivities” on page 4-39
“Example: Under-Determined System” on page 4-40
“Example: Portfolio Constraints with hedgeslf” on page 4-42

Overview
Both hedging functions cast the optimization as a constrained linear least-squares
problem. (See the function lsqlin for details.) In particular, lsqlin attempts to
minimize the constrained linear least squares problem

x

Cx d A x b

Aeq x beq

lb x ub

min
1

2 2

2
- ◊ £

◊ =

£ £

such that

where C, A, and Aeq are matrices, and d, b, beq, lb, and ub are vectors. For Financial
Instruments Toolbox software, x is a vector of asset holdings (contracts).

Depending on the constraint and the number of assets in the portfolio, a solution to a
particular problem may or may not exist. Furthermore, if a solution is found, it may not be
unique. For a unique solution to exist, the least squares problem must be sufficiently and
appropriately constrained.

Example: Fully Hedged Portfolio
Recall that hedgeopt allows you to allocate an optimal hedge by one of two goals:

• Minimize the cost of hedging a portfolio given a set of target sensitivities.
• Minimize portfolio sensitivities for a given set of maximum target costs.

As an example, reproduce the results for the fully hedged portfolio example.
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TargetSens = [0 0 0];
FixedInd   = [1 4 5 7 8];
[Sens,Cost,Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], [], TargetSens);

Sens =

         -0.00          -0.00          -0.00

Cost =

      23055.90

Quantity' =

         98.72
       -182.36
        -19.55
         80.00
          8.00
        -32.97
         40.00
         10.00 

This example finds a unique solution at a cost of just over $23,000. The matrix C (formed
internally by hedgeopt and passed to lsqlin) is the asset Price vector expressed as a
row vector.

C = Price' = [98.72 97.53 0.05 98.72 100.55 6.28 0.05 3.69]

The vector d is the current portfolio value Value0 = 23674.62. The example maintains,
as closely as possible, a constant portfolio value subject to the specified constraints.

Additional Constraints

In the absence of any additional constraints, the least squares objective involves a single
equation with eight unknowns. This is an under-determined system of equations. Because
such systems generally have an infinite number of solutions, you need to specify
additional constraints to achieve a solution with practical significance.

The additional constraints can come from two sources:

• User-specified equality constraints
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• Target sensitivity equality constraints imposed by hedgeopt

The example in “Fully Hedged Portfolio” on page 4-9 specifies five equality constraints
associated with holding assets 1, 4, 5, 7, and 8 fixed. This reduces the number of
unknowns from eight to three, which is still an under-determined system. However, when
combined with the first goal of hedgeopt, the equality constraints associated with the
target sensitivities in TargetSens produce an additional system of three equations with
three unknowns. This additional system guarantees that the weighted average of the
delta, gamma, and vega of assets 2, 3, and 6, together with the remaining assets held
fixed, satisfy the overall portfolio target sensitivity needs in TargetSens.

Combining the least-squares objective equation with the three portfolio sensitivity
equations provides an overall system of four equations with three unknown asset
holdings. This is no longer an under-determined system, and the solution is as shown.

If the assets held fixed are reduced, for example, FixedInd = [1 4 5 7], hedgeopt
returns a no cost, fully hedged portfolio (Sens = [0 0 0] and Cost = 0).

If you further reduce FixedInd (for example, [1 4 5], [1 4], or even []), hedgeopt
always returns a no cost, fully hedged portfolio. In these cases, insufficient constraints
result in an under-determined system. Although hedgeopt identifies no cost, fully hedged
portfolios, there is nothing unique about them. These portfolios have little practical
significance.

Constraints must be sufficient and appropriately defined. Additional constraints having no
effect on the optimization are called dependent constraints. As a simple example, assume
that parameter Z is constrained such that Z £ 1 . Furthermore, assume that you somehow
add another constraint that effectively restricts Z £ 0 . The constraint Z £ 1  now has no
effect on the optimization.

Example: Minimize Portfolio Sensitivities
To illustrate using hedgeopt to minimize portfolio sensitivities for a given maximum
target cost, specify a target cost of $20,000 and determine the new portfolio sensitivities,
holdings, and cost of the rebalanced portfolio.

MaxCost = 20000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, [1 4 5 7 8], [], MaxCost);

Sens =
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      -4345.36        295.81      -6586.64

Cost =

       20000.00

Quantity' =

        100.00
       -151.86
       -253.47
         80.00
          8.00
        -18.18
         40.00
         10.00

This example corresponds to the $20,000 point along the cost axis in the figures
“Rebalancing Cost Profile” on page 4-11, “Funds Available for Rebalancing” on page 4-12,
and “Rebalancing Cost” on page 4-15.

When minimizing sensitivities, the maximum target cost is treated as an inequality
constraint; in this case, MaxCost is the most you are willing to spend to hedge a portfolio.
The least-squares objective matrix C is the matrix transpose of the input asset sensitivities

C = Sensitivities'

a 3-by-8 matrix in this example, and d is a 3-by-1 column vector of zeros,
[0 0 0]'.

Without any additional constraints, the least-squares objective results in an under-
determined system of three equations with eight unknowns. By holding assets 1, 4, 5, 7,
and 8 fixed, you reduce the number of unknowns from eight to three. Now, with a system
of three equations with three unknowns, hedgeopt finds the solution shown.

Example: Under-Determined System
Reducing the number of assets held fixed creates an under-determined system with
meaningless solutions. For example, see what happens with only four assets constrained.

FixedInd = [1 4 5 7];
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [], MaxCost);
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Sens =

         -0.00          -0.00          -0.00

Cost =

      20000.00

Quantity' =

        100.00
        -149.31
        -14.91
         80.00
          8.00
        -34.64
         40.00
        -32.60

You have spent $20,000 (all the funds available for rebalancing) to achieve a fully hedged
portfolio.

With an increase in available funds to $50,000, you still spend all available funds to get
another fully hedged portfolio.

MaxCost  = 50000;
[Sens, Cost, Quantity] = hedgeopt(Sensitivities, Price,... 
Holdings, FixedInd, [],MaxCost);

Sens =

         -0.00          0.00          0.00
Cost =

      50000.00

Quantity' =

        100.00
       -473.78
        -60.51
         80.00
          8.00
        -18.20
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         40.00
        385.60

All solutions to an under-determined system are meaningless. You buy and sell various
assets to obtain zero sensitivities, spending all available funds every time. If you reduce
the number of fixed assets any further, this problem is insufficiently constrained, and you
find no solution (the outputs are all NaN).

Note also that no solution exists whenever constraints are inconsistent. Inconsistent
constraints create an infeasible solution space; the outputs are all NaN.

Example: Portfolio Constraints with hedgeslf
The other hedging function, hedgeslf, attempts to minimize portfolio sensitivities such
that the rebalanced portfolio maintains a constant value (the rebalanced portfolio is
hedged against market moves and is closest to being self-financing). If a self-financing
hedge is not found, hedgeslf tries to rebalance a portfolio to minimize sensitivities.

From a least-squares systems approach, hedgeslf first attempts to minimize cost in the
same way that hedgeopt does. If it cannot solve this problem (a no cost, self-financing
hedge is not possible), hedgeslf proceeds to minimize sensitivities like hedgeopt. Thus,
the discussion of constraints for hedgeopt is directly applicable to hedgeslf as well.

To illustrate this hedging facility using equity exotic options, consider the portfolio
CRRInstSet obtained from the example MAT-file deriv.mat. The portfolio consists of
eight option instruments: two stock options, one barrier, one compound, two lookback,
and two Asian.

The hedging functions require inputs that include the current portfolio holdings
(allocations) and a matrix of instrument sensitivities. To create these inputs, start by
loading the example portfolio into memory

load deriv.mat;

Next, compute the prices and sensitivities of the instruments in this portfolio.

[Delta, Gamma, Vega, Price] = crrsens(CRRTree, CRRInstSet);

Extract the current portfolio holdings (the quantity held or the number of contracts).

Holdings = instget(CRRInstSet, 'FieldName', 'Quantity');
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For convenience place the delta, gamma, and vega sensitivity measures into a matrix of
sensitivities.

Sensitivities = [Delta Gamma Vega];

Each row of the Sensitivities matrix is associated with a different instrument in the
portfolio and each column with a different sensitivity measure.
disp([Price  Holdings  Sensitivities])

          8.29         10.00          0.59          0.04         53.45
          2.50          5.00         -0.31          0.03         67.00
         12.13          1.00          0.69          0.03         67.00
          3.32          3.00         -0.12         -0.01        -98.08
          7.60          7.00         -0.40     -45926.32         88.18
         11.78          9.00         -0.42    -112143.15        119.19
          4.18          4.00          0.60      45926.32         49.21
          3.42          6.00          0.82     112143.15         41.71

The first column contains the dollar unit price of each instrument, the second contains the
holdings of each instrument, and the third, fourth, and fifth columns contain the delta,
gamma, and vega dollar sensitivities, respectively.

Suppose that you want to obtain a delta, gamma, and vega neutral portfolio using
hedgeslf.

[Sens, Value1, Quantity]= hedgeslf(Sensitivities, Price, ... 
Holdings)

Sens =

          0.00
         -0.00
          0.00

Value1 =

        313.93

Quantity =

         10.00
          7.64
         -1.56
         26.13
          9.94
          3.73
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         -0.75
          8.11

hedgeslf returns the portfolio dollar sensitivities (Sens), the value of the rebalanced
portfolio (Value1) and the new allocation for each instrument (Quantity).

If Value0 and Value1 represent the portfolio value before and after rebalancing,
respectively, you can verify the cost by comparing the portfolio values.

Value0= Holdings' * Price

Value0 =

        313.93

In this example, the portfolio is fully hedged (simultaneous delta, gamma, and vega
neutrality) and self-financing (the values of the portfolio before and after balancing
(Value0 and Value1) are the same.

Suppose now that you want to place some upper and lower bounds on the individual
instruments in your portfolio. By using Financial Toolbox function portcons, you can
specify these constraints, along with various general linear inequality constraints.

As an example, assume that, in addition to holding instrument 1 fixed as before, you want
to bound the position of all instruments to within +/- 20 contracts (for each instrument,
you cannot short or long more than 20 contracts). Applying these constraints disallows
the current position in the fourth instrument (long 26.13). All other instruments are
currently within the upper/lower bounds.

You can generate these constraints by first specifying the lower and upper bounds vectors
and then calling portcons.

LowerBounds = [-20  -20  -20  -20  -20  -20  -20  -20];
UpperBounds = [20  20  20  20  20  20  20  20];
ConSet = portcons('AssetLims', LowerBounds, UpperBounds);

To impose these constraints, call hedgeslf with ConSet as the last input.

[Sens, Cost, Quantity1] = hedgeslf(Sensitivities, Price, ... 
Holdings, 1, ConSet)

Sens =

         -0.00
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          0.00
          0.00

Cost =

        313.93

Quantity1 =

         10.00
          5.28
         10.98
         20.00
         20.00
         -6.99
        -20.00
          9.39

Observe that hedgeslf enforces the upper bound on the fourth instrument, and the
portfolio continues to be fully hedged and self-financing.

See Also
hedgeopt | hedgeslf

Related Examples
• “Portfolio Creation” on page 1-8
• “Adding Instruments to an Existing Portfolio” on page 1-11
• “Instrument Constructors” on page 1-20
• “Creating Instruments or Properties” on page 1-21
• “Searching or Subsetting a Portfolio” on page 1-23
• “Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
• “Pricing and Hedging a Portfolio Using the Black-Karasinski Model” on page 4-17
• “Specifying Constraints with ConSet” on page 4-32
• “Portfolio Rebalancing” on page 4-34
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More About
• “Instrument Constructors” on page 1-20
• “Hedging” on page 4-2
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Mortgage-Backed Securities

• “What Are Mortgage-Backed Securities?” on page 5-2
• “Fixed-Rate Mortgage Pool” on page 5-3
• “Computing Option-Adjusted Spread” on page 5-11
• “Prepayments with Fewer Than 360 Months Remaining” on page 5-14
• “Pools with Different Numbers of Coupons Remaining” on page 5-17
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market

Model” on page 5-19
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model”

on page 5-42
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51
• “Prepayment Risk” on page 5-52
• “CMO Workflow” on page 5-60
• “Create PAC and Sequential CMO” on page 5-63
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What Are Mortgage-Backed Securities?
Mortgage-backed securities (MBSs) are a type of investment that represents ownership in
a group of mortgages. Principal and interest from the individual mortgages are used to
pay principal and interest on the MBS.

Ownership in a group of mortgages is typically represented by a pass-through certificate
(PC). Most pass-through certificates are issued by the Government National Mortgage
Agency, a branch of the United States government, or by one of two private corporations:
Fannie Mae or Freddie Mac. With these certificates, homeowners' payments pass from
the originating bank through the issuing agency to holders of the certificates. These
agencies also frequently guarantee that the certificate holder receives timely payment of
principal and interest from the PCs.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay |
mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas |
mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed |
psaspeed2default | psaspeed2rate

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
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Fixed-Rate Mortgage Pool
In this section...
“Introduction” on page 5-3
“Inputs to Functions” on page 5-3
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Risk Measurement” on page 5-8
“Mortgage Pool Valuation” on page 5-9

Introduction
Financial Instruments Toolbox software supports calculations involved with generic fixed-
rate mortgage pools and balloon mortgages. Generic fixed-rate mortgage pools and
balloon mortgages have pass-through certificates (PC) that typically have embedded call
options in the form of prepayment. Prepayment is an excess payment applied to the
principal of a PC. These accelerated payments reduce the effective life of a PC.

The toolbox comes with a standard Bond Market Association (PSA) prepayment model
and can generate multiples of standard prepayment speeds. The Public Securities
Association provides a set of uniform practices for calculating the characteristics of
mortgage-backed securities when there is an assumed prepayment function.

Alternatively, aside from the standard PSA implementation in this toolbox, you can supply
your own projected prepayment vectors. Currently, however, custom prepayment
functionality that incorporates pool-specific information and interest rate forecasts are
not available in this toolbox. If you plan to use custom prepayment vectors in your
calculations, you presumably already own such a suite in MATLAB.

Inputs to Functions
Because of the generic, all-purpose nature of the toolbox pass-through functions, you can
fine-tune them to conform to a particular mortgage. Most functions require at least this
set of inputs:

• Gross coupon rate
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• Settlement date
• Issue (effective) date
• Maturity date

Typical optional inputs include standard prepayment speed (or customized vector), net
coupon rate (if different from gross coupon rate), and payment delay in number of days.

All calculations are based on expected payment dates and actual cash flow to the investor.
For example, when GrossRate and CouponRate differ as inputs to mbsdurp, the
function returns a modified duration based on CouponRate. (A notable exception is
mbspassthrough, which returns interest quantities based on the GrossRate.)

Generating Prepayment Vectors
You can generate PSA multiple prepayment vectors quickly. To generate prepayment
vectors of 100 and 200 PSA, type

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);

This function computes two prepayment values: conditional prepayment rate (CPR) and
single monthly mortality (SMM) rate. CPR is the percentage of outstanding principal
prepaid in one year. SMM is the percentage of outstanding principal prepaid in one
month. In other words, CPR is an annual version of SMM.

Since the entire 360-by-2 array is too long to show in this document, observe the SMM
(100 and 200 PSA) plots, spaced one month apart, instead.
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Prepayment assumptions form the basis upon which far more comprehensive MBS
calculations are based. As an illustration, observe the following example, which shows the
use of the function mbscfamounts to generate cash flows and timings based on a set of
standard prepayments.

Consider three mortgage pools that were sold on the issue date (which starts
unamortized). The first two pools "balloon out" in 60 months, and the third is regularly
amortized to the end. The prepayment speeds are assumed to be 100, 200, and 200 PSA,
respectively.

Settle     = [datenum('1-Feb-2000');
              datenum('1-Feb-2000');
              datenum('1-Feb-2000')];
                            
Maturity   = [datenum('1-Feb-2030')];
          
IssueDate  = datenum('1-Feb-2000');
GrossRate  = 0.08125;
CouponRate = 0.075;
Delay = 14; 

PSASpeed = [100, 200];
[CPR, SMM] = psaspeed2rate(PSASpeed);
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PrepayMatrix = ones(360,3);
PrepayMatrix(1:60,1:2) = SMM(1:60,1:2);
PrepayMatrix(:,3) = SMM(:,2);

[CFlowAmounts, CFlowDates, TFactors, Factors] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, [], PrepayMatrix);

The fourth output argument, Factors, indicates the fraction of the balance still
outstanding at the beginning of each month. A snapshot of this argument in the MATLAB
Variables editor illustrates the 60-month life of the first two of the mortgages with balloon
payments and the continuation of the third mortgage until the end (360 months).

You can readily see that mbscfamounts is the building block of most fixed rate and
balloon pool cash flows.

Mortgage Prepayments
Prepayment is beneficial to the pass-through owner when a mortgage pool has been
purchased at discount. The next example compares mortgage yields (compounded
monthly) versus the purchase clean price with constant prepayment speed. The example
illustrates that when you have purchased a pool at a discount, prepayment generates a
higher yield with decreasing purchase price.

Price = [85; 90; 95];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
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Compute the mortgage and bond-equivalent yields.

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ... 
IssueDate, GrossRate, CouponRate, Delay, Speed)

MYield =

    0.1018
    0.0918
    0.0828

BEMBSYield =

    0.1040
    0.0936
    0.0842

If for this same pool of mortgages, there was no prepayment (Speed = 0), the yields
would decline to

MYield =

    0.0926
    0.0861
    0.0802

BEMBSYield =

    0.0944
    0.0877
    0.0815

Likewise, if the rate of prepayment doubled (Speed = 200), the yields would increase to

MYield =

    0.1124
    0.0984
    0.0858

BEMBSYield =

    0.1151
    0.1004
    0.0873
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For the same prepayment vector, deeper discount pools earn higher yields. For more
information, see mbsprice and mbsyield.

Risk Measurement
Financial Instruments Toolbox provides the most basic risk measures of a pool portfolio:

• Modified duration
• Convexity
• Average life of pool

Consider the following example, which calculates the Macaulay and modified durations
given the price of a mortgage pool.

Price = [95; 100; 105];
Settle = datenum('15-Apr-2002');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;
 
[YearDuration, ModDuration] = mbsdurp(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration =

    6.1341
    6.3882
    6.6339

ModDuration =

    5.8863
    6.1552
    6.4159

Using Financial Instruments Toolbox functions, you can obtain modified duration and
convexity from either price or yield, as long as you specify a prepayment vector or an
assumed prepayment speed. The toolbox risk-measurement functions (mbsdurp,
mbsdury, mbsconvp, mbsconvy, and mbswal) adhere to the guidelines listed in the PSA
Uniform Practices manual.
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Mortgage Pool Valuation
For accurate valuation of a mortgage pool, you must generate interest-rate paths and use
them with mortgage pool characteristics to properly value the pool. A widely used
methodology is the option-adjusted spread (OAS). OAS measures the yield spread that is
not directly attributable to the characteristics of a fixed-income investment.

Calculating OAS

Prepayment alters the cash flows of an otherwise regularly amortizing mortgage pool. A
comprehensive option-adjusted spread calculation typically begins with the generation of
a set of paths of spot rates to predict prepayment. A path is collection of i spot-rate paths,
with corresponding j cash flows on each of those paths.

The effect of the OAS on pool pricing is shown mathematically in the following equation,
where K is the option-adjusted spread.
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Calculating Effective Duration

Alternatively, if you are more interested in the sensitivity of a mortgage pool to interest
rate changes, use effective duration, which is a more appropriate measure. Effective
duration is defined mathematically with the following equation.

Effective Duration
P y y P y y

P y y
=
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Calculating Market Price

The toolbox has all the components required to calculate OAS and effective duration if
you supply prepayment vectors or assumptions. For OAS, given a prepayment vector, you
can generate a set of cash flows with mbscfamounts. Discounting these cash flows with
the reference curve and then adding OAS produces the market price. See “Computing
Option-Adjusted Spread” on page 5-11 for a discussion on the computation of option-
adjusted spread.

Effective duration is a more difficult issue. While modified duration changes the
discounting process (by changing the yield used to discount cash flows), effective
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duration must account for the change in cash flow because of the change in yield. A
possible solution is to recompute prices using mbsprice for a small change in yield, in
both the upwards and downwards directions. In this case, you must recompute the
prepayment input. Internally, this alters the cash flows of the mortgage pool. Assuming
that the OAS stays constant in all yield environments, you can apply a set of discounting
factors to the cash flows in up and down yield environments to find the effective duration.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay |
mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas |
mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed |
psaspeed2default | psaspeed2rate

Related Examples
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market

Model” on page 5-19
• “Computing Option-Adjusted Spread” on page 5-11
• “Prepayments with Fewer Than 360 Months Remaining” on page 5-14
• “Pools with Different Numbers of Coupons Remaining” on page 5-17
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-

42
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Computing Option-Adjusted Spread
The option-adjusted spread (OAS) is an amount of extra interest added above (or below if
negative) the reference zero curve. To compute the OAS, you must provide the zero curve
as an extra input. You can specify the zero curve in any intervals and with any
compounding method. (To minimize any error due to interpolation, keep the intervals as
regular and frequent as possible.) You must supply a prepayment vector or specify a
speed corresponding to a standard PSA prepayment vector.

One way to compute the appropriate zero curve for an agency is to look at its bond yields
and bootstrap them from the shortest maturity onwards. You can do this with Financial
Toolbox functions zbtprice and zbtyield.

The following example shows how to calculate an appropriate zero curve followed by
computation of the pool's OAS. This example calculates the OAS of a 30-year fixed rate
mortgage with about a 28-year weighted average maturity left, given an assumption of 0,
50, and 100 PSA prepayment speeds.

Create curve for zerorates.
Bonds = [datenum('11/21/2002')   0        100    0    2    1;    
         datenum('02/20/2003')   0        100    0    2    1;
         datenum('07/31/2004')   0.03     100    2    3    1;
         datenum('08/15/2007')   0.035    100    2    3    1;
         datenum('08/15/2012')   0.04875  100    2    3    1;
         datenum('02/15/2031')   0.05375  100    2    3    1];
  
Yields = [0.0162;
          0.0163;
          0.0211;
          0.0328;
          0.0420;
          0.0501];

Since the above is Treasury data and not selected agency data, a term structure of spread
is assumed. In this example, the spread declines proportionally from a maximum of 250
basis points at the shortest maturity.

Yields = Yields + 0.025 * (1./[1:6]');

Get parameters from Bonds matrix.
Settle = datenum('20-Aug-2002');
Maturity = Bonds(:,1);
CouponRate = Bonds(:,2);
Face = Bonds(:,3);
Period = Bonds(:,4);
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Basis = Bonds(:,5);
EndMonthRule = Bonds(:,6);
  
[Prices, AccruedInterest] = bndprice(Yields, CouponRate, ...
Settle, Maturity, Period, Basis, EndMonthRule, [], [], [], [], ... 
Face);

Use zbtprice to solve for zero rates.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCompounding = 2*ones(size(ZeroRatesP));
ZeroMatrix = [CurveDatesP, ZeroRatesP, ZeroCompounding];

Use output from zbtprice to calculate the OAS.

Price = 95;
Settle = datenum('20-Aug-2002');
Maturity = datenum('2-Jan-2030');
IssueDate = datenum('2-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Interpolation = 1;
PrepaySpeed = [0; 50; 100];
  
OAS = mbsprice2oas(ZeroMatrix, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... 
PrepaySpeed)

OAS =

    26.0502
    28.6348
    31.2222

This example shows that one cash flow set is being discounted and solved for its OAS, as
contrasted with the NumberOfPaths set of cash flows as shown in “Mortgage Pool
Valuation” on page 5-9. Averaging the sets of cash flows resulting from all simulations
into one average cash flow vector and solving for the OAS, discounts the averaged cash
flows to have a present value of today's (average) price.

While this example uses the mortgage pool price (mbsprice2oas) to determine the OAS,
you can also use yield to resolve it (mbsyield2oas). Also, there are reverse OAS
functions that return prices and yields given OAS (mbsoas2price and mbsoas2yield).
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The example also restates earlier examples that show discount securities benefit from
higher level of prepayment, keeping everything else unchanged. The relation is reversed
for premium securities.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay |
mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas |
mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed |
psaspeed2default | psaspeed2rate

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market

Model” on page 5-19
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-

42
• “Prepayments with Fewer Than 360 Months Remaining” on page 5-14
• “Pools with Different Numbers of Coupons Remaining” on page 5-17
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Prepayments with Fewer Than 360 Months Remaining
When fewer than 360 months remain in the pool, the applicable PSA prepayment vector is
"seasoned" by the pool's age. (Elements in the 360-element prepayment vector that
represent past payments are skipped. For example, on a 30-year mortgage that is 10
months old, only the final 350 prepayments are applied.)

Assume, for example, that you have two 30-year loans, one new and another 10 months
old. Both have the same PSA speed of 100 and prepay using the vectors plotted below.

Still within the scope of relative valuation, you could also solve for the percentage of the
standard PSA prepayment vector given the pool's arbitrary, user-supplied prepayment
vector, such that the PSA speed gives the same Macaulay duration as the user-supplied
prepayment vector.

If you supply a custom prepayment vector, you must account for the number of months
remaining.

Price = 101;
Settle = datenum('1-Jan-2001');
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Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(348,1);
CouponRate   = 0.075;
Delay = 14;
 
ImpliedSpeed = mbsprice2speed(Price, Settle, Maturity, ...
IssueDate, GrossRate, PrepayMatrix, CouponRate, Delay)

ImpliedSpeed =

  104.2543

Examine the prepayment input. The remaining 29 years require 348 monthly elements in
the prepayment vector. Suppose then, keeping everything the same, you change Settle
to February 14, 2003.

Settle = datenum('14-Feb-2003');

You can use cpncount to count all incoming coupons received after Settle by invoking

NumCouponsRemaining = cpncount(Settle, Maturity, 12, 1, [], ... 
IssueDate) 

NumCouponsRemaining =
323

The input 12 defines the monthly payment frequency, 1 defines the 30/360 basis, and
IssueDate defines aging and determination-of-holder date. Thus, you must supply a 323-
element vector to account for a prepayment corresponding to each monthly payment.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay |
mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas |
mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed |
psaspeed2default | psaspeed2rate

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
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• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market
Model” on page 5-19

• “Computing Option-Adjusted Spread” on page 5-11
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-

42
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Pools with Different Numbers of Coupons Remaining
Suppose that one pool has two remaining coupons, and the other has three. MATLAB
expects the prepayment matrix to be in the following format:

V11       V21
V12       V22
NaN       V23

Vij denotes the single monthly mortality (SMM) rate for pool i during the jth coupon
period since Settle.

The use of NaN to pad the prepayment matrix is necessary because MATLAB cannot
concatenate vectors of different lengths into a matrix. Also, it can serve as an error check
against any unintended operation (any MATLAB operation that would return NaN).

For example, assume that the 2-month pool has a constant SMM of 0.5% and the 3-month
pool has a constant SMM of 1% in every period. The prepayment matrix you would create
is depicted below.

Create this input in whatever manner is best for you.

Summary of Prepayment Data Vector Representation
• When you specify a PSA prepayment speed, MATLAB "seasons" the pool according to

its age.
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• When you specify your own prepayment matrix, identify the maximum number of
coupons remaining using cpncount. Then supply the matrix elements up to the point
when cash flow ceases to exist.

• When different length pools must exist in the same matrix, pad the shorter one(s) with
NaN. Each column of the prepayment matrix corresponds to a specific pool.

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay |
mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas |
mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed |
psaspeed2default | psaspeed2rate

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market

Model” on page 5-19
• “Computing Option-Adjusted Spread” on page 5-11
• “Pricing Mortgage Backed Securities Using the Black-Derman-Toy Model” on page 5-

42
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Prepayment Modeling with a Two Factor Hull White
Model and a LIBOR Market Model

This example shows how to model prepayment in MATLAB® using functionality from the
Financial Instruments Toolbox™. Specifically, a variation of the Richard and Roll
prepayment model is implemented using a two factor Hull-White interest-rate model and
a LIBOR Market Model to simulate future interest-rate paths. A mortgage-backed security
is priced with both the custom and default prepayment models.

Introduction

Prepayment modeling is crucial to the analysis of mortgage-backed securities (MBS).
Prepayments by individual mortgage holders affect both the amount and timing of cash
flows -- and for collateralized mortgage obligations (for example, interest-only securities),
prepayment can greatly affect the value of the securities.

PSA Model

The most basic prepayment model is the Public Securities Association (PSA) model, which
assumes a ramp-up phase and then a constant conditional prepayment rate (CPR). The
PSA model can be generated in MATLAB using the Financial Instruments Toolbox function
psaspeed2rate.

G2PP_CPR = psaspeed2rate([100 200]);
figure
plot(G2PP_CPR)
title('100 and 200 PSA Prepayment Speeds')
xlabel('Months')
ylabel('CPR')
ylim([0 .14])
legend({'100 PSA','200 PSA'}, 'Location', 'Best')
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Mortgage-Backed Security

The MBS analyzed in this example matures in 2020 and has the properties outlined in this
section. Cash flows are generated for PSA prepayment speeds simply by entering the PSA
speed as an input argument.

% Parameters for MBS passthrough to be priced
Settle = datenum('15-Dec-2007');
Maturity = datenum('15-Dec-2020');
IssueDate = datenum('15-Dec-2000');
GrossRate = .0475;
CouponRate = .045;
Delay = 14;
Period = 12;
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Basis = 4;

% Generate cash flows and dates for baseline case using 100 PSA
[CFlowAmounts, CFlowDates] = mbscfamounts(Settle,Maturity, IssueDate,...
    GrossRate, CouponRate, Delay,100);
CFlowTimes = yearfrac(Settle,CFlowDates);
NumCouponsRemaining = cpncount(Settle, Maturity, Period,Basis, 1, IssueDate);

Richard and Roll Model

While prepayment modeling often involves complex and sophisticated modeling, often at
the loan level, this example uses a slightly modified approach based on the model
proposed by Richard and Roll in [6].

The Richard and Roll prepayment model involves the following factors:

• Refinancing incentive
• Seasonality (month of the year)
• Seasoning or age of the mortgage
• Burnout

Richard and Roll propose a multiplicative model of the following:

For the custom model in this example, the Burnout Multiplier, which describes the
tendency of prepayment to slow when a significant number of homeowners have already
refinanced, is ignored and the first three terms are used.

The refinancing incentive is a function of the ratio of the coupon-rate of the mortgage to
the available mortgage rate at that particular point in time. For example, the Office of
Thrift Supervision (OTS) proposes the following model:

The refinancing incentive requires a simulation of future interest rates. This will be
discussed later in this example.

C_M = .1:.1:2;
G2PP_Refi = .2406 - .1389 * atan(5.952*(1.089 - C_M));
figure
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plot(C_M,G2PP_Refi)
xlabel('Coupon/Mortgage Rate')
ylabel('CPR')
title('Refinancing Incentive')

Seasoning captures the tendency of prepayment to ramp up at the beginning of a
mortgage before leveling off. The OTS models the seasoning multiplier as follows:

Seasoning = ones(360,1);
Seasoning(1:29) = (1:29)/30;
figure
plot(Seasoning)
xlim([1 360])
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title('Seasoning Multiplier')
xlabel('Months')

The seasonality multiplier simply models the seasonal behavior of prepayments -- this
data is based on Figure 3 of [6], which applies to the behavior of Ginnie Mae 30-year,
single-family MBSs.

Seasonality = [.94 .76 .73 .96 .98 .92 .99 1.1 1.18 1.21 1.23 .97];
figure
plot(Seasonality)
xlim([1 12])
ax = gca;
ax.XTick = 1:12;
ax.XTickLabel = {'Jan','Feb','Mar','Apr','May','Jun','Jul','Aug', ...
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    'Sep','Oct','Nov','Dec'};
title('Seasonality Multiplier')

G2++ Interest-Rate Model

Since the refinancing incentive requires a simulation of future interest rates, an interest-
rate model must be used. One choice is a two-factor additive Gaussian model, referred to
as G2++ by Brigo and Mercurio [2].

The G2++ Interest Rate Model is:
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where  is a two-dimensional Brownian motion with correlation 

and  is the short rate,  and  are mean reversion constants and  and  are volatility
constants, and  is the market forward rate, or the forward rate observed on the
Settle date.

LIBOR Market Model

The LIBOR Market Model (LMM) differs from short-rate models in that it evolves a set of
discrete forward rates. Specifically, the lognormal LMM specifies the following diffusion
equation for each forward rate:

where

dW is an N dimensional geometric Brownian motion with:

The LMM relates the drifts of the forward rates based on no-arbitrage arguments.
Specifically, under the Spot LIBOR measure, the drifts are expressed as the following:

where

 is the time fraction associated with the ith forward rate
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and the Spot LIBOR numeraire is defined as the following:

Given the above, the choice with the LMM is how to model volatility and correlation.

The volatility of the rates can be modeled with a stochastic volatility, but for this example
a deterministic volatility is used, and so a functional form needs to be specified. One of
the most popular functional forms in the literature is the following:

where  adjusts the curve to match the volatility for the  forward rate.

Similarly, the correlation between the forward rates needs to be specified. This can be
estimated from historical data or fitted to option prices. For this example, the following
functional form will be used:

Once the volatility and correlation are specified, the parameters need to be calibrated --
this can be done with historical or market data, typically swaptions or caps/floors. For this
example, we simply use reasonable estimates for the correlation and volatility
parameters.

% The volatility function to be used -- and one choice for the parameters
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.13 .04 .7 .08];

% Volatility specification
fplot(@(t) LMMVolFunc(LMMVolParams,t),[0 10])
title(['Volatility Function with parameters ' mat2str(LMMVolParams)])
ylabel('Volatility (%)')
xlabel('Tenor (years)')

5 Mortgage-Backed Securities

5-26



Calibration to Market Data

The parameters in the G2++ model can be calibrated to market data. Typically, the
parameters are calibrated to observed interest-rate cap, floor and/or swaption data. For
now, market cap data is used for calibration.

This data is hardcoded but could be imported into MATLAB with the Database Toolbox™
or Datafeed Toolbox™.

% Zero Curve -- this data is hardcoded for now, but could be bootstrapped
% using the |bootstrap| method of |IRDataCurve|.
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
ZeroDates = daysadd(Settle,360*ZeroTimes,1);
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DiscountRates = zero2disc(ZeroRates,ZeroDates,Settle);
irdc = IRDataCurve('Zero',Settle,ZeroDates,ZeroRates);

figure
plot(ZeroDates,ZeroRates)
datetick
title(['US Zero Curve for ' datestr(Settle)])

% Cap Data
Reset = 2;
Notional = 100;
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
CapVolatility = [.28 .30 .32 .31 .30 .27 .23 .2 .18 .17 .165]';

% ATM strikes could be computed with swapbyzero
Strike = [0.0353 0.0366 0.0378 0.0390 0.0402 0.0421 0.0439 ...
    0.0456 0.0471 0.0471 0.0471]';

% This could be computed with capbyblk
BlackCapPrices = [0.1532 0.6416 1.3366 2.0290 2.7366 4.2960 6.5992 ...
    9.6787 12.2580 14.0969 15.7873]';

figure
scatter(CapMaturity,CapVolatility)
datetick
title(['ATM Volatility for Caps on ' datestr(Settle)])

%
% To calibrate the model parameters, a parameter set will be found that
% minimizes the sum of the squared differences between the G2++ predicted
% Cap values and the observed Black Cap values. The Optimization Toolbox(TM)
% function <docid:optim_ug#buuhch7 lsqnonlin> is used in this example, although other approaches
% (for example, Global Optimization) may also be applicable. The function
% <docid:fininst_ug#btxewvg-313 capbylg2f>
% computes the analytic values for the caps given parameter values.
%
% Upper and lower bounds for the model parameters are set to be
% relatively constrained. As Brigo and Mercurio discuss, the correlation
% parameter, $$ rho $$, can often be close to |-1| when fitting a G2++ model
% to interest-rate cap prices. Therefore, $$ rho $$ is constrained
% to be between |-.7| and |.7| to ensure that the parameters represent a truly
% two-factor model. The remaining mean reversion and volatility
% parameters are constrained to be between |0| and |.5|. Calibration remains a
% complex task, and while the plot below indicates that the best fit
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% parameters seem to do a reasonably good job of reproducing the Cap
% prices, it should be noted that the procedure outlined here simply
% represents one approach.

% Call to lsqnonlin to calibrate parameters
objfun = @(x) BlackCapPrices - capbylg2f(irdc,x(1),x(2),x(3),x(4),x(5),Strike,CapMaturity);
x0 = [.5 .05 .1 .01 -.1];
lb = [0 0 0 0 -.7];
ub = [.5 .5 .5 .5 .7];

G2PP_Params = lsqnonlin(objfun,x0,lb,ub);

a = G2PP_Params(1);
b = G2PP_Params(2);
sigma = G2PP_Params(3);
eta = G2PP_Params(4);
rho = G2PP_Params(5);

% Compare the results
figure
scatter(CapMaturity,BlackCapPrices)
hold on
scatter(CapMaturity,capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity),'rx')
datetick
title('Market and Model Implied Prices')
ylabel('Price ($)')

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.
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G2++ Model Implementation

The LinearGaussian2F model can be used to specify the G2++ model and simulate
future paths interest rates.

% G2++ model from Brigo and Mercurio with time homogeneous volatility
% parameters
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho);

LIBOR Market Model Implementation

After the volatility and correlation have been calibrated, Monte Carlo simulation is used
to evolve the rates forward in time. The LiborMarketModel object is used to simulate
the forward rates.
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While factor reduction is often used with the LMM to reduce computational complexity,
there is no factor reduction in this example.

6M LIBOR rates are chosen to be evolved in this simulation. Since a monthly prepayment
vector must be computed, interpolation is used to generate the intermediate rates. Simple
linear interpolation is used.

numForwardRates = 46;

% Instead of being fit, VolPhi is simply hard-coded  --
% representative of a declining volatility over time.
VolPhi = linspace(1.2,.8,numForwardRates-1)';

Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
CorrMat = CorrFunc(meshgrid(1:numForwardRates-1)',meshgrid(1:numForwardRates-1),Beta);

VolFunc = cell(length(VolPhi),1);
for jdx = 1:length(VolPhi)
    VolFunc(jdx) = {@(t) VolPhi(jdx)*ones(size(t)).*(LMMVolParams(1)*t + ...
        LMMVolParams(2)).*exp(-LMMVolParams(3)*t) + LMMVolParams(4)};
end

LMM = LiborMarketModel(irdc,VolFunc,CorrMat);

G2++ Monte Carlo Simulation

The various interest-rate paths can be simulated by calling the simTermStructs method.

One limitation to two-factor Gaussian models like this one is that it does permit negative
interest rates. This is a concern, particularly in low interest-rate environments. To handle
this possibility, any interest-rate paths with negative rates are simply rejected.

nPeriods = NumCouponsRemaining;
nTrials = 100;
DeltaTime = 1/12;

% Generate factors and short rates
Tenor = [1/12 1 2 3 4 5 7 10 15 20 30];
G2PP_SimZeroRates = G2PP.simTermStructs(nPeriods,'NTRIALS',nTrials,...
    'Tenor',Tenor,'DeltaTime',DeltaTime);

SimDates = daysadd(Settle,360*DeltaTime*(0:nPeriods),1);
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% Tenors that will be recovered for each simulation date. The stepsize is
% included here to facilitate computing a discount factor for each
% simulation path.

% Remove any paths that go negative
NegIdx = squeeze(any(any(G2PP_SimZeroRates < 0,1),2));
G2PP_SimZeroRates(:,:,NegIdx) = [];
nTrials = size(G2PP_SimZeroRates,3);

% Plot evolution of one sample path
trialIdx = 1;
figure
surf(Tenor,SimDates,G2PP_SimZeroRates(:,:,trialIdx))
datetick y keepticks keeplimits
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of G2++ Model'])
xlabel('Tenor (Years)')
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LIBOR Market Model Simulation

The various interest-rate paths can be simulated by calling the simTermStructs method
of the LiborMarketModel object.

LMMPeriod = 2; % Semi-annual rates
LMMNumPeriods = NumCouponsRemaining/12*LMMPeriod; % Number of semi-annual periods
LMMDeltaTime = 1/LMMPeriod;
LMMNTRIALS = 100;

% Simulate
[LMMZeroRates, LMMForwardRates] = LMM.simTermStructs(LMMNumPeriods,'nTrials',LMMNTRIALS,'DeltaTime',LMMDeltaTime);
ForwardTimes = 1/2:1/2:numForwardRates/2;
LMMSimTimes = 0:1/LMMPeriod:LMMNumPeriods/LMMPeriod;
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% Plot evolution of one sample path
trialIdx = 1;
figure
tmpPlotData = LMMZeroRates(:,:,trialIdx);
tmpPlotData(tmpPlotData == 0) = NaN;
surf(ForwardTimes,LMMSimTimes,tmpPlotData)
title(['Evolution of the Zero Curve for Trial:' num2str(trialIdx) ' of LIBOR Market Model'])
xlabel('Tenor (Years)')
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Compute Mortgage Rates from Simulation

Once the interest-rate paths have been simulated, the mortgage rate needs to be
computed -- one approach, discussed by [7], is to compute the mortgage rate from a
combination of the 2-year and 10-year rates.

For this example, the following is used:

% Compute mortgage rates from interest rate paths
TwoYearRates = squeeze(G2PP_SimZeroRates(:,Tenor == 2,:));
TenYearRates = squeeze(G2PP_SimZeroRates(:,Tenor == 7,:));
G2PP_MortgageRates = .024 + .2*TwoYearRates + .6*TenYearRates;

LMMMortgageRates = squeeze(.024 + .2*LMMZeroRates(:,4,:) + .6*LMMZeroRates(:,20,:));
LMMDiscountFactors = squeeze(cumprod(1./(1 + LMMZeroRates(:,1,:)*.5)));

% Interpolate to get monthly mortgage rates
MonthlySimTimes = 0:1/12:LMMNumPeriods/LMMPeriod;
LMMMonthlyMortgageRates = zeros(nPeriods+1,LMMNTRIALS);
LMMMonthlyDF = zeros(nPeriods+1,LMMNTRIALS);
for trialidx = 1:LMMNTRIALS
   LMMMonthlyMortgageRates(:,trialidx) = interp1(LMMSimTimes,LMMMortgageRates(:,trialidx),MonthlySimTimes,'linear','extrap');
   LMMMonthlyDF(:,trialidx) = interp1(LMMSimTimes,LMMDiscountFactors(:,trialidx),MonthlySimTimes,'linear','extrap');
end

Computing CPR and Generating and Valuing Cash Flows

Once the Mortgage Rates have been simulated, the CPR can be computed from the
multiplicative model for each interest-rate path.

% Compute Seasoning and Refinancing Multipliers
Seasoning = ones(nPeriods+1,1);
Seasoning(1:30) = 1/30*(1:30);
G2PP_Refi = .2406 - .1389 * atan(5.952*(1.089 - CouponRate./G2PP_MortgageRates));
LMM_Refi = .2406 - .1389 * atan(5.952*(1.089 - CouponRate./LMMMonthlyMortgageRates));

% CPR is simply computed by evaluating the multiplicative model
G2PP_CPR = bsxfun(@times,G2PP_Refi,Seasoning.*(Seasonality(month(CFlowDates))'));
LMM_CPR = bsxfun(@times,LMM_Refi,Seasoning.*(Seasonality(month(CFlowDates))'));

% Compute single monthly mortality (SMM) from CPR
G2PP_SMM = 1 - (1 - G2PP_CPR).^(1/12);
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LMM_SMM = 1 - (1 - LMM_CPR).^(1/12);

% Plot CPR's against 100 PSA
CPR_PSA100 = psaspeed2rate(100);
figure
PSA_handle = plot(CPR_PSA100(1:nPeriods),'rx');
hold on
G2PP_handle = plot(G2PP_CPR,'b');
LMM_handle = plot(LMM_CPR,'g');
title('Prepayment Speeds')
legend([PSA_handle(1) G2PP_handle(1) LMM_handle(1)],{'100 PSA','G2PP CPR','LMM CPR'},'Location', 'Best');
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Generate Cash Flows and Compute Present Value

With a vector of single monthly mortalities (SMM) computed for each interest-rate path,
cash flows for the MBS can be computed and discounted.

% Compute the baseline zero rate at each cash flow time
CFlowZero = interp1(ZeroTimes,ZeroRates,CFlowTimes,'linear','extrap');

% Compute DF for each cash flow time
CFlowDF_Zero = zero2disc(CFlowZero,CFlowDates,Settle);

% Compute the price of the MBS using the zero curve
Price_Zero = CFlowAmounts*CFlowDF_Zero';

% Generate the cash flows for each IR Path
G2PP_CFlowAmounts = mbscfamounts(Settle, ...
    repmat(Maturity,1,nTrials), IssueDate, GrossRate, CouponRate, Delay, [], G2PP_SMM(2:end,:));

% Compute the DF for each IR path
G2PP_CFlowDFSim = cumprod(exp(squeeze(-G2PP_SimZeroRates(:,1,:).*DeltaTime)));

% Present value the cash flows for each MBS
G2PP_Price_Ind = sum(G2PP_CFlowAmounts.*G2PP_CFlowDFSim',2);
G2PP_Price = mean(G2PP_Price_Ind);

% Repeat for LMM
LMM_CFlowAmounts = mbscfamounts(Settle, ...
    repmat(Maturity,1,LMMNTRIALS), IssueDate, GrossRate, CouponRate, Delay, [], LMM_SMM(2:end,:));

% Present value the cash flows for each MBS
LMM_Price_Ind = sum(LMM_CFlowAmounts.*LMMMonthlyDF',2);
LMM_Price = mean(LMM_Price_Ind);

The results from the different approaches can be compared. The number of trials for the
G2++ model will typically be less than 100 due to the filtering out of any paths that
produce negative interest rates.

Additionally, while the number of trials for the G2++ model in this example is set to be
100, it is often the case that a larger number of simulations need to be run to produce an
accurate valuation.

fprintf('                     # of Monte Carlo Trials: %8d\n'    , nTrials)
fprintf('                     # of Time Periods/Trial: %8d\n\n'  , nPeriods)
fprintf('                      MBS Price with PSA 100: %8.4f\n'  , Price_Zero)
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fprintf(' MBS Price with Custom G2PP Prepayment Model: %8.4f\n\n', G2PP_Price)
fprintf(' MBS Price with Custom LMM Prepayment Model: %8.4f\n\n', LMM_Price)

                     # of Monte Carlo Trials:       73
                     # of Time Periods/Trial:      156

                      MBS Price with PSA 100:   1.0187
 MBS Price with Custom G2PP Prepayment Model:   0.9871

 MBS Price with Custom LMM Prepayment Model:   0.9993

Conclusion

This example shows how to calibrate and simulate a G2++ interest-rate model and how to
use the generated interest-rate paths in a prepayment model loosely based on the Richard
and Roll model. This example also provides a useful starting point to using the G2++ and
LMM interest-rate models in other financial applications.
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Pricing Mortgage Backed Securities Using the Black-
Derman-Toy Model

This example illustrates how the Financial Toolbox™ and Financial Instruments Toolbox™
are used to price a level mortgage backed security using the BDT model.

Load the BDT Tree Stored in the Data File

 load mbsexample.mat

Observe the Interest-Rate Tree

Visualize the interest rate evolution along the tree by looking at the output structure
BDTTree. BDTTree returns an inverse discount tree, which you can convert into an
interest-rate tree with the cvtree function.

BDTTreeR = cvtree(BDTTree);

Look at the upper branch and lower branch paths of the tree:

OldFormat = get(0, 'format');  
format short

%Rate at root node:
RateRoot      = treepath(BDTTreeR.RateTree, 0) 

RateRoot = 0.0399

%Rates along upper branch:
RatePathUp    = treepath(BDTTreeR.RateTree, [1 1 1 1 1]) 

RatePathUp = 6×1

    0.0399
    0.0397
    0.0391
    0.0383
    0.0373
    0.0360
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%Rates along lower branch:
RatePathDown = treepath(BDTTreeR.RateTree, [2 2 2 2 2])

RatePathDown = 6×1

    0.0399
    0.0470
    0.0550
    0.0638
    0.0734
    0.0841

Compute the Price Tree for the Non-Prepayable Mortgage

Let's say that we have a 3 year $10000 level prepayable loan, with a mortgage interest
rate of 4.64% semi-annually compounded.

MortgageAmount = 10000;
CouponRate = 0.0464;
Period = 2;
Settle='01-Jan-2007';
Maturity='01-Jan-2010';
Compounding = BDTTree.TimeSpec.Compounding;

format bank

Use the function amortize in the Financial Toolbox to calculate the mortgage payment of
the loan (MP), the interest and principal components, and the outstanding principal
balance.

NumPeriods = date2time(Settle,Maturity, Compounding)';

[Principal, InterestPayment, OutstandingBalance, MP] = amortize(CouponRate/Period, NumPeriods, MortgageAmount);

% Display Principal, Interest and Outstanding balances
PrincipalAmount = Principal'

PrincipalAmount = 6×1

       1572.59
       1609.07
       1646.40
       1684.60
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       1723.68
       1763.67

InterestPaymentAmount = InterestPayment'

InterestPaymentAmount = 6×1

        232.00
        195.52
        158.19
        119.99
         80.91
         40.92

OutstandingBalanceAmount =OutstandingBalance'

OutstandingBalanceAmount = 6×1

       8427.41
       6818.34
       5171.94
       3487.35
       1763.67
          0.00

CFlowAmounts = MP*ones(1,NumPeriods);
% The CFlowDates are the same as the tree level dates
CFlowDates= {'01-Jul-2007' ,'01-Jan-2008' ,'01-Jul-2008' , '01-Jan-2009' , '01-Jul-2009' , '01-Jan-2010'} ;

% Calculate the price of the non-prepayable mortgage
[PriceNonPrepayableMortgage, PriceTreeNonPrepayableMortgage] = cfbybdt(BDTTree, CFlowAmounts, CFlowDates, Settle);
for iLevel = 2:length(PriceTreeNonPrepayableMortgage.PTree) 
    PriceTreeNonPrepayableMortgage.PTree{iLevel}(:,:)= PriceTreeNonPrepayableMortgage.PTree{iLevel}(:,:) - MP;
end

% Look at the price of the mortgage today tObs = 0
PriceNonPrepayableMortgage

PriceNonPrepayableMortgage = 
      10017.47
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% The value of the non-prepayable mortgage is $10017.47. This value exceeds
% the $10000 amount borrowed since the homeowner received not only $10000, but
% also a prepayment option. 

% Look at the value of the mortgage on the last date, right after the last
% mortgage payment, is zero:
PriceTreeNonPrepayableMortgage.PTree{end}

ans = 1×6

             0             0             0             0             0             0

% Visualize the price tree for the non-prepayable mortgage.
treeviewer(PriceTreeNonPrepayableMortgage)
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Compute the Price Tree of the Prepayment Option

% The Prepayment option is like a call option on a bond.
%
% The exercise price or strike will be equal to the outstanding principal amount
% which has been calculated using the function |amortize|.

OptSpec = 'call';
Strike = [MortgageAmount OutstandingBalance];
ExerciseDates =[Settle CFlowDates];
AmericanOpt = 0; 
Maturity = CFlowDates(end);

% Compute the price of the prepayment option:
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[PricePrepaymentOption, PriceTreePrepaymentOption] = prepaymentbybdt(BDTTree, OptSpec, Strike, ExerciseDates, AmericanOpt, ...
                            0, Settle, Maturity,[], [], [], ...
                           [], [], [],  [], 0, [], CFlowAmounts);
                       

% Look at the price of the prepayment option today (tObs = 0)
PricePrepaymentOption

PricePrepaymentOption = 
         17.47

% The value of the prepayment option is $17.47 as expected. 

% Visualize the price tree for the prepayment option
treeviewer(PriceTreePrepaymentOption)
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Calculate the Price Tree of the Prepayable Mortgage.

% Compute the price of the prepayable mortgage.

PricePrepayableMortgage = PriceNonPrepayableMortgage - PricePrepaymentOption;

PriceTreePrepayableMortgage = PriceTreeNonPrepayableMortgage;

for iLevel = 1:length(PriceTreeNonPrepayableMortgage.PTree) 
    PriceTreePrepayableMortgage.PTree{iLevel}(:,:)= PriceTreeNonPrepayableMortgage.PTree{iLevel}(:,:) -  ...
         PriceTreePrepaymentOption.PTree{iLevel}(:,:);
end
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% Look at the price of the prepayable mortgage today (tObs = 0)
PricePrepayableMortgage

PricePrepayableMortgage = 
      10000.00

% The value of the prepayable mortgage is $10000 as expected. 

% Visualize the price and price tree for the prepayable mortgage
treeviewer(PriceTreePrepayableMortgage)
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set(0, 'format', OldFormat);

See Also
mbscfamounts | mbsconvp | mbsconvy | mbsdurp | mbsdury | mbsnoprepay |
mbsoas2price | mbsoas2yield | mbspassthrough | mbsprice | mbsprice2oas |
mbsprice2speed | mbswal | mbsyield | mbsyield2oas | mbsyield2speed |
psaspeed2default | psaspeed2rate

Related Examples
• “Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market

Model” on page 5-19
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Using Collateralized Mortgage Obligations (CMOs)

What Are CMOs?
Financial Instruments Toolbox supports collateralized mortgage obligations (CMOs) to
provide investors with a greater range of risk and return characteristics than mortgage-
backed securities (MBS). In contrast to an MBS, which simply redirects principal and
interest cash flows to investors on a pro rata basis, a CMO structures cash flows to
different tranches, or slices, to create securities that are better tailored to specific
investors.

For example, banks might be primarily concerned with extension risk, or the risk that
their investment lengthens in time due to increasing interest rates, given that they
typically have short-term deposits as liabilities. Insurance companies and pension funds
might be concerned primarily with contraction risk, or the risk that their investment will
pay off too soon, with liabilities that have much longer lives. A CMO structure addresses
the interest-rate risk of extension or contraction with a blend of short-term and long-term
CMO securities, called tranches.

See Also
cmosched | cmoschedcf | cmoseqcf | mbscfamounts | mbspassthrough

Related Examples
• “CMO Workflow” on page 5-60
• “Prepayment Risk” on page 5-52
• “Create PAC and Sequential CMO” on page 5-63
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Prepayment Risk
Prepayment risk is the risk that the term of the security varies according to differing rates
of repayment of principal by borrowers (repayments from refinancings, sales,
curtailments, or foreclosures). In a CMO, you can structure the principal (and associated
coupon) stream from the underlying mortgage pool collateral to allocate prepayment risk.
If principal is prepaid faster than expected (for example, if mortgage rates fall and
borrowers refinance), then the overall term of the mortgage pool collateral shortens.

You cannot remove prepayment risk, but you can reallocate it among CMO tranches so
that some tranches have some protection against this risk, and other tranches will absorb
more of this risk. To facilitate this allocation of prepayment risk, CMOs are structured
such that prepayments are allocated among tranches using a fixed set of rules. The most
common schemes for prepayment tranching are:

• Sequential tranching, with or without, Z-bond tranching
• Schedule bond tranching

• Planned amortization class (PAC) bonds
• Target amortization class (TAC) bonds

Financial Instruments Toolbox supports these schemes for prepayment tranching for
CMOs and tools for pricing and scheduling cash flows between the tranches, as well as
analyzing the price and yield for CMOs. Financial Instruments Toolbox functionality for
CMOs does not model credit risk. Therefore, this functionality is most appropriate for
CMOs where credit risk is not an issue (for example, agency CMOs where the underlying
mortgage pool collateral is insured for default by the agency Government-Sponsored
Enterprises (GSEs), such as Fannie Mae and Freddie Mac).

Sequential Tranches Without a Z-Bond
All available principal and interest payments go to the first sequential tranche, until its
balance decrements to zero, then to the second, and so on. For example, consider the
following example where all principal and interest from the underlying mortgage pool is
repaid on tranche A first, then tranche B, then tranche C. Interest is paid on each tranche
as long as the principal for the tranche has not been retired.
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Sequential Tranches with a Z-Bond
The Z-bond, also called an accrual bond, is a type of interest and principal pay rule. The
Z-bond tranche supports other sequential pay tranches by not receiving an interest
payment. The interest payment that would have accrued to the Z-bond tranche pays off
the principal of other bonds, and the principal of the Z-bond tranche increases. The Z-
bond tranche starts receiving interest and principal payments only after the other
tranches in the CMO have been fully paid. The Z-bond tranche is used in a sequential-pay
structure to accelerate the principal repayments of the sequential-pay bonds.

A Z-bond differs from other CMO instruments because it is not tranching principal but
interest. The Z-bond receives no cash flows until all other securities have been paid off. In
the interim, the interest that is owed to the Z-bond is accrued to its principal. The
following chart demonstrates the difference between a Z-bond and a normal sequential
pay tranche. The C tranche pays off sooner with the Z-bond, because the interest cash
flows to the Z-bond are being used to pay down the principal of the C tranche.
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For comparison, the following graphic is the same sequential CMO with no Z-bond.

PAC Tranches
Planned amortization class (PAC) bonds help reduce the effects of prepayment risk. They
are designed to produce more stable cash flows by redirecting prepayments from the
underlying mortgage collateral to other classes (tranches) called companion or support
classes. PAC bonds have a principal payment rate over a predetermined period of time.
The PAC bond payment schedule is determined by two different prepayment rates, which
together form a band (also called a collar). Early in the life of the CMO, the prepayment at
the lower PSA yields a lower prepayment. Later in its life, the principal in the higher PSA
declines enough that it yields a lower prepayment. The PAC tranche receives whichever
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rate is lower, so it will change prepayment at one PSA for the first part of its life, then
switch to the other rate. The ability to stay on this schedule is maintained by a support
bond, which absorbs excess prepayments, and receives fewer prepayments to prevent
extension of average life.

However, the PAC is only protected from extension to the amount that prepayments are
made on the underlying MBSs. If there is a sustained period of fast prepayments, then
that might completely eliminate a PAC bond’s outstanding support class. When the
principal of the associated PAC bond is exhausted, the CMO is called a “busted PAC”, or
“busted collar”. Alternatively, in times of slow prepayments, amortization of the support
bonds is delayed if there is not enough principal for the currently paying PAC bond. This
extends the average life of the class.

A PAC bond protects against both extension and contraction risk by:

• Specifying a schedule of principal payments for the PAC bond
• Including support tranches that are allocated prepayments inside a specified

prepayment band

PAC bonds typically specify a band expressed using the PSA model. A PAC bond with a
range of 100–250% has this principal schedule.

The principal repayment schedule is the minimum principal payment as Region 1 shows.
This is the principal payment schedule as long as the actual prepayment stays within the
prepayment band of 100–250% PSA.

For example, for different prepayment speeds of 125%, 175%, and 225% PSA, the actual
principal payments are shown in the following graphs. At higher prepayment speeds, the
support tranche is allocated principal earlier while the principal timing for the other
tranches remains constant.
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TAC Tranches
Target amortization class (TAC) bonds are similar to PAC bonds, but they do not provide
protection against extension of average life. Create the schedule of principal payments by
using just a single PSA. TAC bonds pay a “targeted” principal payment schedule at a
single, constant prepayment speed. As long as the underlying mortgage collateral does
not prepay at a rate slower than this speed, the TAC bond payment schedule is met. TAC
bonds can protect against increasing prepayments and early retirement of the TAC bond
investment. If the principal cash flow from the mortgage collateral exceeds the TAC
schedule, the excess is allocated to TAC companion (support) classes. Alternatively, if
prepayments fall below the speed necessary to maintain the TAC schedule, the weighted
average life of the TAC is extended. The TAC bond does not protect against low
prepayment rates.

For example, here is a TAC structure rated for 125%, 175%, and 450% PSA.
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For prepayments below 175% PSA, the TAC bond extends like a normal sequential pay
CMO. TAC bonds are appealing because they offer higher yields than comparable PAC
bonds. The unaddressed risk from low prepayment rates generally does not concern
investors as much as risk from high prepayment rates.

See Also
cmosched | cmoschedcf | cmoseqcf | mbscfamounts | mbspassthrough

Related Examples
• “CMO Workflow” on page 5-60
• “Prepayment Risk” on page 5-52
• “Create PAC and Sequential CMO” on page 5-63
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “What Are CMOs?” on page 5-51
• “What Are Mortgage-Backed Securities?” on page 5-2

 See Also
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CMO Workflow
In general, the CMO workflow is:

1 Calculate underlying mortgage cash flows.
2 Define CMO tranches
3 If using a PAC or TAC CMO, calculate the principal schedule.
4 Calculate cash flows for each tranche.
5 Analyze the CMO by computing price, yield, spread of CMO cash flows.

Calculate Underlying Mortgage Cash Flows
Underlying mortgage pool pass-through cash flows are calculated by the existing function
mbspassthrough. The CMO cash flow functions require the principal payments
(including prepayments) calculated from existing functions mbspassthrough or
mbscfamounts.
principal = 10000000;
coupon = 0.06;
terms = 360;
psa = 150;

[principal_balance, monthly_payments, sched_principal_payments,...
interest_payments, prepayments] = mbspassthrough(principal,...
coupon, terms, terms, psa, []);

principal_payments = sched_principal_payments.' + prepayments.';

After determining principal payments for the underlying mortgage collateral, you can
generate cash flows for a sequential CMO, with or without a Z-bond, by using cmoseqcf.
For a PAC or TAC CMO, the cash flows are generated using cmoschedcf

Define CMO Tranches
Define CMO tranche; for example, define a CMO with two tranches:

TranchePrincipals = [500000; 500000];
TrancheCoupons = [0.06; 0.06];
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If Using a PAC or TAC CMO, Calculate Principal Schedule
Calculate the PAC/TAC principal balance schedule based on a band of PSA speeds. For
scheduled CMOs (PAC/TAC), the CMO cash flow functions additionally take in the
principal balance schedule calculated by the CMO schedule function cmosched.
speed = [100 300];
[balanceSchedule, initialBalance] = cmosched(principal, coupon,...
terms, terms, speed, TranchePrincipals(1));

Calculate Cash Flows for Each Tranche
You can reuse the output from the cash flow generation functions to further divide the
cash flows into tranches. For example, the output from cmoschedcf for a PAC tranche
can be divided into sequential tranches by passing the principal cash flows of the PAC
tranche into the cmoschedcf function. The outputs of the CMO cash flow functions are
the principal and interest cash flows, and the principal balance.
[principal_balances, principal_cashflows, interest_cashflows] = cmoschedcf(principal_payments,...
TranchePrincipals, TrancheCoupons, balanceSchedule);

Analyze CMO by Computing Price, Yield, and Spread of CMO
Cash Flows
The outputs from the CMO functions (cmoseqcf and cmoschedcf) are cash flows. The
functions used to analyze a CMO are based on these cash flows. To that end, you can use
cfbyzero, cfspread, cfyield, and cfprice to compute prices, yield, and spreads for
the CMO cash flows. In addition, using the following, you can calculate a weighted
average life (WAL) for each tranche in the CMO:

WAL
P

P
ti

i

n

i=

=

Â
1

where:

P is the total principal.

Pi is the principal repayment of the coupon i.

P

P

i

 is the fraction of the principal repaid in coupon i.
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ti is the time in years from the start to coupon i.

See Also
cmosched | cmoschedcf | cmoseqcf | mbscfamounts | mbspassthrough

Related Examples
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51
• “Create PAC and Sequential CMO” on page 5-63
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “What Are Mortgage-Backed Securities?” on page 5-2
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Create PAC and Sequential CMO
This example shows how to use an underlying mortgage-backed security (MBS) pool for a
30-year fixed-rate mortgage of 6% to define a PAC bond, and then define a sequential
CMO from the PAC bond. Analyze the CMO by comparing the CMO spread to a zero-rate
curve for a 30-year Treasury bond and then calculate the weighted-average life (WAL) for
the PAC bond.

Step 1. Define the underlying mortgage pool.

principal = 100000000;
grossrate = 0.06;
coupon = 0.05;
originalTerm = 360;
termRemaining = 360;
speed = 100;
delay = 14;

Settle      = datenum('1-Jan-2011');
IssueDate   = datenum('1-Jan-2011');
Maturity    = addtodate(IssueDate, 360, 'month');

Step 2. Calculate underlying pool cash flow.

[CFlowAmounts, CFlowDates, ~, ~, ~, UnitPrincipal, UnitInterest, ...
UnitPrepayment] = mbscfamounts(Settle, Maturity, IssueDate, grossrate, ...
coupon, delay, speed, []);

Step 3. Calculate prepayments.

principalPayments = UnitPrincipal * principal;
netInterest = UnitInterest * principal;
prepayments = UnitPrepayment * principal;
dates = CFlowDates' + delay;

Step 4. Generate a plot for underlying MBS payments.

area([principalPayments'+prepayments', netInterest'])
title('Underlying MBS Payments');
legend('Principal Payments (incl. Prepayments)', 'Interest Payments')
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Step 5. Calculate the PAC schedule.

pacSpeed = [80 300];
[balanceSchedule, pacInitBalance] = ...
cmosched(principal, grossrate, originalTerm, termRemaining, ...
pacSpeed, []);

Step 6. Generate a plot for the PAC principal balance schedule.

figure;
area([pacInitBalance'; balanceSchedule'])
title('PAC Principal Balance Schedule');
legend('Principal Balance Schedule');
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Step 7. Calculate PAC cash flow.
pacTranchePrincipals = [pacInitBalance; principal-pacInitBalance];
pacTrancheCoupons = [0.05; 0.05];
[pacBalances, pacPrincipals, pacInterests] = ...
cmoschedcf(principalPayments+prepayments, ...
pacTranchePrincipals, pacTrancheCoupons, balanceSchedule);

Step 8. Generate a plot for the PAC CMO tranches.

Generate a plot for the PAC CMO tranches:

figure;
area([pacPrincipals' pacInterests']);
title('PAC CMO (PAC and Support Tranches)');
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legend('PAC Principal Payments', 'Support Principal Payments', ...
'PAC Interest Payments', 'Support Interest Payments');

Step 9. Create sequential CMO from the PAC bond.

CMO tranches, A, B, C, and D

seqTranchePrincipals = ...
[20000000; 20000000; 10000000; pacInitBalance-50000000];
seqTrancheCoupons = [0.05; 0.05; 0.05; 0.05];

5 Mortgage-Backed Securities

5-66



Step 10. Calculate cash flows for each tranche.

[seqBalances, seqPrincipals, seqInterests] = ...
cmoseqcf(pacPrincipals(1, :), seqTranchePrincipals, ...
seqTrancheCoupons, false);

Step 11. Generate a plot for the sequential PAC CMO.

Generate a plot for the sequential PAC CMO:

figure
area([seqPrincipals' pacPrincipals(2, :)' pacInterests']);
title('Sequential PAC CMO and Support Tranches');
legend('Sequential PAC Principals (A)', 'Sequential PAC Principals (B)', ...
'Sequential PAC Principals (C)', 'Sequential PAC Principals (D)', ...
'Support Principal Payments', 'PAC Interest Payments', ...
'Support Interest Payments');
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Step 12. Create the discount curve.

CurveSettle = datenum('1-Jan-2011');
ZeroRates = [0.01 0.03 0.10 0.19 0.45 0.81 1.76 2.50 3.18 4.09 4.38]'/100;
CurveTimes = [1/12 3/12 6/12 1 2 3 5 7 10 20 30]';
CurveDates = daysadd(CurveSettle, 360 * CurveTimes, 1);
zeroCurve = intenvset('Rates', ZeroRates, 'StartDates', CurveSettle, ...
'EndDates', CurveDates);

Step 13. Price the CMO cash flows.

The cash flow for the sequential PAC principal A tranche is calculated using the cash flow
functions cfbyzero, cfyield, cfprice, and cfspread.
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cflows = seqPrincipals(1, :)+seqInterests(1, :);
cfdates = dates(2:end)';
price1 = cfbyzero(zeroCurve, cflows, cfdates, Settle, 4)

price1 = 2.2109e+07

yield = cfyield(cflows, cfdates, price1, Settle, 'Basis', 4)

yield = 0.0090

price2 = cfprice(cflows, cfdates, yield, Settle, 'Basis', 4)

price2 = 2.2109e+07

spread = cfspread(zeroCurve, price2, cflows, cfdates, Settle, 'Basis', 4)

spread = 8.5711e-13

WAL = sum(cflows .* yearfrac(Settle, cfdates, 4)) / sum(cflows)

WAL = 2.5408

The weighted average life (WAL) for the sequential PAC principal A tranche is 2.54 years.

See Also
cfbyzero | cfbyzero | cfprice | cfspread | cfyield | cmosched | cmoschedcf |
cmoseqcf | mbscfamounts

Related Examples
• “Fixed-Rate Mortgage Pool” on page 5-3

More About
• “Using Collateralized Mortgage Obligations (CMOs)” on page 5-51

 See Also
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Debt Instruments

• “Agency Option-Adjusted Spreads” on page 6-2
• “Using Zero-Coupon Bonds” on page 6-6
• “Stepped-Coupon Bonds” on page 6-11
• “Term Structure Calculations” on page 6-14
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Agency Option-Adjusted Spreads
Often bonds are issued with embedded options, which then makes standard price/yield or
spread measures irrelevant. For example, a municipality concerned about the chance that
interest rates may fall in the future might issue bonds with a provision that allows the
bond to be repaid before the bond’s maturity. This is a call option on the bond and must
be incorporated into the valuation of the bond. Option-adjusted spread (OAS), which
adjusts a bond spread for the value of the option, is the standard measure for valuing
bonds with embedded options. Financial Instruments Toolbox software supports
computing option-adjusted spreads for bonds with single embedded options using the
agency model.

The Securities Industry and Financial Markets Association (SIFMA) has a simplified
approach to compute OAS for agency issues (Government Sponsored Entities like Fannie
Mae and Freddie Mac) termed “Agency OAS”. In this approach, the bond has only one call
date (European call) and uses Black’s model (a variation on Black Scholes, http://
en.wikipedia.org/wiki/Black_model) to value the bond option. The price of the
bond is computed as follows:

PriceCallable = PriceNonCallable – PriceOption

where

PriceCallable is the price of the callable bond.

PriceNonCallable is the price of the noncallable bond, that is, price of the bond using
bndspread.

PriceOption is the price of the option, that is, price of the option using Black’s model.

The Agency OAS is the spread, when used in the previous formula, yields the market
price. Financial Instruments Toolbox software supports these functions:

Agency OAS

Agency OAS Functions Purpose
agencyoas Compute the OAS of the callable bond using the Agency

OAS model.
agencyprice Price the callable bond OAS using Agency using the OAS

model.
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Computing the Agency OAS for Bonds
To compute the Agency OAS using agencyoas, you must provide the zero curve as the
input ZeroData. You can specify the zero curve in any intervals and with any
compounding method. You can do this using Financial Toolbox™ functions zbtprice and
zbtyield. Or, you can use IRDataCurve to construct an IRDataCurve object, and then
use the getZeroRates to convert to dates and data for use in the ZeroData input.

After creating the ZeroData input for agencyoas, you can then:

1 Assign parameters for CouponRate, Settle, Maturity, Vol, CallDate, and
Price.

2 Compute the option-adjusted spread using agencyoas to derive the OAS output.

If you have the Agency OAS for the callable bond, you can use the OAS value as an
input to agencyprice to determine the price for a callable bond.

In the following example, the Agency OAS is computed using agencyoas for a range of
bond prices and the spread of an identically priced noncallable bond is calculated using
bndspread.
%% Data
% Bond data -- note that there is only 1 call date
Settle = datenum('20-Jan-2010');
Maturity = datenum('30-Dec-2013');
Coupon = .022;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
Period = 2;
Basis = 1;
Face = 100;
 
% Zero Curve data
ZeroTime = [.25 .5 1 2 3 4 5 7 10 20 30]';
ZeroDates = daysadd(Settle,360*ZeroTime,1);
ZeroRates = [.0008 .0017 .0045 .0102 .0169 .0224 .0274 .0347 .0414 .0530 .0740]';
ZeroData = [ZeroDates ZeroRates];
CurveCompounding = 2;
CurveBasis = 1;

Price = 94:104;
OAS = agencyoas(ZeroData, Price', Coupon, Settle,Maturity, Vol, CallDate,'Basis',Basis)
Spread = bndspread(ZeroData, Price', Coupon, Settle, Maturity)
plot(OAS,Price)
hold on
plot(Spread,Price,'r')
xlabel('Spread (bp)')
ylabel('Price')
title('AOAS and Spread for an Agency and Equivalent Noncallable Bond')
legend({'Callable Issue','Noncallable Issue'})
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OAS =

  163.4942
  133.7306
  103.8735
   73.7505
   43.1094
   11.5608
  -21.5412
  -57.3869
  -98.5675
 -152.5226
 -239.6462

Spread =

  168.1412
  139.7047
  111.6123
   83.8561
   56.4286
   29.3227
    2.5314
  -23.9523
  -50.1348
  -76.0226
 -101.6218

The following plot demonstrates as the price increases, the value of the embedded option
in the Agency issue increases, and the value of the issue itself does not increase as much
as it would for a noncallable bond, illustrating the negative convexity of this issue:
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See Also
agencyoas | agencyprice

Related Examples
• “Using Zero-Coupon Bonds” on page 6-6
• “Stepped-Coupon Bonds” on page 6-11
• “Term Structure Calculations” on page 6-14

More About
• “Supported Interest-Rate Instruments” on page 2-2

 See Also
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Using Zero-Coupon Bonds
In this section...
“Introduction” on page 6-6
“Measuring Zero-Coupon Bond Function Quality” on page 6-6
“Pricing Treasury Notes” on page 6-7
“Pricing Corporate Bonds” on page 6-8

Introduction
A zero-coupon bond is a corporate, Treasury, or municipal debt instrument that pays no
periodic interest. Typically, the bond is redeemed at maturity for its full face value. It is a
security issued at a discount from its face value, or it may be a coupon bond stripped of
its coupons and repackaged as a zero-coupon bond.

Financial Instruments Toolbox software provides functions for valuing zero-coupon debt
instruments. These functions supplement existing coupon bond functions such as
bndprice and bndyield that are available in Financial Toolbox software.

Measuring Zero-Coupon Bond Function Quality
Zero-coupon function quality is measured by how consistent the results are with coupon-
bearing bonds. Because the zero coupon's yield is bond-equivalent, comparisons with
coupon-bearing bonds are possible.

In the textbook case, where time (t) is measured continuously and the rate (r) is

continuously compounded, the value of a zero bond is the principal multiplied by e
rt- . In

reality, the rate quoted is continuous and the basis can be variable, requiring a more
consistent approach to meet the stricter demands of accurate pricing.

The following two examples

• “Pricing Treasury Notes” on page 6-7
• “Pricing Corporate Bonds” on page 6-8

show how the zero functions are consistent with supported coupon bond functions.
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Pricing Treasury Notes
A Treasury note can be considered to be a package of zeros. The toolbox functions that
price zeros require a coupon bond equivalent yield. That yield can originate from any type
of coupon paying bond, with any periodic payment, or any accrual basis. The next
example shows the use of the toolbox to price a Treasury note and compares the
calculated price with the actual price quotation for that day.

Settle = datenum('02-03-2003');
MaturityCpn = datenum('05-15-2009');
Period = 2;
Basis = 0;

% Quoted yield.
QYield = 0.03342;

% Quoted price.
QPriceACT = 112.127;

CouponRate = 0.055;

Extract the cash flow and compute price from the sum of zeros discounted.
[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ... 
Period, Basis);
MaturityofZeros = CDates;

Compute the price of the coupon bond identically as a collection of zeros by multiplying
the discount factors to the corresponding cash flows.

PriceofZeros = CFlows * zeroprice(QYield, Settle, ... 
MaturityofZeros, Period, Basis)/100;

The following table shows the intermediate calculations.

Cash Flows Discount Factors Discounted Cash Flows
-1.2155 1.0000 -1.2155
2.7500 0.9908 2.7246
2.7500 0.9745 2.6799
2.7500 0.9585 2.6359
2.7500 0.9427 2.5925
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Cash Flows Discount Factors Discounted Cash Flows
2.7500 0.9272 2.5499
2.7500 0.9120 2.5080
2.7500 0.8970 2.4668
2.7500 0.8823 2.4263
2.7500 0.8678 2.3864
2.7500 0.8535 2.3472
2.7500 0.8395 2.3086
2.7500 0.8257 2.2706
102.7500 0.8121 83.4451
                                        Tota

l
112.1263

Compare the quoted price and the calculated price based on zeros.

[QPriceACT PriceofZeros]

ans =

112.1270   112.1263

This example shows that zeroprice can satisfactorily price a Treasury note, a
semiannual actual/actual basis bond, as if it were a composed of a series of zero-coupon
bonds.

Pricing Corporate Bonds
You can similarly price a corporate bond, for which there is no corresponding zero-coupon
bond, as opposed to a Treasury note, for which corresponding zeros exist. You can create
a synthetic zero-coupon bond and arrive at the quoted coupon-bond price when you later
sum the zeros.

Settle = datenum('02-05-2003');
MaturityCpn = datenum('01-14-2009');
Period = 2;
Basis = 1;
% Quoted yield.
QYield = 0.05974;
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% Quoted price.
QPrice30 = 99.382;
CouponRate = 0.05850;

Extract cash flow and compute price from the sum of zeros.

[CFlows, CDates] = cfamounts(CouponRate, Settle, MaturityCpn, ... 
Period, Basis);

Maturity = CDates;

Compute the price of the coupon bond identically as a collection of zeros by multiplying
the discount factors to the corresponding cash flows.

Price30 = CFlows * zeroprice(QYield, Settle, Maturity, Period, ... 
Basis)/100;

Compare quoted price and calculated price based on zeros.

[QPrice30 Price30]

ans =

99.3820   99.3828

As a test of fidelity, intentionally giving the wrong basis, say actual/actual (Basis = 0)
instead of 30/360, gives a price of 99.3972. Such a systematic error, if recurring in a more
complex pricing routine, quickly adds up to large inaccuracies.

In summary, the zero functions in MATLAB software facilitate extraction of present value
from virtually any fixed-coupon instrument, up to any period in time.

See Also
bndprice | bndyield

Related Examples
• “Agency Option-Adjusted Spreads” on page 6-2
• “Stepped-Coupon Bonds” on page 6-11
• “Term Structure Calculations” on page 6-14

 See Also
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More About
• “Supported Interest-Rate Instruments” on page 2-2
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Stepped-Coupon Bonds
In this section...
“Introduction” on page 6-11
“Cash Flows from Stepped-Coupon Bonds” on page 6-11
“Price and Yield of Stepped-Coupon Bonds” on page 6-12

Introduction
A stepped-coupon bond has a fixed schedule of changing coupon amounts. Like fixed
coupon bonds, stepped-coupon bonds could have different periodic payments and accrual
bases.

The functions stepcpnprice and stepcpnyield compute prices and yields of such
bonds. An accompanying function stepcpncfamounts produces the cash flow schedules
pertaining to these bonds.

Cash Flows from Stepped-Coupon Bonds
Consider a bond that has a schedule of two coupons. Suppose that the bond starts out
with a 2% coupon that steps up to 4% in 2 years and onward to maturity. Assume that the
issue and settlement dates are both March 15, 2003. The bond has a 5-year maturity. Use
stepcpncfamounts to generate the cash flow schedule and times.
Settle      = datenum('15-Mar-2003');
Maturity    = datenum('15-Mar-2008');
ConvDates   = [datenum('15-Mar-2005')];
CouponRates = [0.02, 0.04];

[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ... 
ConvDates, CouponRates)

Notably, ConvDates has one less element than CouponRates because MATLAB software
assumes that the first element of CouponRates indicates the coupon schedule between
Settle (March 15, 2003) and the first element of ConvDates (March 15, 2005), shown
diagrammatically below.

 Pay 2% from March 15,
2003

 Pay 4% from March
15, 2003

 Stepped-Coupon Bonds
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Effective 2% on March
15, 2003

 Effective 4% on March
15, 2005

 

Coupon Dates Semiannual Coupon Payment
15-Mar-03 0
15-Sep-03 1
15-Mar-04 1
15-Sep-04 1
15-Mar-05 1
15-Sep-05 2
15-Mar-06 2
15-Sep-06 2
15-Mar-07 2
15-Sep-07 2
15-Mar-08 102

The payment on March 15, 2005 is still a 2% coupon. Payment of the 4% coupon starts
with the next payment, September 15, 2005. March 15, 2005 is the end of first coupon
schedule, not to be confused with the beginning of the second.

In summary, MATLAB takes user input as the end dates of coupon schedules and
computes the next coupon dates automatically.

The payment due on settlement (zero in this case) represents the accrued interest due on
that day. It is negative if such amount is nonzero. Comparison with cfamounts in
Financial Toolbox shows that the two functions operate identically.

Price and Yield of Stepped-Coupon Bonds
The toolbox provides two basic analytical functions to compute price and yield for
stepped-coupon bonds. Using the above bond as an example, you can compute the price
when the yield is known.

You can estimate the yield to maturity as a number-of-year weighted average of coupon
rates. For this bond, the estimated yield is:
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or 3.33%. While definitely not exact (due to nonlinear relation of price and yield), this
estimate suggests close to par valuation and serves as a quick first check on the function.

Yield = 0.0333;

[Price, AccruedInterest] = stepcpnprice(Yield, Settle, ... 
Maturity, ConvDates, CouponRates)

The price returned is 99.2237 (per $100 notional), and the accrued interest is zero,
consistent with our earlier assertions.

To validate that there is consistency among the stepped-coupon functions, you can use the
above price and see if indeed it implies a 3.33% yield by using stepcpnyield.

YTM = stepcpnyield(Price, Settle, Maturity, ConvDates, ... 
CouponRates)

YTM =

    0.0333

See Also
stepcpncfamounts | stepcpnprice | stepcpnyield

Related Examples
• “Agency Option-Adjusted Spreads” on page 6-2
• “Using Zero-Coupon Bonds” on page 6-6
• “Term Structure Calculations” on page 6-14

More About
• “Supported Interest-Rate Instruments” on page 2-2

 See Also
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Term Structure Calculations
In this section...
“Introduction” on page 6-14
“Computing Spot and Forward Curves” on page 6-14
“Computing Spreads” on page 6-16

Introduction
So far, a more formal definition of "yield" and its application has not been developed. In
many situations when cash flow is available, discounting factors to the cash flows may not
be immediately apparent. In other cases, what is relevant is often a spread, the difference
between curves (also known as the term structure of spread).

All these calculations require one main ingredient, the Treasury spot, par-yield, or
forward curve. Typically, the generation of these curves starts with a series of on-the-run
and selected off-the-run issues as inputs.

MATLAB software uses these bonds to find spot rates one at a time, from the shortest
maturity onwards, using bootstrap techniques. All cash flows are used to construct the
spot curve, and rates between maturities (for these coupons) are interpolated linearly.

Computing Spot and Forward Curves
For an illustration of how this works, observe the use of zbtyield (or equivalently
zbtprice) on a portfolio of six Treasury bills and bonds.

Bills Maturity Date Current Yield
3 month 4/17/03 1.15
6 month 7/17/03 1.18

Notes/Bonds Coupon Maturity Date Current Yield
2 year 1.750 12/31/04 1.68
5 year 3.000 11/15/07 2.97
10 year 4.000 11/15/12 4.01
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Notes/Bonds Coupon Maturity Date Current Yield
30 year 5.375 2/15/31 4.92

You can specify prices or yields to the bonds above to infer the spot curve. The function
zbtyield accepts yields (bond-equivalent yield, to be exact).

To proceed, first assemble the above table into a variable called Bonds. The first column
contains maturities, the second contains coupons, and the third contains notionals or face
values of the bonds. (Note that bills have zero coupons.)

Bonds = [datenum('04/17/2003')    0        100;
         datenum('07/17/2003')    0        100;
         datenum('12/31/2004')    0.0175   100;
         datenum('11/15/2007')    0.03     100;
         datenum('11/15/2012')    0.04     100;
         datenum('02/15/2031')    0.05375  100];

Then specify the corresponding yields.

Yields  = [0.0115;
           0.0118;
           0.0168;
           0.0297;
           0.0401;
           0.0492];

You are now ready to compute the spot curve for each of these six maturities. The spot
curve is based on a settlement date of January 17, 2003.

Settle = datenum('17-Jan-2003');
[ZeroRates, CurveDates] = zbtyield(Bonds, Yields, Settle)

This gets you the Treasury spot curve for the day.

You can compute the forward curve from this spot curve with zero2fwd.

[ForwardRates, CurveDates] = zero2fwd(ZeroRates, CurveDates, ... 
Settle)

Here the notion of forward rates refers to rates between the maturity dates shown above,
not to a certain period (forward 3-month rates, for example).
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Computing Spreads
Calculating the spread between specific, fixed forward periods (such as the Treasury-
Eurodollar spread) requires an extra step. Interpolate the zero rates (or zero prices,
instead) for the corresponding maturities on the interval dates. Then use the interpolated
zero rates to deduce the forward rates, and thus the spread of Eurodollar forward curve
segments versus the relevant forward segments from Treasury bills.

Additionally, the variety of curve functions (including zero2fwd) helps to standardize
such calculations. For instance, by making both rates quoted with quarterly compounding
and on an actual/360 basis, the resulting spread structure is fully comparable. This avoids
the small inconsistency that occurs when directly comparing the bond-equivalent yield of
a Treasury bill to the quarterly forward rates implied by Eurodollar futures.

Noise in Curve Computations

When introducing more bonds in constructing curves, noise may become a factor and may
need some “smoothing” (with splines, for example); this helps obtain a smoother forward
curve.
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The following spot and forward curves are constructed from 67 Treasury bonds. The fitted
and bootstrapped spot curve (bottom right figure) displays comparable stability. The
forward curve (upper-left figure) contains significant noise and shows an improbable
forward rate structure. The noise is not necessarily bad; it could uncover trading
opportunities for a relative-value approach. Yet, a more balanced approach is desired
when the bootstrapped forward curve oscillates this much and contains a negative rate as
large as -10% (not shown in the plot because it is outside the limits).

 Term Structure Calculations

6-17



This example uses termfit, an example function from Financial Toolbox software that
also requires the use of Curve Fitting Toolbox™ software.

See Also
zbtprice | zbtyield
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Related Examples
• “Agency Option-Adjusted Spreads” on page 6-2
• “Using Zero-Coupon Bonds” on page 6-6
• “Stepped-Coupon Bonds” on page 6-11

More About
• “Supported Interest-Rate Instruments” on page 2-2

 See Also

6-19





Derivative Securities

• “Interest Rate Swaps” on page 7-2
• “Bond Futures” on page 7-10
• “Analysis of Bond Futures” on page 7-13
• “Managing Present Value with Bond Futures” on page 7-16
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17
• “Fitting the Diebold Li Model” on page 7-25

7



Interest Rate Swaps
In this section...
“Swap Pricing Assumptions” on page 7-2
“Swap Pricing Example” on page 7-3
“Portfolio Hedging” on page 7-8

Swap Pricing Assumptions
Financial Instruments Toolbox contains the function liborfloat2fixed, which
computes a fixed-rate par yield that equates the floating-rate side of a swap to the fixed-
rate side. The solver sets the present value of the fixed side to the present value of the
floating side without having to line up and compare fixed and floating periods.

Assumptions on Floating-Rate Input

• Rates are quarterly, for example, that of Eurodollar futures.
• Effective date is the first third Wednesday after the settlement date.
• All delivery dates are spaced 3 months apart.
• All periods start on the third Wednesday of delivery months.
• All periods end on the same dates of delivery months, 3 months after the start dates.
• Accrual basis of floating rates is actual/360.
• Applicable forward rates are estimated by interpolation in months when forward-rate

data is not available.

Assumptions on Fixed-Rate Output

• Design allows you to create a bond of any coupon, basis, or frequency, based on the
floating-rate input.

• The start date is a valuation date, that is, a date when an agreement to enter into a
contract by the settlement date is made.

• Settlement can be on or after the start date. If it is after, a forward fixed-rate contract
results.

• Effective date is assumed to be the first third Wednesday after settlement, the same
date as that of the floating rate.
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• The end date of the bond is a designated number of years away, on the same day and
month as the effective date.

• Coupon payments occur on anniversary dates. The frequency is determined by the
period of the bond.

• Fixed rates are not interpolated. A fixed-rate bond of the same present value as that of
the floating-rate payments is created.

Swap Pricing Example
This example shows the use of the functions in computing the fixed rate applicable to a
series of 2-, 5-, and 10-year swaps based on Eurodollar market data. According to the
Chicago Mercantile Exchange (https://www.cmegroup.com), Eurodollar data on
Friday, October 11, 2002, was as shown in the following table.

Note This example illustrates swap calculations in MATLAB software. Timing of the data
set used was not rigorously examined and was assumed to be the proxy for the swap rate
reported on October 11, 2002.

 Interest Rate Swaps
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Eurodollar Data on Friday, October 11, 2002 

Month Year Settle
10 2002 98.21
11 2002 98.26
12 2002 98.3
1 2003 98.3
2 2003 98.31
3 2003 98.275
6 2003 98.12
9 2003 97.87
12 2003 97.575
3 2004 97.26
6 2004 96.98
9 2004 96.745
12 2004 96.515
3 2005 96.33
6 2005 96.135
9 2005 95.955
12 2005 95.78
3 2006 95.63
6 2006 95.465
9 2006 95.315
12 2006 95.16
3 2007 95.025
6 2007 94.88
9 2007 94.74
12 2007 94.595
3 2008 94.48
6 2008 94.375
9 2008 94.28
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Month Year Settle
12 2008 94.185
3 2009 94.1
6 2009 94.005
9 2009 93.925
12 2009 93.865
3 2010 93.82
6 2010 93.755
9 2010 93.7
12 2010 93.645
3 2011 93.61
6 2011 93.56
9 2011 93.515
12 2011 93.47
3 2012 93.445
6 2012 93.41
9 2012 93.39

Using this data, you can compute 1-, 2-, 3-, 4-, 5-, 7-, and 10-year swap rates with the
toolbox function liborfloat2fixed. The function requires you to input only Eurodollar
data, the settlement date, and tenor of the swap. MATLAB software then performs the
required computations.

To illustrate how this function works, first load the data contained in the supplied Excel®
worksheet EDdata.xls.

[EDRawData, textdata] = xlsread('EDdata.xls');

Extract the month from the first column and the year from the second column. The rate
used as proxy is the arithmetic average of rates on opening and closing.

Month = EDRawData(:,1);
Year  = EDRawData(:,2);
IMMData = (EDRawData(:,4)+EDRawData(:,6))/2;
EDFutData = [Month, Year, IMMData];

Next, input the current date.
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Settle = datenum('11-Oct-2002');

To compute for the 2-year swap rate, set the tenor to 2.

Tenor = 2;

Finally, compute the swap rate with liborfloat2fixed.

[FixedSpec, ForwardDates, ForwardRates] = ... 
liborfloat2fixed(EDFutData, Settle, Tenor)

MATLAB returns a par-swap rate of 2.23% using the default setting (quarterly
compounding and 30/360 accrual), and forward dates and rates data (quarterly
compounded).

FixedSpec = 

       Coupon: 0.0223
       Settle: '16-Oct-2002'
     Maturity: '16-Oct-2004'
       Period: 4
        Basis: 1

ForwardDates =

      731505
      731596
      731687
      731778
      731869
      731967
      732058
      732149

ForwardRates =

    0.0178
    0.0168
    0.0171
    0.0189
    0.0216
    0.0250
    0.0280
    0.0306
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In the FixedSpec output, note that the swap rate actually goes forward from the third
Wednesday of October 2002 (October 16, 2002), 5 days after the original Settle input
(October 11, 2002). This, however, is still the best proxy for the swap rate on Settle, as
the assumption merely starts the swap's effective period and does not affect its valuation
method or its length.

The correction suggested by Hull and White improves the result by turning on convexity
adjustment as part of the input to liborfloat2fixed. (See Hull, J., Options, Futures,
and Other Derivatives, 4th Edition, Prentice-Hall, 2000.) For a long swap, for example,
five years or more, this correction could prove to be large.

The adjustment requires additional parameters:

• StartDate, which you make the same as Settle (the default) by providing an empty
matrix [] as input.

• ConvexAdj to tell liborfloat2fixed to perform the adjustment.
• RateParam, which provides the parameters a and S as input to the Hull-White short

rate process.
• Optional parameters InArrears and Sigma, for which you can use empty matrices []

to accept the MATLAB defaults.
• FixedCompound, with which you can facilitate comparison with values cited in Table

H15 of Federal Reserve Statistical Release by turning the default quarterly
compounding into semiannual compounding, with the (default) basis of 30/360.

StartDate = [];
Interpolation = [];
ConvexAdj = 1;
RateParam = [0.03; 0.017];
FixedCompound = 2;
[FixedSpec, ForwardDaates, ForwardRates] = ... 
liborfloat2fixed(EDFutData, Settle, Tenor, StartDate, ... 
Interpolation, ConvexAdj, RateParam, [], [], FixedCompound)

This returns 2.21% as the 2-year swap rate, quite close to the reported swap rate for that
date.

Analogously, the following table summarizes the solutions for 1-, 3-, 5-, 7-, and 10-year
swap rates (convexity-adjusted and unadjusted).
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Calculated and Market Average Data of Swap Rates on Friday, October 11, 2002
Swap
Length
(Years)

Unadjusted Adjusted Table H15 Adjusted Error
(Basis Points)

1 1.80% 1.79% 1.80% -1
2 2.24% 2.21% 2.22% -1
3 2.70% 2.66% 2.66% 0
4 3.12% 3.03% 3.04% -1
5 3.50% 3.37% 3.36% +1
7 4.16% 3.92% 3.89% +3
10 4.87% 4.42% 4.39% +3

Portfolio Hedging
You can use these results further, such as for hedging a portfolio. The liborduration
function provides a duration-hedging capability. You can isolate assets (or liabilities) from
interest-rate risk exposure with a swap arrangement.

Suppose that you own a bond with these characteristics:

• $100 million face value
• 7% coupon paid semiannually
• 5% yield to maturity
• Settlement on October 11, 2002
• Maturity on January 15, 2010
• Interest accruing on an actual/365 basis

Use of the bnddury function from Financial Toolbox software shows a modified duration
of 5.6806 years.

To immunize this asset, you can enter into a pay-fixed swap, specifically a swap in the
amount of notional principal (Ns) such that Ns*SwapDuration + $100M*5.6806 = 0 (or
Ns = -100*5.6806/SwapDuration).

Suppose again, you choose to use a 5-, 7-, or 10-year swap (3.37%, 3.92%, and 4.42%
from the previous table) as your hedging tool.
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SwapFixRate = [0.0337; 0.0392; 0.0442];
Tenor = [5; 7; 10];
Settle = '11-Oct-2002';
PayFixDuration = liborduration(SwapFixRate, Tenor, Settle)

This gives a duration of -3.6835, -4.7307, and -6.0661 years for 5-, 7-, and 10-year swaps.
The corresponding notional amount is computed by

Ns = -100*5.6806./PayFixDuration

Ns =

  154.2163
  120.0786
   93.6443

The notional amount entered in pay-fixed side of the swap instantaneously immunizes the
portfolio.

See Also
liborduration | liborfloat2fixed | liborprice

Related Examples
• “Analysis of Bond Futures” on page 7-13
• “Fitting the Diebold Li Model” on page 7-25
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17

More About
• “Supported Interest-Rate Instruments” on page 2-2

 See Also
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Bond Futures
Bond futures are futures contracts where the commodity for delivery is a government
bond. There are established global markets for government bond futures. Bond futures
provide a liquid alternative for managing interest-rate risk.

In the U.S. market, the Chicago Mercantile Exchange (CME) offers futures on Treasury
bonds and notes with maturities of 2, 5, 10, and 30 years. Typically, the following bond
future contracts from the CME have maturities of 3, 6, 9, and 12 months:

• 30-year U.S. Treasury bond
• 10-year U.S. Treasury bond
• 5-year U.S. Treasury bond
• 2-year U.S. Treasury bond

The short position in a Treasury bond or note future contract must deliver to the long
position in one of many possible existing Treasury bonds. For example, in a 30-year
Treasury bond future, the short position must deliver a Treasury bond with at least 15
years to maturity. Because these bonds have different values, the bond future contract is
standardized by computing a conversion factor. The conversion factor normalizes the
price of a bond to a theoretical bond with a coupon of 6%. The price of a bond future
contract is represented as:

InvoicePrice FutPrice CF AI= ¥ +

where:

FutPrice is the price of the bond future.

CF is the conversion factor for a bond to deliver in a futures contract.

AI is the accrued interest.

The short position in a futures contract has the option of which bond to deliver and, in the
U.S. bond market, when in the delivery month to deliver the bond. The short position
typically chooses to deliver the bond known as the Cheapest to Deliver (CTD). The CTD
bond most often delivers on the last delivery day of the month.

Financial Instruments Toolbox software supports the following bond futures:
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• U.S. Treasury bonds and notes
• German Bobl, Bund, Buxl, and Schatz
• UK gilts
• Japanese government bonds (JGBs)

The functions supporting all bond futures are:

Function Purpose
convfactor Calculates bond conversion factors for U.S. Treasury bonds,

German Bobl, Bund, Buxl, and Schatz, U.K. gilts, and JGBs.
bndfutprice Prices bond future given repo rates.
bndfutimprepo Calculates implied repo rates for a bond future given price.

The functions supporting U.S. Treasury bond futures are:

Function Purpose
tfutbyprice Calculates future prices of Treasury bonds given the spot price.
tfutbyyield Calculates future prices of Treasury bonds given current yield.
tfutimprepo Calculates implied repo rates for the Treasury bond future

given price.
tfutpricebyrepo Calculates Treasury bond futures price given the implied repo

rates.
tfutyieldbyrepo Calculates Treasury bond futures yield given the implied repo

rates.

See Also
bnddurp | bnddury | bndfutimprepo | bndfutprice | convfactor | tfutbyprice |
tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

Related Examples
• “Analysis of Bond Futures” on page 7-13
• “Fitting the Diebold Li Model” on page 7-25
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17

 See Also
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More About
• “Supported Interest-Rate Instruments” on page 2-2
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Analysis of Bond Futures
The following example demonstrates analyzing German Euro-Bund futures traded on
Eurex. However, convfactor, bndfutprice, and bndfutimprepo apply to bond
futures in the U.S., U.K., Germany, and Japan. The workflow for this analysis is:

1 Calculate bond conversion factors.
2 Calculate implied repo rates to find the CTD bond.
3 Price the bond future using the term implied repo rate.

Calculating Bond Conversion Factors
Use conversion factors to normalize the price of a particular bond for delivery in a futures
contract. When using conversion factors, the assumption is that a bond for delivery has a
6% coupon. Use convfactor to calculate conversion factors for all bond futures from the
U.S., Germany, Japan, and U.K.

For example, conversion factors for Euro-Bund futures on Eurex are listed at
www.eurexchange.com. The delivery date for Euro-Bund futures is the 10th day of the
month, as opposed to bond futures in the U.S., where the short position has the option of
choosing when to deliver the bond.

For the 4% bond, compute the conversion factor with:

CF1 = convfactor('10-Sep-2009','04-Jul-2018', .04,.06,3)

CF1 =

     0.8659

This syntax for convfactor works fine for bonds with standard coupon periods.
However, some deliverable bonds have long or short first coupon periods. Compute the
conversion factors for such bonds using the optional input parameters StartDate and
FirstCouponDate. Specify all optional input arguments for convfactor as parameter/
value pairs:
CF2 = convfactor('10-Sep-2009','04-Jan-2019', .0375,'Convention',3,'startdate',...
datenum('14-Nov-2008'))

CF2 =

    0.8426
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Calculating Implied Repo Rates to Find the CTD Bond
To determine the availability of the cheapest bond for deliverable bonds against a futures
contract, compute the implied repo rate for each bond. The bond with the highest repo
rate is the cheapest because it has the lowest initial value, thus yielding a higher return,
provided you deliver it with the stated futures price. Use bndfutimprepo to calculate
repo rates:
% Bond Properties
CouponRate = [.0425;.0375;.035];
Maturity = [datenum('04-Jul-2018');datenum('04-Jan-2019');datenum('04-Jul-2019')];
CF = [0.882668;0.842556;0.818193];
Price = [105.00;100.89;98.69];

% Futures Properties
FutSettle = '09-Jun-2009';
FutPrice = 118.54;
Delivery = '10-Sep-2009';

% Note that the default for BNDFUTIMPREPO is for the bonds to be
% semi-annual with a day count basis of 0.  Since these are German
% bonds, we need to have a Basis of 8 and a Period of 1
ImpRepo = bndfutimprepo(Price, FutPrice, FutSettle, Delivery, CF, ...
CouponRate, Maturity,'Basis',8,'Period',1)

ImpRepo =

    0.0261
   -0.0022
   -0.0315

Pricing Bond Futures Using the Term Implied Repo Rate
Use bndfutprice to perform price calculations for all bond futures from the U.S.,
Germany, Japan, and U.K. To price the bond, given a term repo rate:
% Assume a term repo rate of .0091;
RepoRate = .0091;
[FutPrice,AccrInt] = bndfutprice(RepoRate, Price(1), FutSettle,...
Delivery, CF(1), CouponRate(1), Maturity(1),...
'Basis',8,'Period',1)

FutPrice =

  118.0126

AccrInt =

    0.7918
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See Also
bnddurp | bnddury | bndfutimprepo | bndfutprice | convfactor | tfutbyprice |
tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

Related Examples
• “Managing Present Value with Bond Futures” on page 7-16
• “Fitting the Diebold Li Model” on page 7-25
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17

More About
• “Bond Futures” on page 7-10
• “Supported Interest-Rate Instruments” on page 2-2

 See Also
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Managing Present Value with Bond Futures
The Present Value of a Basis Point (PVBP) is used to manage interest-rate risk. PVBP is a
measure that quantifies the change in price of a bond given a one-basis point shift in
interest rates. The PVBP of a bond is computed with the following:

PVBP
Duration MarketValue

Bond =
¥

100

The PVBP of a bond futures contract can be computed with the following:

PVBP
PVBP

CTDConversionFactor
Futures

CTDBond

=

Use bnddurp and bnddury from Financial Toolbox software to compute the modified
durations of CTD bonds. For more information, see “Managing Interest-Rate Risk with
Bond Futures” on page 7-17 and “Fitting the Diebold Li Model” on page 7-25.

See Also
bnddurp | bnddury | bndfutimprepo | bndfutprice | convfactor | tfutbyprice |
tfutbyyield | tfutimprepo | tfutpricebyrepo | tfutyieldbyrepo

Related Examples
• “Analysis of Bond Futures” on page 7-13
• “Fitting the Diebold Li Model” on page 7-25
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17

More About
• “Bond Futures” on page 7-10
• “Supported Interest-Rate Instruments” on page 2-2
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Managing Interest-Rate Risk with Bond Futures
This example shows how to hedge the interest-rate risk of a portfolio using bond futures.

Modifying the Duration of a Portfolio with Bond Futures

In managing a bond portfolio, you can use a benchmark portfolio to evaluate
performance. Sometimes a manager is constrained to keep the portfolio's duration within
a particular band of the duration of the benchmark. One way to modify the duration of the
portfolio is to buy and sell bonds, however, there may be reasons why a portfolio manager
wishes to maintain the existing composition of the portfolio (for example, the current
holdings reflect fundamental research/views about future returns). Therefore, another
option for modifying the duration is to buy and sell bond futures.

Bond futures are futures contracts where the commodity to be delivered is a government
bond that meets the standard outlined in the futures contract (for example, the bond has
a specified remaining time to maturity).

Since often many bonds are available, and each bond may have a different coupon, you
can use a conversion factor to normalize the payment by the long to the short.

There exist well developed markets for government bond futures. Specifically, the
Chicago Board of Trade offers futures on the following:

• 2 Year Note
• 3 Year Note
• 5 Year Note
• 10 Year Note
• 30 Year Bond

https://www.cmegroup.com/trading/interest-rates/

Eurex offers futures on the following:

• Euro-Schatz Futures 1.75 to 2.25
• Euro-Bobl Futures 4.5 to 5.5
• Euro-Bund Futures 8.5 to 10.5
• Euro-Buxl Futures 24.0 to 35

https://www.eurexchange.com/exchange-en/

 Managing Interest-Rate Risk with Bond Futures

7-17

https://www.cmegroup.com/trading/interest-rates/
https://www.eurexchange.com/exchange-en/


Bond futures can be used to modify the duration of a portfolio. Since bond futures derive
their value from the underlying instrument, the duration of a bond futures contract is
related to the duration of the underlying bond.

There are two challenges in computing this duration:

• Since there are many available bonds for delivery, the short in the contract has a
choice in which bond to deliver.

• Some contracts allow the short flexibility in choosing the delivery date.

Typically, the bond used for analysis is the bond that is cheapest for the short to deliver
(CTD).

One approach is to compute duration measures using the CTD's duration and the
conversion factor.

For example, the Present Value of a Basis Point (PVBP) can be computed from the
following:

Note that these definitions of duration for the futures contract are approximate, and do
not account for the value of the delivery options for the short.

If the goal is to modify the duration of a portfolio, use the following:

Note that the contract size is typically for 100,000 face value of a bond -- so the contract
size is typically 1000, as the bond face value is 100.

The following example assumes an initial duration, portfolio value, and target duration for
a portfolio with exposure to the Euro interest rate. The June Euro-Bund Futures contract
is used to modify the duration of the portfolio.
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Note that typically futures contracts are offered for March, June, September and
December.

% Assume the following for the portfolio and target
PortfolioDuration = 6.4;
PortfolioValue = 100000000;
BenchmarkDuration = 4.8;

% Deliverable Bunds -- note that these conversion factors may also be
% computed with the MATLAB(R) function convfactor
BondPrice = [106.46;108.67;104.30];
BondMaturity = datenum({'04-Jan-2018','04-Jul-2018','04-Jan-2019'});
BondCoupon = [.04;.0425;.0375];
ConversionFactor = [.868688;.880218;.839275];

% Futures data -- found from http://www.eurexchange.com
FuturesPrice = 122.17;
FuturesSettle = '23-Apr-2009';
FuturesDelivery = '10-Jun-2009';

% To find the CTD bond we can compute the implied repo rate
ImpliedRepo = bndfutimprepo(BondPrice,FuturesPrice,FuturesSettle,...
    FuturesDelivery,ConversionFactor,BondCoupon,BondMaturity);

% Note that the bond with the highest implied repo rate is the CTD
[CTDImpRepo,CTDIndex] = max(ImpliedRepo);

% Compute the CTD's Duration -- note the period and basis for German Bunds
Duration = bnddurp(BondPrice,BondCoupon,FuturesSettle,BondMaturity,1,8);

ContractSize = 1000;

% Use the formula above to compute the number of contracts to sell
NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
    (BondPrice(CTDIndex)*ContractSize*Duration(CTDIndex))*ConversionFactor(CTDIndex);

disp(['To achieve the target duration, ' num2str(abs(round(NumContracts))) ...
    ' Euro-Bund Futures must be sold.'])

To achieve the target duration, 180 Euro-Bund Futures must be sold.

Modifying the Key Rate Durations of a Portfolio with Bond Futures

One of the shortcomings of using duration as a risk measure is that it assumes parallel
shifts in the yield curve. While many studies have shown that this explains roughly 85% of
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the movement in the yield curve, changes in the slope or shape of the yield curve are not
captured by duration, and therefore, hedging strategies are not successful at addressing
these dynamics.

One approach is to use key rate duration -- this is particularly relevant when using bond
futures with multiple maturities, like Treasury futures.

The following example uses 2, 5, 10 and 30 year Treasury Bond futures to hedge the key
rate duration of a portfolio.

Computing key rate durations requires a zero curve. This example uses the zero curve
published by the Treasury and found at the following location:

https://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/
yield.shtml

Note that this zero curve could also be derived using the Interest-Rate Curve functionality
found in IRDataCurve and IRFunctionCurve.

% Assume the following for the portfolio and target, where the duration
% vectors are key rate durations at 2, 5, 10, and 30 years.
PortfolioDuration = [.5 1 2 6];
PortfolioValue = 100000000;
BenchmarkDuration = [.4 .8 1.6 5];

% The following are the CTD Bonds for the 30, 10, 5 and 2 year futures
% contracts -- these were determined using the procedure outlined in the
% previous section.
CTDCoupon = [4.75 3.125 5.125 7.5]'/100;
CTDMaturity = datenum({'3/31/2011','08/31/2013','05/15/2016','11/15/2024'});
CTDConversion = [0.9794 0.8953 0.9519 1.1484]';
CTDPrice = [107.34 105.91 117.00 144.18]';

ZeroRates = [0.07 0.10 0.31 0.50 0.99 1.38 1.96 2.56 3.03 3.99 3.89]'/100;
ZeroDates = daysadd(FuturesSettle,[30 360 360*2 360*3 360*5 ...
    360*7 360*10 360*15 360*20 360*25 360*30],1);

% Compute the key rate durations for each of the CTD bonds.
CTDKRD = bndkrdur([ZeroDates ZeroRates], CTDCoupon,FuturesSettle,...
    CTDMaturity,'KeyRates',[2 5 10 30]);

% Note that the contract size for the 2 Year Note Future is $200,000
ContractSize = [2000;1000;1000;1000];
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NumContracts = (bsxfun(@times,CTDPrice.*ContractSize./CTDConversion,CTDKRD))\...
    (BenchmarkDuration - PortfolioDuration)'*PortfolioValue;

sprintf(['To achieve the target duration, \n' ...
    num2str(-round(NumContracts(1))) ' 2 Year Treasury Note Futures must be sold, \n' ...
    num2str(-round(NumContracts(2))) ' 5 Year Treasury Note Futures must be sold, \n' ...
    num2str(-round(NumContracts(3))) ' 10 Year Treasury Note Futures must be sold, \n' ...
    num2str(-round(NumContracts(4))) ' Treasury Bond Futures must be sold, \n'])

ans = 
    'To achieve the target duration, 
     24 2 Year Treasury Note Futures must be sold, 
     47 5 Year Treasury Note Futures must be sold, 
     68 10 Year Treasury Note Futures must be sold, 
     120 Treasury Bond Futures must be sold, 
     '

Improving the Performance of a Hedge with Regression

An additional component to consider in hedging interest-rate risk with bond futures,
again related to movements in the yield curve, is that typically the yield curve moves
more at the short end than at the long end.

Therefore, if a position is hedged with a future where the CTD bond has a maturity that is
different than the portfolio this could lead to a situation where the hedge under- or over-
compensates for the actual interest-rate risk of the portfolio.

One approach is to perform a regression on historical yields at different maturities to
determine a Yield Beta, which is a value that represents how much more the yield
changes for different maturities.

This example shows how to use this approach with UK Long Gilt futures and historical
data on Gilt Yields.

Market data on Gilt futures is found at the following:

https://www.euronext.com

Historical data on gilts is found at the following;

https://www.dmo.gov.uk
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Note that while this approach does offer the possibility of improving the performance of a
hedge, any analysis using historical data depends on historical relationships remaining
consistent.

Also note that an additional enhancement takes into consideration the correlation
between different maturities. While this approach is outside the scope of this example,
you can use this to implement a minimum variance hedge.

% Assume the following for the portfolio and target
PortfolioDuration = 6.4;
PortfolioValue = 100000000;
BenchmarkDuration = 4.8;

% This is the CTD Bond for the Long Gilt Futures contract
CTDBondPrice = 113.40;
CTDBondMaturity = datenum('7-Mar-2018');
CTDBondCoupon = .05;
CTDConversionFactor = 0.9325024;

% Market data for the Long Gilt Futures contract
FuturesPrice = 120.80;
FuturesSettle = '23-Apr-2009';
FuturesDelivery = '10-Jun-2009';

CTDDuration = bnddurp(CTDBondPrice,CTDBondCoupon,FuturesSettle,CTDBondMaturity);

ContractSize = 1000;

NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
    (CTDBondPrice*ContractSize*CTDDuration)*CTDConversionFactor;

disp(['To achieve the target duration with a conventional hedge ' ...
    num2str(-round(NumContracts)) ...
    ' Long Gilt Futures must be sold.'])

To achieve the target duration with a conventional hedge 182 Long Gilt Futures must be sold.

To improve the accuracy of this hedge, historical data is used to determine a relationship
between the standard deviation of the yields. Specifically, standard deviation of yields is
plotted and regressed vs bond duration. This relationship is then used to compute a Yield
Beta for the hedge.

% Load data from XLS spreadsheet
load ukbonddata_20072008
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Duration = bnddury(Yield(1,:)',Coupon,Dates(1,:),Maturity);

scatter(Duration,100*std(Yield))
title('Standard Deviation of Yields for UK Gilts 2007-2008')
ylabel('Standard Deviation of Yields (%)')
xlabel('Duration')
annotation(gcf,'textbox',[0.4067 0.685 0.4801 0.0989],...
    'String',{'Note that the Standard Deviation',...
    'of Yields is greater at shorter maturities.'},...
    'FitBoxToText','off',...
    'EdgeColor','none');
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stats = regstats(std(Yield),Duration);
YieldBeta = (stats.beta'*[1 PortfolioDuration]')./(stats.beta'*[1 CTDDuration]');

Now the Yield Beta is used to compute a new value for the number of contracts to be sold.
Note that since the duration of the portfolio was less than the duration of the CTD Gilt,
the number of futures to sell is actually greater than in the first case.

NumContracts = (BenchmarkDuration - PortfolioDuration)*PortfolioValue./...
    (CTDBondPrice*ContractSize*CTDDuration)*CTDConversionFactor*YieldBeta;

disp(['To achieve the target duration using a Yield Beta-modified hedge, ' ...
    num2str(abs(round(NumContracts))) ...
    ' Long Gilt Futures must be sold.'])

To achieve the target duration using a Yield Beta-modified hedge, 193 Long Gilt Futures must be sold.
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Fitting the Diebold Li Model
This example shows how to construct a Diebold Li model of the US yield curve for each
month from 1990 to 2010. This example also demonstrates how to forecast future yield
curves by fitting an autoregressive model to the time series of each parameter.

The paper can be found here:

http://www.ssc.upenn.edu/~fdiebold/papers/paper49/Diebold-Li.pdf

Load the Data

The data used are monthly Treasury yields from 1990 through 2010 for tenors of 1 Mo, 3
Mo, 6 Mo, 1 Yr, 2 Yr, 3 Yr, 5 Yr, 7 Yr, 10 Yr, 20 Yr, 30 Yr.

Daily data can be found here:

http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/
TextView.aspx?data=yieldAll

Data is stored in a MATLAB® data file as a MATLAB dataset object.

load Data_USYieldCurve

% Extract data for the last day of each month
MonthYearMat = repmat((1990:2010)',1,12)';
EOMDates = lbusdate(MonthYearMat(:),repmat((1:12)',21,1));
MonthlyIndex = find(ismember(Dataset.Properties.ObsNames,datestr(EOMDates)));
Estimationdataset = Dataset(MonthlyIndex,:);
EstimationData = double(Estimationdataset);

Diebold Li Model

Diebold and Li start with the Nelson Siegel model

and rewrite it to be the following:
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The above model allows the factors to be interpreted in the following way: Beta1
corresponds to the long term/level of the yield curve, Beta2 corresponds to the short
term/slope, and Beta3 corresponds to the medium term/curvature.  determines the
maturity at which the loading on the curvature is maximized, and governs the exponential
decay rate of the model.

Diebold and Li advocate setting  to maximize the loading on the medium term factor,
Beta3, at 30 months. This also transforms the problem from a nonlinear fitting to a simple
linear regression.

% Explicitly set the time factor lambda
lambda_t = .0609;

% Construct a matrix of the factor loadings
% Tenors associated with data
TimeToMat = [3 6 9 12 24 36 60 84 120 240 360]';
X = [ones(size(TimeToMat)) (1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) ...
    ((1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) - exp(-lambda_t*TimeToMat))];

% Plot the factor loadings
plot(TimeToMat,X)
title('Factor Loadings for Diebold Li Model with time factor of .0609')
xlabel('Maturity (months)')
ylim([0 1.1])
legend({'Beta1','Beta2','Beta3'},'location','east')
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Fit the Model

A DieboldLi object is developed to facilitate fitting the model from yield data. The
DieboldLi object inherits from the IRCurve object, so the getZeroRates,
getDiscountFactors, getParYields, getForwardRates, and toRateSpec methods
are all implemented. Additionally, the method fitYieldsFromBetas is implemented to
estimate the Beta parameters given a lambda parameter for observed market yields.

The DieboldLi object is used to fit a Diebold Li model for each month from 1990
through 2010.

% Preallocate the Betas
Beta = zeros(size(EstimationData,1),3);
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% Loop through and fit each end of month yield curve
for jdx = 1:size(EstimationData,1)
    tmpCurveModel = DieboldLi.fitBetasFromYields(EOMDates(jdx),lambda_t*12,daysadd(EOMDates(jdx),30*TimeToMat),EstimationData(jdx,:)');
    Beta(jdx,:) = [tmpCurveModel.Beta1 tmpCurveModel.Beta2 tmpCurveModel.Beta3];
end

The Diebold Li fits on selected dates are included here

PlotSettles = datenum({'30-May-1997','31-Aug-1998','29-Jun-2001','31-Oct-2005'});
figure
for jdx = 1:length(PlotSettles)
    subplot(2,2,jdx)
    tmpIdx = find(strcmpi(Estimationdataset.Properties.ObsNames,datestr(PlotSettles(jdx))));
    tmpCurveModel = DieboldLi.fitBetasFromYields(PlotSettles(jdx),lambda_t*12,...
        daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:)');
    scatter(daysadd(PlotSettles(jdx),30*TimeToMat),EstimationData(tmpIdx,:))
    hold on
    PlottingDates = (PlotSettles(jdx)+30:30:PlotSettles(jdx)+30*360)';
    plot(PlottingDates,tmpCurveModel.getParYields(PlottingDates),'r-')
    title(['Yield Curve on ' datestr(PlotSettles(jdx))])
    datetick
end
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Forecasting

The Diebold Li model can be used to forecast future yield curves. Diebold and Li propose
fitting an AR(1) model to the time series of each Beta parameter. This fitted model can
then be used to forecast future values of each parameter, and by extension, future yield
curves.

For this example the MATLAB function regress is used to estimate the parameters for
an AR(1) model for each Beta.

The confidence intervals for the regression fit are also used to generate two additional
yield curve forecasts that serve as additional possible scenarios for the yield curve.
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The MonthsLag variable can be adjusted to make different period ahead forecasts. For
example, changing the value from 1 to 6 would change the forecast from a 1 month ahead
to 6 month ahead forecast.

MonthsLag = 1;

[tmpBeta,bint] = regress(Beta(MonthsLag+1:end,1),[ones(size(Beta(MonthsLag+1:end,1))) Beta(1:end-MonthsLag,1)]);
ForecastBeta(1,1) = [1 Beta(end,1)]*tmpBeta;
ForecastBeta_Down(1,1) = [1 Beta(end,1)]*bint(:,1);
ForecastBeta_Up(1,1) = [1 Beta(end,1)]*bint(:,2);
[tmpBeta,bint]  = regress(Beta(MonthsLag+1:end,2),[ones(size(Beta(MonthsLag+1:end,2))) Beta(1:end-MonthsLag,2)]);
ForecastBeta(1,2) = [1 Beta(end,2)]*tmpBeta;
ForecastBeta_Down(1,2) = [1 Beta(end,2)]*bint(:,1);
ForecastBeta_Up(1,2) = [1 Beta(end,2)]*bint(:,2);
[tmpBeta,bint]  = regress(Beta(MonthsLag+1:end,3),[ones(size(Beta(MonthsLag+1:end,3))) Beta(1:end-MonthsLag,3)]);
ForecastBeta(1,3) = [1 Beta(end,3)]*tmpBeta;
ForecastBeta_Down(1,3) = [1 Beta(end,3)]*bint(:,1);
ForecastBeta_Up(1,3) = [1 Beta(end,3)]*bint(:,2);

% Forecasted yield curve
figure
Settle = daysadd(EOMDates(end),30*MonthsLag);
DieboldLi_Forecast = DieboldLi('ParYield',Settle,[ForecastBeta lambda_t*12]);
DieboldLi_Forecast_Up = DieboldLi('ParYield',Settle,[ForecastBeta_Up lambda_t*12]);
DieboldLi_Forecast_Down = DieboldLi('ParYield',Settle,[ForecastBeta_Down lambda_t*12]);
PlottingDates = (Settle+30:30:Settle+30*360)';
plot(PlottingDates,DieboldLi_Forecast.getParYields(PlottingDates),'b-')
hold on
plot(PlottingDates,DieboldLi_Forecast_Up.getParYields(PlottingDates),'r-')
plot(PlottingDates,DieboldLi_Forecast_Down.getParYields(PlottingDates),'r-')
title(['Diebold Li Forecasted Yield Curves on ' datestr(EOMDates(end)) ' for '  datestr(Settle)])
legend({'Forecasted Curve','Additional Scenarios'},'location','southeast')
datetick
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Related Examples
• “Analysis of Bond Futures” on page 7-13
• “Managing Interest-Rate Risk with Bond Futures” on page 7-17

More About
• “Supported Interest-Rate Instruments” on page 2-2
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Credit Derivatives

• “Counterparty Credit Risk and CVA” on page 8-2
• “First-to-Default Swaps” on page 8-25
• “Credit Default Swap Option” on page 8-37
• “Pricing a Single-Name CDS Option” on page 8-38
• “Pricing a CDS Index Option” on page 8-40
• “Wrong Way Risk with Copulas” on page 8-44
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Counterparty Credit Risk and CVA
This example shows how to compute the unilateral credit value (valuation) adjustment
(CVA) for a bank holding a portfolio of vanilla interest-rate swaps with several
counterparties. CVA is the expected loss on an over-the-counter contract or portfolio of
contracts due to counterparty default. The CVA for a particular counterparty is defined as
the sum over all points in time of the discounted expected exposure at each moment
multiplied by the probability that the counterparty defaults at that moment, all multiplied
by 1 minus the recovery rate. The CVA formula is:

Where R is the recovery, discEE the discounted expected exposure at time t, and PD the
default probability distribution.

The expected exposure is computed by first simulating many future scenarios of risk
factors for the given contract or portfolio. Risk factors can be interest rates, as in this
example, but will differ based on the portfolio and can include FX rates, equity or
commodity prices, or anything that will affect the market value of the contracts. Once a
sufficient set of scenarios has been simulated, the contract or portfolio can be priced on a
series of future dates for each scenario. The result is a matrix, or "cube", of contract
values.

These prices are converted into exposures after taking into account collateral agreements
that the bank might have in place as well as netting agreements, as in this example,
where the values of several contracts may offset each other, lowering their total exposure.

The contract values for each scenario are discounted to compute the discounted
exposures. The discounted expected exposures can then be computed by a simple average
of the discounted exposures at each simulation date.

Finally, counterparty default probabilities are typically derived from credit default swap
(CDS) market quotes and the CVA for the counterparty can be computed according to the
above formula. Assume that a counterparty default is independent of its exposure (no
wrong-way risk).

This example demonstrates a portfolio of vanilla interest-rate swaps with the goal of
computing the CVA for a particular counterparty.
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Read Swap Portfolio

The portfolio of swaps is close to zero value at time t = 0. Each swap is associated with a
counterparty and may or may not be included in a netting agreement.

% Read swaps from spreadsheet
swapFile = 'cva-swap-portfolio.xls';
swaps = readtable(swapFile,'Sheet','Swap Portfolio');
swaps.LegType = [swaps.LegType ~swaps.LegType];
swaps.LegRate = [swaps.LegRateReceiving swaps.LegRatePaying];
swaps.LegReset = ones(size(swaps,1),1);

numSwaps = size(swaps,1);

For more information on the swap parameters for CounterpartyID and NettingID, see
creditexposures. For more information on the swap parameters for Principal,
Maturity, LegType, LegRate, LatestFloatingRate, Period, and LegReset, see
swapbyzero.

Create RateSpec from the Interest-Rate Curve

Settle = datenum('14-Dec-2007');

Tenor = [3 6 12 5*12 7*12 10*12 20*12 30*12]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';

ZeroDates = datemnth(Settle,Tenor);
Compounding = 2;
Basis = 0;
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, ...
    'Rates', ZeroRates,'Compounding',Compounding,'Basis',Basis);

figure;
plot(ZeroDates, ZeroRates, 'o-');
xlabel('Date');
datetick('keeplimits');
ylabel('Zero rate');
grid on;
title('Yield Curve at Settle Date');
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Set Changeable Simulation Parameters

You can vary the number of simulated interest-rate scenarios that you generate. This
example sets the simulation dates to be more frequent at first, then turning less frequent
further in the future.

% Number of Monte Carlo simulations
numScenarios = 1000;

% Compute monthly simulation dates, then quarterly dates later.
simulationDates = datemnth(Settle,0:12);
simulationDates = [simulationDates datemnth(simulationDates(end),3:3:74)]';
numDates = numel(simulationDates);
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Compute Floating Reset Dates

For each simulation date, compute previous floating reset date for each swap.

floatDates = cfdates(Settle-360,swaps.Maturity,swaps.Period);
swaps.FloatingResetDates = zeros(numSwaps,numDates);
for i = numDates:-1:1
    thisDate = simulationDates(i);
    floatDates(floatDates > thisDate) = 0;
    swaps.FloatingResetDates(:,i) = max(floatDates,[],2);
end

Setup Hull-White Single Factor Model

The risk factor that is simulated to value the contracts is the zero curve. For this example,
you model the interest-rate term structure using the one-factor Hull-White model. This is
a model of the short rate and is defined as:

where

• : Change in the short rate after a small change in time, 
• : Mean reversion rate
• : Volatility of the short rate
• : A Weiner process (a standard normal process)
• : Drift function defined as:

: Instantaneous forward rate at time 

: Partial derivative of  with respect to time

Once you have simulated a path of the short rate, generate a full yield curve at each
simulation date using the formula:
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: Zero rate at time  for a period of 

: Price of a zero coupon bond at time  that pays one dollar at time 

Each scenario contains the full term structure moving forward through time, modeled at
each of our selected simulation dates.

Refer to the “Calibrating Hull-White Model Using Market Data” on page 2-111 example in
the Financial Instruments Toolbox™ Users' Guide for more details on Hull-White one-
factor model calibration.

Alpha = 0.2;
Sigma = 0.015;

hw1 = HullWhite1F(RateSpec,Alpha,Sigma);

Simulate Scenarios

For each scenario, simulate the future interest-rate curve at each valuation date using the
Hull-White one-factor interest-rate model.

% Use reproducible random number generator (vary the seed to produce
% different random scenarios).
prevRNG = rng(0, 'twister');

dt = diff(yearfrac(Settle,simulationDates,1));
nPeriods = numel(dt);
scenarios = hw1.simTermStructs(nPeriods, ...
    'nTrials',numScenarios, ...
    'deltaTime',dt);

% Restore random number generator state
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rng(prevRNG);

% Compute the discount factors through each realized interest rate
% scenario.
dfactors = ones(numDates,numScenarios);
for i = 2:numDates
    tenorDates = datemnth(simulationDates(i-1),Tenor);
    rateAtNextSimDate = interp1(tenorDates,squeeze(scenarios(i-1,:,:)), ...
        simulationDates(i),'linear','extrap');
    % Compute D(t1,t2)
    dfactors(i,:) = zero2disc(rateAtNextSimDate, ...
        repmat(simulationDates(i),1,numScenarios),simulationDates(i-1),-1,3);
end
dfactors = cumprod(dfactors,1);

Inspect a Scenario

Create a surface plot of the yield curve evolution for a particular scenario.

i = 20;
figure;
surf(Tenor, simulationDates, scenarios(:,:,i))
axis tight
datetick('y','mmmyy'); 
xlabel('Tenor (Months)');
ylabel('Observation Date');
zlabel('Rates');
ax = gca;
ax.View = [-49 32];
title(sprintf('Scenario %d Yield Curve Evolution\n',i));
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Compute Mark to Market Swap Prices

For each scenario the swap portfolio is priced at each future simulation date. Prices are
computed using a price approximation function, hswapapprox. It is common in CVA
applications to use simplified approximation functions when pricing contracts due to the
performance requirements of these Monte Carlo simulations.

Since the simulation dates do not correspond to the swaps cash flow dates (where the
floating rates are reset) estimate the latest floating rate with the 1-year rate (all swaps
have period 1 year) interpolated between the nearest simulated rate curves.

The swap prices are then aggregated into a "cube" of values which contains all future
contract values at each simulation date for each scenario. The resulting cube of contract
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prices is a 3-dimensional matrix where each row represents a simulation date, each
column a contract, and each "page" a different simulated scenario.

% Compute all mark-to-market values for this scenario. Use an
% approximation function here to improve performance.
values = hcomputeMTMValues(swaps,simulationDates,scenarios,Tenor);

Inspect Scenario Prices

Create a plot of the evolution of all swap prices for a particular scenario.

i = 32;
figure;
plot(simulationDates, values(:,:,i));
datetick;
ylabel('Mark-To-Market Price');
title(sprintf('Swap prices along scenario %d', i));
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Visualize Simulated Portfolio Values

Plot the total portfolio value for each scenario of the simulation. As each scenario moves
forward in time, the values of the contracts move up or down depending on how the
modeled interest-rate term structure changes. As the swaps get closer to maturity, their
values will begin to approach zero since the aggregate value of all remaining cash flows
will decrease after each cash flow date.

% View portfolio value over time
figure;
totalPortValues = squeeze(sum(values, 2));
plot(simulationDates,totalPortValues);
title('Total MTM Portfolio Value for All Scenarios');
datetick('x','mmmyy')
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ylabel('Portfolio Value ($)')
xlabel('Simulation Dates')

Compute Exposure by Counterparty

The exposure of a particular contract (i) at time t is the maximum of the contract value
(Vi) and 0:

And the exposure for a particular counterparty is simply a sum of the individual contract
exposures:
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In the presence of netting agreements, however, contracts are aggregated together and
can offset each other. Therefore the total exposure of all contracts in a netting agreement
is:

Compute these exposures for the entire portfolio as well as each counterparty at each
simulation date using the creditexposures function.

Unnetted contracts are indicated using a NaN in the NettingID vector. Exposure of an
unnetted contract is equal to the market value of the contract if it has positive value,
otherwise it is zero.

Contracts included in a netting agreement have their values aggregated together and can
offset each other. See the references for more details on computing exposure from mark-
to-market contract values.

[exposures, expcpty] = creditexposures(values,swaps.CounterpartyID, ...
    'NettingID',swaps.NettingID);

Plot the total portfolio exposure for each scenario in our simulation. Similar to the plot of
contract values, the exposures for each scenario will approach zero as the swaps mature.

% View portfolio exposure over time
figure;
totalPortExposure = squeeze(sum(exposures,2));
plot(simulationDates,totalPortExposure);
title('Portfolio Exposure for All Scenarios');
datetick('x','mmmyy')
ylabel('Exposure ($)')
xlabel('Simulation Dates')
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Exposure Profiles

Several exposure profiles are useful when analyzing the potential future exposure of a
bank to a counterparty. Here you can compute several (non-discounted) exposure profiles
per counterparty, as well as, for the entire portfolio.

• PFE (Potential Future Exposure): A high percentile (95%) of the distribution of
exposures at any particular future date (also called Peak Exposure (PE))

• MPFE (Maximum Potential Future Exposure): The maximum PFE across all dates
• EE : (Expected Exposure): The mean (average) of the distribution of exposures at each

date
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• EPE (Expected Positive Exposure): Weighted average over time of the expected
exposure

• EffEE (Effective Expected Exposure): The maximum expected exposure at any time,
t, or previous time

• EffEPE (Effective Expected Positive Exposure): The weighted average of the effective
expected exposure

For further definitions, see for example the Basel II document in references.

% Compute entire portfolio exposure
portExposures = sum(exposures,2);

% Compute exposure profiles for each counterparty and entire portfolio
cpProfiles = exposureprofiles(simulationDates,exposures);
portProfiles = exposureprofiles(simulationDates,portExposures);

Visualize the exposure profiles, first for the entire portfolio, then for a particular
counterparty.

% Visualize portfolio exposure profiles
figure;
plot(simulationDates,portProfiles.PFE, ...
    simulationDates,portProfiles.MPFE * ones(numDates,1), ...
    simulationDates,portProfiles.EE, ...
    simulationDates,portProfiles.EPE * ones(numDates,1), ...
    simulationDates,portProfiles.EffEE, ...
    simulationDates,portProfiles.EffEPE * ones(numDates,1));
legend({'PFE (95%)','Max PFE','Exp Exposure (EE)','Time-Avg EE (EPE)', ...
    'Max past EE (EffEE)','Time-Avg EffEE (EffEPE)'})

datetick('x','mmmyy')
title('Portfolio Exposure Profiles');
ylabel('Exposure ($)')
xlabel('Simulation Dates')

8 Credit Derivatives

8-14



Visualize exposure profiles for a particular counterparty.

cpIdx = find(expcpty == 5);
figure;
plot(simulationDates,cpProfiles(cpIdx).PFE, ...
    simulationDates,cpProfiles(cpIdx).MPFE * ones(numDates,1), ...
    simulationDates,cpProfiles(cpIdx).EE, ...
    simulationDates,cpProfiles(cpIdx).EPE * ones(numDates,1), ...
    simulationDates,cpProfiles(cpIdx).EffEE, ...
    simulationDates,cpProfiles(cpIdx).EffEPE * ones(numDates,1));
legend({'PFE (95%)','Max PFE','Exp Exposure (EE)','Time-Avg EE (EPE)', ...
    'Max past EE (EffEE)','Time-Avg EffEE (EffEPE)'})

datetick('x','mmmyy','keeplimits')
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title(sprintf('Counterparty %d Exposure Profiles',cpIdx));
ylabel('Exposure ($)')
xlabel('Simulation Dates')

Discounted Exposures

Compute the discounted expected exposures using the discount factors from each
simulated interest-rate scenario. The discount factor for a given valuation date in a given
scenario is the product of the incremental discount factors from one simulation date to
the next, along with the interest-rate path of that scenario.

% Get discounted exposures per counterparty, for each scenario
discExp = zeros(size(exposures));
for i = 1:numScenarios
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    discExp(:,:,i) = bsxfun(@times,dfactors(:,i),exposures(:,:,i));
end

% Discounted expected exposure
discProfiles = exposureprofiles(simulationDates,discExp, ...
    'ProfileSpec','EE');

Plot the discounted expected exposures for the aggregate portfolio as well as for each
counterparty.

% Aggregate the discounted EE for each counterparty into a matrix
discEE = [discProfiles.EE];

% Portfolio discounted EE
figure;
plot(simulationDates,sum(discEE,2))
datetick('x','mmmyy','keeplimits')
title('Discounted Expected Exposure for Portfolio');
ylabel('Discounted Exposure ($)')
xlabel('Simulation Dates')
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% Counterparty discounted EE
figure;
plot(simulationDates,discEE)
datetick('x','mmmyy','keeplimits')
title('Discounted Expected Exposure for Each Counterparty');
ylabel('Discounted Exposure ($)')
xlabel('Simulation Dates')
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Calibrating Probability of Default Curve for Each Counterparty

The default probability for a given counterparty is implied by the current market spreads
of the counterparty's CDS. Use the function cdsbootstrap to generate the cumulative
probability of default at each simulation date.

% Import CDS market information for each counterparty
CDS = readtable(swapFile,'Sheet','CDS Spreads');
disp(CDS);

       Date        cp1    cp2    cp3    cp4    cp5
    ___________    ___    ___    ___    ___    ___

    '3/20/2008'    140     85    115    170    140
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    '3/20/2009'    185    120    150    205    175
    '3/20/2010'    215    170    195    245    210
    '3/20/2011'    275    215    240    285    265
    '3/20/2012'    340    255    290    320    310

CDSDates = datenum(CDS.Date);
CDSSpreads = table2array(CDS(:,2:end));

ZeroData = [RateSpec.EndDates RateSpec.Rates];

% Calibrate default probabilities for each counterparty
DefProb = zeros(length(simulationDates), size(CDSSpreads,2));
for i = 1:size(DefProb,2)
    probData = cdsbootstrap(ZeroData, [CDSDates CDSSpreads(:,i)], ...
        Settle, 'probDates', simulationDates);
    DefProb(:,i) = probData(:,2);
end

% Plot of the cumulative probability of default for each counterparty.
figure;
plot(simulationDates,DefProb)
title('Default Probability Curve for Each Counterparty');
xlabel('Date');
grid on;
ylabel('Cumulative Probability')
datetick('x','mmmyy')
ylabel('Probability of Default')
xlabel('Simulation Dates')
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CVA Computation

The Credit Value (Valuation) Adjustment (CVA) formula is:

Where R is the recovery, discEE the discounted expected exposure at time t, and PD the
default probability distribution. This assumes the exposure is independent of default (no
wrong-way risk), and it also assumes that the exposures were obtained using risk-neutral
probabilities.

Approximate the integral with a finite sum over the valuation dates as:

 Counterparty Credit Risk and CVA

8-21



where t_1 is today's date, t_2, ...,t_n the future valuation dates.

Assume the CDS the information corresponds to counterparty with index cpIdx. The
computed CVA is the present market value of our credit exposure to counterparty cpIdx.
For this example, set the recovery rate at 40%.

Recovery = 0.4;
CVA = (1-Recovery) * sum(discEE(2:end,:) .* diff(DefProb));
for i = 1:numel(CVA)
    fprintf('CVA for counterparty %d = $%.2f\n',i,CVA(i));
end

CVA for counterparty 1 = $2228.36
CVA for counterparty 2 = $2487.60
CVA for counterparty 3 = $920.39
CVA for counterparty 4 = $5478.50
CVA for counterparty 5 = $5859.30

figure;
bar(CVA);
title('CVA for each counterparty');
xlabel('Counterparty');
ylabel('CVA $');
grid on;
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Related Examples
• “First-to-Default Swaps” on page 8-25
• “Credit Default Swap Option” on page 8-37

External Websites
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)
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First-to-Default Swaps
This example shows how to price first-to-default (FTD) swaps under the homogeneous loss
assumption.

A first-to-default swap is an instrument that pays a predetermined amount when (and if)
the first of a basket of credit instruments defaults. The credit instruments in the basket
are usually bonds. If we assume that the loss amount following a credit event is the same
for all credits in the basket, we are under the homogeneous loss assumption. This
assumption makes models simpler, because any default in the basket triggers the same
payment amount. This example is an implementation of the pricing methodology for these
instruments, as described in O'Kane [2]. There are two steps in the methodology: a)
Compute the survival probability for the basket numerically; b) Use this survival curve
and standard single-name credit-default swap (CDS) functionality to find FTD spreads and
to price existing FTD swaps.

Fit Probability Curves to Market Data

Given CDS market quotes for each issuer in the basket, use cdsbootstrap to calibrate
individual default probability curves for each issuer.

% Interest rate curve
ZeroDates = datenum({'17-Jan-10','17-Jul-10','17-Jul-11','17-Jul-12',...
'17-Jul-13','17-Jul-14'});
ZeroRates = [1.35 1.43 1.9 2.47 2.936 3.311]'/100;
ZeroData = [ZeroDates ZeroRates];

% CDS spreads
%   Each row in MarketSpreads corresponds to a different issuer; each
%   column to a different maturity date (corresponding to MarketDates)
MarketDates = datenum({'20-Sep-10','20-Sep-11','20-Sep-12','20-Sep-14',...
'20-Sep-16'});
MarketSpreads = [
   160 195 230 285 330;
   130 165 205 260 305;
   150 180 210 260 300;
   165 200 225 275 295];
% Number of issuers equals number of rows in MarketSpreads
nIssuers = size(MarketSpreads,1);

% Settlement date
Settle = datenum('17-Jul-2009');
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In practice, the time axis is discretized and the FTD survival curve is only evaluated at
grid points. We use one point every three months. To request that cdsbootstrap returns
default probability values over the specific grid points we want, use the optional
argument 'ProbDates'. We add the original standard CDS market dates to the grid,
otherwise the default probability information on those dates would be interpolated using
the two closest dates on the grid, and the prices on market dates would be inconsistent
with the original market data.

ProbDates = union(MarketDates,daysadd(Settle,360*(0.25:0.25:8),1));
nProbDates = length(ProbDates);
DefProb = zeros(nIssuers,nProbDates);

for ii = 1:nIssuers
   MarketData = [MarketDates MarketSpreads(ii,:)'];
   ProbData = cdsbootstrap(ZeroData,MarketData,Settle,...
      'ProbDates',ProbDates);
   DefProb(ii,:) = ProbData(:,2)';
end

These are the calibrated default probability curves for each credit in the basket.

figure
plot(ProbDates',DefProb)
datetick
title('Individual Default Probability Curves')
ylabel('Cumulative Probability')
xlabel('Date')
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Determine Latent Variable Thresholds

Latent variables are used in different credit risk contexts, with different interpretations.
In some contexts, a latent variable is a proxy for a change in the value of assets, and the
domain of this variable is binned, with each bin corresponding to a credit rating. The bins
limits, or thresholds, are determined from credit migration matrices. In our context, the
latent variable is associated to a time to default, and the thresholds determine bins in a
discretized time grid where defaults may occur.

Formally, if the time to default of a particular issuer is denoted by , and we know its
default probability function , a latent variable  and corresponding thresholds 
satisfy
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or

These relationships make latent variable approaches convenient for both simulations and
analytical derivations. Both  and  are functions of time.

The choice of a distribution for the variable  determines the thresholds . In the
standard latent variable model, the variable  is chosen to follow a standard normal
distribution, from which

where  is the cumulative standard normal distribution.

Use the previous formula to determine the default-time thresholds, or simply default
thresholds, corresponding to the default probabilities previously obtained for the credits
in the basket.

DefThresh = norminv(DefProb);

Derive Survival Curve for the Basket

Following O'Kane [2], we use a one-factor latent variable model to derive expressions for
the survival probability function of the basket.

Given parameters  for each issuer , and given independent standard normal variables
 and , the one-factor latent variable model assumes that the latent variable 

associated to issuer  satisfies

This induces a correlation between issuers  and  of . All latent variables  share the
common factor  as a source of uncertainty, but each latent variable also has an
idiosyncratic source of uncertainty . The larger the coefficient , the more the latent
variable resembles the common factor .
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Using the latent variable model, we derive an analytic formula for the survival probability
of the basket.

The probability that issuer  survives past time , in other words, that its default time  is
greater than  is

where  is the default threshold computed above for issuer , for the -th date in the
discretization grid.

Conditional on the value of the one-factor , the probability that all issuers survive past
time  is

where the product is justified because all the 's are independent. Therefore, conditional
on , the 's are independent.

The unconditional probability of no defaults by time  is the integral over all values of 
of the previous conditional probability

with  the standard normal density.

By evaluating this one-dimensional integral for each point  in the grid, we get a
discretization of the survival curve for the whole basket, which is the FTD survival curve.

The latent variable model can also be used to simulate default times, which is the back
engine of many pricing methodologies for credit instruments. Loeffler and Posch [1], for
example, estimate the survival probability of a basket via simulation. In each simulated
scenario a time to default is determined for each issuer. With some bookkeeping, the
probability of having the first default on each bucket of the grid can be estimated from
the simulation. The simulation approach is also discussed in O'Kane [2]. Simulation is
very flexible and applicable to many credit instruments. However, analytic approaches are
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preferred, when available, because they are much faster and more accurate than
simulation.

To compute the FTD survival probabilities in our example, we set all betas to the square
root of a target correlation. Then we loop over all dates in the time grid to compute the
one dimensional integral that gives the survival probability of the basket.

Regarding implementation, the conditional survival probability as a function of a scalar Z
would be

condProb=@(Z)prod(normcdf((-DefThresh(:,jj)+beta*Z)./sqrt(1-beta.^2)));

However, the integration function we use requires that the function handle of the
integrand accepts vectors. Although a loop around the scalar version of the conditional
probability would work, it is far more efficient to vectorize the conditional probability
using bsxfun.

beta = sqrt(0.25)*ones(nIssuers,1);

FTDSurvProb = zeros(size(ProbDates));
for jj = 1:nProbDates
   % vectorized conditional probability as a function of Z
   vecCondProb = @(Z)prod(normcdf(bsxfun(@rdivide,...
      -repmat(DefThresh(:,jj),1,length(Z))+bsxfun(@times,beta,Z),...
      sqrt(1-beta.^2))));
   % truncate domain of normal distribution to [-5,5] interval
   FTDSurvProb(jj) = integral(@(Z)vecCondProb(Z).*normpdf(Z),-5,5);
end
FTDDefProb = 1-FTDSurvProb;

Compare the FTD probability to the default probabilities of the individual issuers.

figure
plot(ProbDates',DefProb)
datetick
hold on
plot(ProbDates,FTDDefProb,'LineWidth',3)
datetick
hold off
title('FTD and Individual Default Probability Curves')
ylabel('Cumulative Probability')
xlabel('Date')
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Find FTD Spreads and Price Existing FTD Swaps

Under the assumption that all instruments in the basket have the same recovery rate, or
homogeneous loss assumption (see O'Kane in References), we get the spread for the FTD
swap using the cdsspread function, but passing the FTD probability data just computed.

Maturity = MarketDates;
ProbDataFTD = [ProbDates, FTDDefProb];
FTDSpread = cdsspread(ZeroData,ProbDataFTD,Settle,Maturity);

Compare the FTD spreads with the individual spreads.

figure
plot(MarketDates,MarketSpreads')
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datetick
hold on
plot(MarketDates,FTDSpread,'LineWidth',3)
hold off
title('FTD and Individual CDS Spreads')
ylabel('FTD Spread (bp)')
xlabel('Maturity Date')

An existing FTD swap can be priced with cdsprice, using the same FTD probability.

Maturity0 = MarketDates(1); % Assume maturity on nearest market date
Spread0 = 540; % Spread of existing FTD contract
% Assume default values of recovery and notional
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FTDPrice = cdsprice(ZeroData,ProbDataFTD,Settle,Maturity0,Spread0);
fprintf('Price of existing FTD contract: %g\n',FTDPrice)

Price of existing FTD contract: 17644.7

Analyze Sensitivity to Correlation

To illustrate the sensitivity of the FTD spreads to model parameters, we calculate the
market spreads for a range of correlation values.

corr = [0 0.01 0.10 0.25 0.5 0.75 0.90 0.99 1];
FTDSpreadByCorr = zeros(length(Maturity),length(corr));
FTDSpreadByCorr(:,1) = sum(MarketSpreads)';
FTDSpreadByCorr(:,end) = max(MarketSpreads)';

for ii = 2:length(corr)-1
   beta = sqrt(corr(ii))*ones(nIssuers,1);
   FTDSurvProb = zeros(length(ProbDates));
   for jj = 1:nProbDates
      % vectorized conditional probability as a function of Z
      condProb = @(Z)prod(normcdf(bsxfun(@rdivide,...
         -repmat(DefThresh(:,jj),1,length(Z))+bsxfun(@times,beta,Z),...
         sqrt(1-beta.^2))));
      % truncate domain of normal distribution to [-5,5] interval
      FTDSurvProb(jj) = integral(@(Z)condProb(Z).*normpdf(Z),-5,5);
   end
   FTDDefProb = 1-FTDSurvProb;
   ProbDataFTD = [ProbDates, FTDDefProb];
   FTDSpreadByCorr(:,ii) = cdsspread(ZeroData,ProbDataFTD,Settle,Maturity);
end

The FTD spreads lie in a band between the sum and the maximum of individual spreads.
As the correlation increases to one, the FTD spreads decrease towards the maximum of
the individual spreads in the basket (all credits default together). As the correlation
decreases to zero, the FTD spreads approach the sum of the individual spreads
(independent credits).

figure
legends = cell(1,length(corr));
plot(MarketDates,FTDSpreadByCorr(:,1),'k:')
legends{1} = 'Sum of Spreads';
datetick
hold on
for ii = 2:length(corr)-1
   plot(MarketDates,FTDSpreadByCorr(:,ii),'LineWidth',3*corr(ii))
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   legends{ii} = ['Corr ' num2str(corr(ii)*100) '%'];
end
plot(MarketDates,FTDSpreadByCorr(:,end),'k-.')
legends{end} = 'Max of Spreads';

hold off
title('FTD Spreads for Different Correlations')
ylabel('FTD Spread (bp)')
xlabel('Maturity Date')
legend(legends,'Location','NW')

For short maturities and small correlations, the basket is effectively independent (the FTD
spread is very close to the sum of individual spreads). The correlation effect becomes
more significant for longer maturities.
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Here is an alternative visualization of the dependency of FTD spreads on correlation.

figure
surf(corr,MarketDates,FTDSpreadByCorr)
datetick('y')
ax = gca;
ax.YDir = 'reverse';
view(-40,10)
title('FTD Spreads for Different Correlations and Maturities')
xlabel('Correlation')
ylabel('Maturity Date')
zlabel('FTD Spread (bp)')
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Credit Default Swap Option
A credit default swap (CDS) option, or credit default swaption, is a contract that provides
the holder with the right, but not the obligation, to enter into a credit default swap in the
future. CDS options can either be payer swaptions or receiver swaptions. If a payer
swaption, the option holder has the right to enter into a CDS where they pay premiums;
and, if a receiver swaption, the option holder receives premiums. Financial Instruments
Toolbox software provides cdsoptprice for pricing payer and receiver credit default
swaptions. Also, with some additional steps, cdsoptprice can be used for pricing multi-
name CDS index options.

References
O'Kane, D., Modelling Single-name and Multi-name Credit Derivatives, Wiley, 2008.

See Also
cdsoptprice | cdsrpv01 | cdsspread

Related Examples
• “Pricing a Single-Name CDS Option” on page 8-38
• “Pricing a CDS Index Option” on page 8-40
• “Credit Default Swap (CDS)” (Financial Toolbox)
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Pricing a Single-Name CDS Option
This example shows how to price a single-name CDS option using cdsoptprice. The
function cdsoptprice is based on the Black's model as described in O'Kane (2008). The
optional knockout argument for cdsoptprice supports two variations of the mechanics
of a CDS option. CDS options can be knockout or non-knockout options.

• A knockout option cancels with no payments if there is a credit event before the option
expiry date.

• A non-knockout option does not cancel if there is a credit event before the option
expiry date. In this case, the option holder of a non-knockout payer swaption can take
delivery of the underlying long protection CDS on the option expiry date and exercise
the protection, delivering a defaulted obligation in return for par. This portion of
protection from option initiation to option expiry is known as the front-end protection
(FEP). While this distinction does not affect the receiver swaption, the price of a non-
knockout payer swaption is obtained by adding the value of the FEP to the knockout
payer swaption price.

Define the CDS instrument.

Settle = datenum('12-Jun-2012');
OptionMaturity = datenum('20-Sep-2012');
CDSMaturity = datenum('20-Sep-2017');
OptionStrike = 200;
SpreadVolatility = .4;

Define the zero rate.

Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [.5 .75 1.5 1.7 1.9 2.2]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate]

ZeroData = 6×2
105 ×

    7.3521    0.0000
    7.3540    0.0000
    7.3576    0.0000
    7.3613    0.0000
    7.3649    0.0000
    7.3686    0.0000
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Define the market data.

Market_Time = [1 2 3 5 7 10]';
Market_Rate = [100 120 145 220 245 270]';
Market_Dates = daysadd(Settle,360*Market_Time,1);
MarketData = [Market_Dates Market_Rate];

ProbData = cdsbootstrap(ZeroData, MarketData, Settle)

ProbData = 6×2
105 ×

    7.3540    0.0000
    7.3576    0.0000
    7.3613    0.0000
    7.3686    0.0000
    7.3759    0.0000
    7.3868    0.0000

Define the CDS option.

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, ...
    CDSMaturity, OptionStrike, SpreadVolatility, 'Knockout', true);
fprintf('    Payer: %.0f   Receiver: %.0f  (Knockout)\n',Payer,Receiver);

    Payer: 196   Receiver: 23  (Knockout)

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle, OptionMaturity, ...
    CDSMaturity, OptionStrike, SpreadVolatility, 'Knockout', false);
fprintf('    Payer: %.0f   Receiver: %.0f  (Non-Knockout)\n',Payer,Receiver);

    Payer: 224   Receiver: 23  (Non-Knockout)

See Also
cdsoptprice | cdsrpv01 | cdsspread

Related Examples
• “Pricing a CDS Index Option” on page 8-40
• “Credit Default Swap (CDS)” (Financial Toolbox)

 See Also

8-39



Pricing a CDS Index Option
This example shows how to price CDS index options by using cdsoptprice with the
forward spread adjustment. Unlike a single-name CDS, a CDS portfolio index contains
multiple credits. When one or more of the credits default, the corresponding contingent
payments are made to the protection buyer but the contract still continues with reduced
coupon payments. Considering the fact that the CDS index option does not cancel when
some of the underlying credits default before expiry, one might attempt to price CDS
index options using the Black's model for non-knockout single-name CDS option.
However, Black's model in this form is not appropriate for pricing CDS index options
because it does not capture the exercise decision correctly when the strike spread (K) is
very high, nor does it ensure put-call parity when (K) is not equal to the contractual
spread (O'Kane, 2008).

However, with the appropriate modifications, Black's model for single-name CDS options
used in cdsoptprice can provide a good approximation for CDS index options. While
there are some variations in the way the Black's model is modified for CDS index options,
they usually involve adjusting the forward spread F, the strike spread K, or both. Here we
describe the approach of adjusting the forward spread only. In the Black's model for
single-name CDS options, the forward spread F is defined as:

F S t t T
S t T RPV t T S t t RPV t t

RPV t t
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E E
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where

S is the spread.

RPV01 is the risky present value of a basis point (see cdsrpv01).

t is the valuation date.

tE is the option expiry date.

T is the CDS maturity date.

To capture the exercise decision correctly for CDS index options, we use the knockout
form of the Black's model and adjust the forward spread to incorporate the FEP as
follows:
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where

R is the recovery rate.

Z is the discount factor.

Q is the survival probability.

In cdsoptprice, forward spread adjustment can be made with the
AdjustedForwardSpread parameter. When computing the adjusted forward spread, we
can compute the spreads using cdsspread and the RPV01s using cdsrpv01.

Set up the data for the CDS index, its option, and zero curve. The underlying is a 5-year
CDS index maturing on 20-Jun-2017 and the option expires on 20-Jun-2012. A flat index
spread is assumed when bootstrapping the default probability curve.
% CDS index and option data
Recovery = .4;
Basis = 2;
Period = 4;
CDSMaturity = datenum('20-Jun-2017');
ContractSpread = 100;
IndexSpread = 140;
BusDayConvention = 'follow';
Settle = datenum('13-Apr-2012');
OptionMaturity = datenum('20-Jun-2012');
OptionStrike = 140;
SpreadVolatility = .69;

% Zero curve data
MM_Time = [1 2 3 6]';
MM_Rate = [0.004111 0.00563 0.00757 0.01053]';
MM_Dates = daysadd(Settle,30*MM_Time,1);
Swap_Time = [1 2 3 4 5 6 7 8 9 10 12 15 20 30]';
Swap_Rate = [0.01387 0.01035 0.01145 0.01318 0.01508 0.01700 0.01868 ...
    0.02012 0.02132 0.02237 0.02408 0.02564 0.02612 0.02524]';
Swap_Dates = daysadd(Settle,360*Swap_Time,1);

InstTypes = [repmat({'deposit'},size(MM_Time));repmat({'swap'},size(Swap_Time))];
Instruments = [repmat(Settle,size(InstTypes)) [MM_Dates;Swap_Dates] [MM_Rate;Swap_Rate]];

ZeroCurve = IRDataCurve.bootstrap('zero',Settle,InstTypes,Instruments);

% Bootstrap the default probability curve assuming a flat index spread.
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MarketData = [CDSMaturity IndexSpread];
ProbDates = datemnth(OptionMaturity,(0:5*12)');
ProbData = cdsbootstrap(ZeroCurve, MarketData, Settle, 'ProbDates', ProbDates);

Compute the spot and forward RPV01s, which will be used later in the computation of the
adjusted forward spread. For this purpose, we can use cdsrpv01.
% RPV01(t,T)
RPV01_CDSMaturity = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity)

% RPV01(t,t_E,T)
RPV01_OptionExpiryForward = cdsrpv01(ZeroCurve,ProbData,Settle,CDSMaturity,...
    'StartDate',OptionMaturity)

% RPV01(t,t_E) = RPV01(t,T) - RPV01(t,t_E,T)
RPV01_OptionExpiry = RPV01_CDSMaturity - RPV01_OptionExpiryForward

RPV01_CDSMaturity =

    4.7853

RPV01_OptionExpiryForward =

    4.5971

RPV01_OptionExpiry =

    0.1882

Compute the spot spreads using cdsspread.
% S(t,t_E)
Spread_OptionExpiry = cdsspread(ZeroCurve,ProbData,Settle,OptionMaturity,...
    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

% S(t,T)
Spread_CDSMaturity = cdsspread(ZeroCurve,ProbData,Settle,CDSMaturity,...
    'Period',Period,'Basis',Basis,'BusDayConvention',BusDayConvention,...
    'PayAccruedPremium',true,'recoveryrate',Recovery)

Spread_OptionExpiry =

  139.9006

Spread_CDSMaturity =

  140.0000
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The spot spreads and RPV01s are then used to compute the forward spread.
% F = S(t,t_E,T)
ForwardSpread = (Spread_CDSMaturity.*RPV01_CDSMaturity - ...
    Spread_OptionExpiry.*RPV01_OptionExpiry)./RPV01_OptionExpiryForward

ForwardSpread =

  140.0040

Compute the front-end protection (FEP).
FEP = 10000*(1-Recovery)*ZeroCurve.getDiscountFactors(OptionMaturity)*ProbData(1,2)

FEP =

   26.3108

Compute the adjusted forward spread.

AdjustedForwardSpread = ForwardSpread + FEP./RPV01_OptionExpiryForward

AdjustedForwardSpread =

  145.7273

Compute the option prices using cdsoptprice with the adjusted forward spread. Note
again that the Knockout parameter should be set to be true because the FEP was
already incorporated into the adjusted forward spread.
[Payer,Receiver] = cdsoptprice(ZeroCurve, ProbData, Settle, OptionMaturity, ...
    CDSMaturity, OptionStrike, SpreadVolatility,'Knockout',true,...
    'AdjustedForwardSpread', AdjustedForwardSpread,'PayAccruedPremium',true);
fprintf('    Payer: %.0f   Receiver: %.0f  \n',Payer,Receiver);

Payer: 92   Receiver: 66  

See Also
cdsoptprice | cdsrpv01 | cdsspread

Related Examples
• “Pricing a Single-Name CDS Option” on page 8-38
• “Credit Default Swap (CDS)” (Financial Toolbox)
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8-43



Wrong Way Risk with Copulas
This example shows an approach to modeling wrong-way risk for Counterparty Credit
Risk using a Gaussian copula.

A basic approach to Counterparty Credit Risk (CCR) (see “Counterparty Credit Risk and
CVA” example) assumes that market and credit risk factors are independent of each other.
A simulation of market risk factors drives the exposures for all contracts in the portfolio.
In a separate step, Credit-Default Swap (CDS) market quotes determine the default
probabilities for each counterparty. Exposures, default probabilities, and a given recovery
rate are used to compute the Credit-Value Adjustment (CVA) for each counterparty, which
is a measure of expected loss. The simulation of risk factors and the default probabilities
are treated as independent of each other.

In practice, default probabilities and market factors are correlated. The relationship may
be negligible for some types of instruments, but for others, the relationship between
market and credit risk factors may be too important to be ignored when computing risk
measures.

When the probability of default of a counterparty and the exposure resulting from
particular contract tend to increase together we say that the contract has wrong-way risk
(WWR).

This example demonstrates an implementation of the wrong-way risk methodology
described in Garcia Cespedes et al. (see References).

Exposures Simulation

Many financial institutions have systems that simulate market risk factors and value all
the instruments in their portfolios at given simulation dates. These simulations are used
to compute exposures and other risk measures. Because the simulations are
computationally intensive, reusing them for subsequent risk analyses is important.

This example uses the data and the simulation results from the “Counterparty Credit Risk
and CVA” example, previously saved in the ccr.mat file. The ccr.mat file contains:

• RateSpec: The rate spec when contract values were calculated
• Settle: The settle date when contract values were calculated
• simulationDates: A vector of simulation dates
• swaps: A struct containing the swap parameters
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• values: The NUMDATES x NUMCONTRACT x NUMSCENARIOS cube of simulated contract
values over each date/scenario

This example looks at expected losses over a one-year time horizon only, so the data is
cropped after one year of simulation. Simulation dates over the first year are at a monthly
frequency, so the 13th simulation date is our one-year time horizon (the first simulation
date is the settle date).

load ccr.mat

oneYearIdx = 13;
values = values(1:oneYearIdx,:,:);
dates = simulationDates(1:oneYearIdx);

numScenarios = size(values,3);

The credit exposures are computed from the simulated contract values. These exposures
are monthly credit exposures per counterparty from the settle date to our one-year time
horizon.

Since defaults can happen at any time during the one-year time period, it is common to
model the exposure at default (EAD) based on the idea of expected positive exposure
(EPE). The time-averaged exposure for each scenario is computed, which is called PE
(positive exposure). The average of the PE's, including all scenarios, is the EPE, which
can also be obtained from the exposureprofiles function.

The positive exposure matrix PE contains one row per simulated scenario and one column
per counterparty. This is used as the EAD in our analysis.

% Compute counterparty exposures
[exposures, counterparties] = creditexposures(values,swaps.Counterparty, ...
    'NettingID',swaps.NettingID);
numCP = numel(counterparties);

% Compute PE (time-averaged exposures) per scenario
intervalWeights = diff(dates) / (dates(end) - dates(1));
exposureMidpoints = 0.5 * (exposures(1:end-1,:,:) + exposures(2:end,:,:));
weightedContributions = bsxfun(@times,intervalWeights,exposureMidpoints);
PE = squeeze(sum(weightedContributions))';

% Compute total portfolio exposure per scenario
totalExp = sum(PE,2);
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% Display size of PE and totalExp
whos PE totalExp

  Name             Size            Bytes  Class     Attributes

  PE            1000x5             40000  double              
  totalExp      1000x1              8000  double              

Credit Simulation

A common approach for simulating credit defaults is based on a "one-factor model",
sometimes called the "asset-value approach" (see Gupton et al., 1997). This is an efficient
way to simulate correlated defaults.

Each company i is associated with a random variable Yi, such that

where Z is the "one-factor", a standard normal random variable that represents a
systematic credit risk factor whose values affect all companies. The correlation between
company i and the common factor is given by beta_i, the correlation between companies i
and j is beta_i*beta_j. The idiosyncratic shock epsilon_i is another standard normal
variable that may reduce or increase the effect of the systematic factor, independently of
what happens with any other company.

If the default probability for company i is PDi, a default occurs when

where  is the cumulative standard normal distribution.

The Yi variable is sometimes interpreted as asset returns, or sometimes referred to as a
latent variable.

This model is a Gaussian copula that introduces a correlation between credit defaults.
Copulas offer a particular way to introduce correlation, or more generally, co-dependence
between two random variables whose co-dependence is unknown.

Use CDS spreads to bootstrap the one-year default probabilities for each counterparty.
The CDS quotes come from the swap-portfolio spreadsheet used in the “Counterparty
Credit Risk and CVA” example.
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% Import CDS market information for each counterparty
swapFile = 'cva-swap-portfolio.xls';
cds = readtable(swapFile,'Sheet','CDS Spreads');
cdsDates = datenum(cds.Date);
cdsSpreads = table2array(cds(:,2:end));

% Bootstrap default probabilities for each counterparty
zeroData = [RateSpec.EndDates RateSpec.Rates];
defProb = zeros(1, size(cdsSpreads,2));
for i = 1:numel(defProb)
    probData = cdsbootstrap(zeroData, [cdsDates cdsSpreads(:,i)], ...
        Settle, 'probDates', dates(end));
    defProb(i) = probData(2);
end

Now simulate the credit scenarios. Because defaults are rare, it is common to simulate a
large number of credit scenarios.

The sensitivity parameter beta is set to 0.3 for all counterparties. This value can be
calibrated or tuned to explore model sensitivities. See the references for more
information.

numCreditScen = 100000;
rng('default');

% Z is the single credit factor
Z = randn(numCreditScen,1);

% epsilon is the idiosyncratic factor
epsilon = randn(numCreditScen,numCP);

% beta is the counterparty sensitivity to the credit factor
beta = 0.3 * ones(1,numCP);

% Counterparty latent variables
Y = bsxfun(@times,beta,Z) + bsxfun(@times,sqrt(1 - beta.^2),epsilon);

% Default indicator
isDefault = bsxfun(@lt,normcdf(Y),defProb);

Correlating Exposure and Credit Scenarios

Now that there is a set of sorted portfolio exposure scenarios and a set of default
scenarios, follow the approach in Garcia Cespedes et al. and use a Gaussian copula to
generate correlated exposure-default scenario pairs.
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Define a latent variable Ye that maps into the distribution of simulated exposures. Ye is
defined as

where Z is the systemic factor computed in the credit simulation, epsilon_e is an
independent standard normal variable and rho is interpreted as a market-credit
correlation parameter. By construction, Ye is a standard normal variable correlated with Z
with correlation parameter rho.

The mapping between Ye and the simulated exposures requires us to order the exposure
scenarios in a meaningful way, based on some sortable criterion. The criterion can be any
meaningful quantity, for example, it could be an underlying risk factor for the contract
values (such as an interest rate), the total portfolio exposure, and so on.

In this example, use the total portfolio exposure (totalExp) as the exposure scenario
criterion to correlate the credit factor with the total exposure. If rho is negative, low
values of the credit factor Z tend to get linked to high values of Ye, hence high exposures.
This means negative values of rho introduce WWR.

To implement the mapping between Ye and the exposure scenarios, sort the exposure
scenarios by the totalExp values. Suppose that the number of exposure scenarios is S
(numScenarios). Given Ye, find the value j such that

and select the scenario j from the sorted exposure scenarios.

Ye is correlated to the simulated exposures and Z is correlated to the simulated defaults.
The correlation rho between Ye and Z is, therefore, the correlation link between the
exposures and the credit simulations.

% Sort the total exposure
[~,totalExpIdx] = sort(totalExp);

% Scenario cut points
cutPoints = 0:1/numScenarios:1;

% epsilonExp is the idiosyncratic factor for the latent variable
epsilonExp = randn(numCreditScen,1);
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% Set a market-credit correlation value
rho = -0.75;

% Latent variable
Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;

% Find corresponding exposure scenario
binidx = discretize(normcdf(Ye),cutPoints);
scenIdx = totalExpIdx(binidx);
totalExpCorr = totalExp(scenIdx);
PECorr = PE(scenIdx,:);

The following plot shows the correlated exposure-credit scenarios for the total portfolio
exposure as well as for the first counterparty. Because of the negative correlation,
negative values of the credit factor Z correspond to high exposure levels (wrong-way
risk).

% We only plot up to 10000 scenarios
numScenPlot = min(10000,numCreditScen);
figure;
scatter(Z(1:numScenPlot),totalExpCorr(1:numScenPlot))
hold on
scatter(Z(1:numScenPlot),PECorr(1:numScenPlot,1))
xlabel('Credit Factor (Z)')
ylabel('Exposure')
title(['Correlated Exposure-Credit Scenarios, \rho = ' num2str(rho)])
legend('Total Exposure','CP1 Exposure')
hold off
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For positive values of rho, the relationship between the credit factor and the exposures is
reversed (right-way risk).

rho = 0.75;
Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;
binidx = discretize(normcdf(Ye),cutPoints);
scenIdx = totalExpIdx(binidx);
totalExpCorr = totalExp(scenIdx);

figure;
scatter(Z(1:numScenPlot),totalExpCorr(1:numScenPlot))
xlabel('Credit Factor (Z)')
ylabel('Exposure')
title(['Correlated Exposure-Credit Scenarios, \rho = ' num2str(rho)])
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Sensitivity to Correlation

You can explore the sensitivity of the exposures or other risk measures to a range of
values for rho.

For each value of rho, compute the total losses per credit scenario as well as the expected
losses per counterparty. This example assumes a 40% recovery rate.

Recovery = 0.4;
rhoValues = -1:0.1:1;

totalLosses = zeros(numCreditScen,numel(rhoValues));
expectedLosses = zeros(numCP, numel(rhoValues));
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for i = 1:numel(rhoValues)
    
    rho = rhoValues(i);
    
    % Latent variable
    Ye = rho * Z + sqrt(1 - rho^2) * epsilonExp;
    
    % Find corresponding exposure scenario
    binidx = discretize(normcdf(Ye),cutPoints);
    scenIdx = totalExpIdx(binidx);
    simulatedExposures = PE(scenIdx,:);
    
    % Compute actual losses based on exposures and default events
    losses = isDefault .* simulatedExposures * (1-Recovery);    
    totalLosses(:,i) = sum(losses,2);
    
    % We compute the expected losses per counterparty
    expectedLosses(:,i) = mean(losses)';    
end
displayExpectedLosses(rhoValues, expectedLosses)

               Expected Losses
 Rho    CP1      CP2      CP3     CP4       CP5
-------------------------------------------------
-1.0   604.10   260.44   194.70  1234.17   925.95-0.9   583.67   250.45   189.02  1158.65   897.91-0.8   560.45   245.19   183.23  1107.56   865.33-0.7   541.08   235.86   177.16  1041.39   835.12-0.6   521.89   228.78   170.49   991.70   803.22-0.5   502.68   217.30   165.25   926.92   774.27-0.4   487.15   211.29   160.80   881.03   746.15-0.3   471.17   203.55   154.79   828.90   715.63-0.2   450.91   197.53   149.33   781.81   688.13-0.1   433.87   189.75   144.37   744.00   658.19 0.0   419.20   181.25   138.76   693.26   630.38 0.1   399.36   174.41   134.83   650.66   605.89 0.2   385.21   169.86   130.93   617.91   579.01 0.3   371.21   164.19   124.62   565.78   552.83 0.4   355.57   158.14   119.92   530.79   530.19 0.5   342.58   152.10   116.38   496.27   508.86 0.6   324.73   145.42   111.90   466.57   485.05 0.7   319.18   140.76   108.14   429.48   465.84 0.8   303.71   136.13   103.95   405.88   446.36 0.9   290.36   131.54   100.20   381.27   422.79 1.0   278.89   126.77    95.77   358.71   405.40

You can visualize the sensitivity of the Economic Capital (EC) to the market-credit
correlation parameter. Define EC as the difference between a percentile q of the
distribution of losses, minus the expected loss.

Negative values of rho result in higher capital requirements because of WWR.

pct = 99;
ec = prctile(totalLosses,pct) - mean(totalLosses);

figure;
plot(rhoValues,ec)
title('Economic Capital (99%) versus \rho')
xlabel('Rho');
ylabel('Economic Capital');
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Final Remarks

This example implements a copula-based approach to WWR, following Garcia Cespedes et
al. The methodology can efficiently reuse existing exposures and credit simulations, and
the sensitivity to the market-credit correlation parameter can be efficiently computed and
conveniently visualized for all correlation values.

The single-parameter copula approach presented here can be extended for a more
thorough exploration of the WWR of a portfolio. For example, different types of copulas
can be applied, and different criteria can be used to sort the exposure scenarios. Other
extensions include simulating multiple systemic credit risk variables (a multi-factor
model), or switching from a one-year to a multi-period framework to calculate measures
such as credit value adjustment (CVA), as in Rosen and Saunders (see References).
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Local Functions

function displayExpectedLosses(rhoValues, expectedLosses)
fprintf('               Expected Losses\n');
fprintf(' Rho    CP1      CP2      CP3     CP4       CP5\n');
fprintf('-------------------------------------------------\n');
for i = 1:numel(rhoValues)
    % Display expected loss
    fprintf('% .1f%9.2f%9.2f%9.2f%9.2f%9.2f', rhoValues(i), expectedLosses(:,i));  
end
end

See Also
cdsbootstrap | cdsprice | cdsrpv01 | cdsspread

Related Examples
• “First-to-Default Swaps” on page 8-25
• “Credit Default Swap Option” on page 8-37

External Websites
• Pricing and Valuation of Credit Default Swaps (4 min 22 sec)
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Interest-Rate Curve Objects

• “Interest-Rate Curve Objects and Workflow” on page 9-2
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Creating an IRDataCurve Object” on page 9-6
• “Bootstrapping a Swap Curve” on page 9-13
• “Dual Curve Bootstrapping” on page 9-17
• “Creating an IRFunctionCurve Object” on page 9-22
• “Fitting Interest Rate Curve Functions” on page 9-33
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-41
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Interest-Rate Curve Objects and Workflow

In this section...
“Class Structure” on page 9-2
“Workflow Using Interest-Rate Curve Objects” on page 9-3

Class Structure
Financial Instruments Toolbox class structure supports interest-rate curve objects. The
class structure supports five classes.

Class Structure

Class Name Description
“@IRCurve” on page A-4 Base abstract class for interest-rate curves. IRCurve is

an abstract class; you cannot create instances of it
directly. You can create IRFunctionCurve and
IRDataCurve objects that are derived from this class.

“@IRDataCurve” on page A-
7

Creates a representation of an interest-rate curve with
dates and data. IRDataCurve is constructed directly by
specifying dates and corresponding interest rates or
discount factors, or you can bootstrap an IRDataCurve
object from market data.

“@IRFunctionCurve” on page
A-13

Creates a representation of an interest-rate curve with a
function. IRFunctionCurve is constructed directly by
specifying a function handle, or you can fit a function to
market data using methods of the IRFunctionCurve
object.

“@IRBootstrapOptions” on
page A-2

The IRBootstrapOptions object lets you specify
options relating to the bootstrapping of an IRDataCurve
object.

“@IRFitOptions” on page A-
11

The IRFitOptions object lets you specify options
relating to the fitting process for an IRFunctionCurve
object.
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Workflow Using Interest-Rate Curve Objects
The supported workflow model for using interest-rate curve objects is:

1 Create an interest-rate curve based on an IRDataCurve object or an
IRFunctionCurve object.

• To create an IRDataCurve object:

• Use vectors of dates and data with interpolation methods.
• Use bootstrapping based on market instruments.

For more information on creating an IRDataCurve object, see “Creating an
IRDataCurve Object” on page 9-6.

• To create an IRFunctionCurve object:

• Specify a function handle.
• Fit a function using the Nelson-Siegel model, Svensson model, or smoothing

spline model.
• Fit a custom function.

2 Use methods of the IRDataCurve or IRFunctionCurve objects to extract forward,
zero, discount factor, or par yield curves for the interest-rate curve object.

3 Convert an interest-rate curve from an IRDataCurve or IRFunctionCurve object
to a RateSpec structure. This RateSpec structure is identical to the RateSpec
produced by the Financial Instruments Toolbox function intenvset. Using the
RateSpec for an interest-rate curve object, you can then use Financial Instruments
Toolbox functions to model an interest-rate structure and price.

See Also
IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4

 See Also
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Creating Interest-Rate Curve Objects
Depending on your data and purpose for analysis, you can create an interest-rate curve
object by using an IRDataCurve or IRFunctionCurve object.

To create an IRDataCurve object, you can:

• Use the IRDataCurve constructor using vector of dates and data with interpolation
methods.

• Use the IRDataCurve method bootstrap using market instruments.

For more information on creating an IRDataCurve object, see “Creating an IRDataCurve
Object” on page 9-6.

Using an IRDataCurve object, you can use the following methods to determine:

• Forward rate curve — getForwardRates
• Zero rate curve — getZeroRates
• Discount rate curve — getDiscountFactors
• Par yield curve — getParYields

Alternatively, to create an IRFunctionCurve object, you can:

• Use the IRFunctionCurve constructor and directly specify a function handle.
• Use IRFunctionCurve methods:

• fitNelsonSiegel fits a “Fitting IRFunctionCurve Object Using Nelson-Siegel
Method” on page 9-22 to market data for bonds.

• fitSvensson fits a “Fitting IRFunctionCurve Object Using Svensson Method” on
page 9-24 to market data for bonds.

• fitSmoothingSpline fits a “Fitting IRFunctionCurve Object Using Smoothing
Spline Method” on page 9-26 function to market data for bonds.

• fitFunction custom fits an interest-rate curve object to market data for bonds.

Using an IRFunctionCurve object, you can use the following method to determine:

• Forward rate curve — getForwardRates
• Zero rate curve — getZeroRates
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• Discount rate curve — getDiscountFactors
• Par yield curve — getParYields

In addition, you can convert an IRDataCurve or IRFunctionCurve to a RateSpec
structure. For more information, see “Converting an IRDataCurve or IRFunctionCurve
Object” on page 9-41.

See Also
IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

Related Examples
• “Creating an IRDataCurve Object” on page 9-6

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

 See Also
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Creating an IRDataCurve Object
To create an IRDataCurve object, see the following options:

In this section...
“IRDataCurve Constructor with Dates and Data” on page 9-6
“IRDataCurve Bootstrapping Based on Market Instruments” on page 9-7

IRDataCurve Constructor with Dates and Data
Use the IRDataCurve constructor with vectors of dates and data to create an interest-
rate curve object. When constructing the IRDataCurve object, you can also use optional
inputs to define how the interest-rate curve is constructed from the dates and data.

Example

In this example, you create the vectors for Dates and Data for an interest-rate curve:
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);

Use the IRDataCurve constructor to build interest-rate objects based on the constant
and pchip interpolation methods:
irdc_const = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','constant');
irdc_pchip = IRDataCurve('Forward',today,Dates,Data,'InterpMethod','pchip');

Plot the forward and zero rate curves for the two IRDataCurve objects based on
constant and pchip interpolation methods:
PlottingDates = daysadd(today,180:10:360*30,1);
plot(PlottingDates, getForwardRates(irdc_const, PlottingDates),'b')
hold on
plot(PlottingDates, getForwardRates(irdc_pchip, PlottingDates),'r')
plot(PlottingDates, getZeroRates(irdc_const, PlottingDates),'g')
plot(PlottingDates, getZeroRates(irdc_pchip, PlottingDates),'yellow')
legend({'Constant Forward Rates','PCHIP Forward Rates','Constant Zero Rates',...
'PCHIP Zero Rates'},'location','SouthEast')
title('Interpolation methods for IRDataCurve objects')
datetick

The plot demonstrates the relationship of the forward and zero rate curves.
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IRDataCurve Bootstrapping Based on Market Instruments
Use the bootstrapping method, based on market instruments, to create an interest-rate
curve object. When bootstrapping, you also have the option to define a range of
interpolation methods (linear, spline, constant, and pchip).

Example 1

In this example, you bootstrap a swap curve from deposits, Eurodollar Futures and swaps.
The input market data for this example is hard-coded and specified as two cell arrays of
data; one cell array indicates the type of instrument and the other contains the Settle,
Maturity values and a market quote for the instrument. For deposits and swaps, the
quote is a rate; for the EuroDollar futures, the quote is a price. Although bonds are not
used in this example, a bond would also be quoted with a price.
InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';'Deposit'; ...
    'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Swap';'Swap';'Swap';'Swap';'Swap';'Swap';'Swap'};
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Instruments = [datenum('08/10/2007'),datenum('08/17/2007'),.0532063; ...
    datenum('08/10/2007'),datenum('08/24/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('10/17/2007'),.0534000; ...
    datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
    datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
    datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
    datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
    datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
    datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
    datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
    datenum('08/08/2007'),datenum('17-Jun-2009'),9494.5; ...
    datenum('08/08/2007'),datenum('16-Sep-2009'),9489; ...
    datenum('08/08/2007'),datenum('16-Dec-2009'),9481.5; ...
    datenum('08/08/2007'),datenum('17-Mar-2010'),9478; ...
    datenum('08/08/2007'),datenum('16-Jun-2010'),9474; ...
    datenum('08/08/2007'),datenum('15-Sep-2010'),9469.5; ...
    datenum('08/08/2007'),datenum('15-Dec-2010'),9464.5; ...
    datenum('08/08/2007'),datenum('16-Mar-2011'),9462.5; ...
    datenum('08/08/2007'),datenum('15-Jun-2011'),9456.5; ...
    datenum('08/08/2007'),datenum('21-Sep-2011'),9454; ...
    datenum('08/08/2007'),datenum('21-Dec-2011'),9449.5; ...
    datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
    datenum('08/08/2007'),datenum('08/08/2017'),.0545; ...
    datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
    datenum('08/08/2007'),datenum('08/08/2022'),.0559; ...
    datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
    datenum('08/08/2007'),datenum('08/08/2032'),.0566; ...
    datenum('08/08/2007'),datenum('08/08/2037'),.0566];

The bootstrap method is called as a static method of the “@IRDataCurve” on page A-
7 class. Inputs to this method include the curve Type (zero or forward), Settle
date, InstrumentTypes, and Instrument data. The bootstrap method also supports
optional arguments, including an interpolation method, compounding, basis, and an
options structure for bootstrapping. For example, you are passing in an
“@IRBootstrapOptions” on page A-2 object which includes information for the
ConvexityAdjustment to forward rates.
IRsigma = .01;
CurveSettle = datenum('08/10/2007');
bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip',...
'Compounding',-1,'IRBootstrapOptions',...
IRBootstrapOptions('ConvexityAdjustment',@(t) .5*IRsigma^2.*t.^2))

bootModel = 

IRDataCurve

             Type: Forward
           Settle: 733264 (10-Aug-2007)
      Compounding: -1
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            Basis: 0 (actual/actual)
     InterpMethod: pchip
            Dates: [29x1 double]
             Data: [29x1 double]

The bootstrap method uses an Optimization Toolbox function to solve for any
bootstrapped rates.

Plot the forward and zero curves:
PlottingDates = (CurveSettle+20:30:CurveSettle+365*25)';
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
BootstrappedForwardRates = getForwardRates(bootModel, PlottingDates);
BootstrappedZeroRates = getZeroRates(bootModel, PlottingDates);

figure
hold on
plot(TimeToMaturity,BootstrappedForwardRates,'r')
plot(TimeToMaturity,BootstrappedZeroRates,'g')
title('Bootstrapped Curve')
xlabel('Time')
legend({'Forward','Zero'})

The plot demonstrates the forward and zero rate curves for the market data.
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Example 2

In this example, you bootstrap a swap curve from deposits, Eurodollar futures, and swaps.
The input market data for this example is hard-coded and specified as two cell arrays of
data; one cell array indicates the type of instrument and the other cell array contains the
Settle, Maturity values and a market quote for the instrument. This example of
bootstrapping also demonstrates the use of an InstrumentBasis for each Instrument
type:
InstrumentTypes = {'Deposit';'Deposit';...
'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...
'Swap';'Swap';'Swap';'Swap';};

Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'),datenum('08/08/2037'),.0566];

CurveSettle = datenum('08/10/2007');

The bootstrap method is called as a static method of the “@IRDataCurve” on page A-
7 class. Inputs to this method include the curve Type (zero or forward), Settle
date, InstrumentTypes, and Instrument data. The bootstrap method also supports
optional arguments, including an interpolation method, compounding, basis, and an
options structure for bootstrapping. In this example, you are passing an additional Basis
value for each instrument type:
bootModel=IRDataCurve.bootstrap('Forward',CurveSettle,InstrumentTypes, ...
Instruments,'InterpMethod','pchip','InstrumentBasis',[repmat(2,8,1);repmat(0,4,1)])

bootModel = 

    IRDataCurve

             Type: Forward
           Settle: 733264 (10-Aug-2007)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: pchip
            Dates: [12x1 double]
             Data: [12x1 double]
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The bootstrap method uses an Optimization Toolbox function to solve for any
bootstrapped rates.

Plot the par yields curve using the getParYields method:

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
datetick

The plot demonstrates the par yields curve for the market data.

See Also
IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Bootstrapping a Swap Curve” on page 9-13
• “Dual Curve Bootstrapping” on page 9-17
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• “Creating an IRFunctionCurve Object” on page 9-22

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

External Websites
• Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
• Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk

Applications (30 min 00 sec)

9 Interest-Rate Curve Objects

9-12

https://www.mathworks.com/videos/calibration-and-simulation-of-interest-rate-models-in-matlab-90140.html
https://www.mathworks.com/videos/calibration-and-simulation-best-practices-multifactor-interest-rate-models-for-risk-applications-91641.html
https://www.mathworks.com/videos/calibration-and-simulation-best-practices-multifactor-interest-rate-models-for-risk-applications-91641.html


Bootstrapping a Swap Curve
This example shows how to bootstrap an interest-rate curve, often referred to as a swap
curve, using the IRDataCurve object. The static bootstrap method takes as inputs a cell
array of market instruments (which can be deposits, interest-rate futures, swaps, and
bonds) and bootstraps an interest-rate curve of either the forward or the zero curve. It is
also possible to specify multiple interpolation methods, including piecewise constant,
linear, and Piecewise Cubic Hermite Interpolating Polynomial (PCHIP).

Obtain Data

A curve is bootstrapped from market data. In this example, we will bootstrap a swap
curve from deposits, Eurodollar Futures, and swaps.

For this example, we have hard-coded the input market data, which is simply specified as
2 cell arrays of data, one which indicates the type of instrument and a second cell array
containing the Settle, Maturity, and Market Quote for the instrument. For deposits
and swaps, the quote is a rate, and for the EuroDollar Futures, the quote is a price.
Although bonds are not used in this example, a bond would be quoted with a price.

InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';'Deposit'; ...
    'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Futures';'Futures';'Futures'; ...
    'Swap';'Swap';'Swap';'Swap';'Swap';'Swap';'Swap'};

Instruments = [datenum('08/10/2007'),datenum('08/17/2007'),.0532063; ...
    datenum('08/10/2007'),datenum('08/24/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
    datenum('08/10/2007'),datenum('10/17/2007'),.0534000; ...
    datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
    datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
    datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
    datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
    datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
    datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
    datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
    datenum('08/08/2007'),datenum('17-Jun-2009'),9494.5; ...
    datenum('08/08/2007'),datenum('16-Sep-2009'),9489; ...
    datenum('08/08/2007'),datenum('16-Dec-2009'),9481.5; ...
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    datenum('08/08/2007'),datenum('17-Mar-2010'),9478; ...
    datenum('08/08/2007'),datenum('16-Jun-2010'),9474; ...
    datenum('08/08/2007'),datenum('15-Sep-2010'),9469.5; ...
    datenum('08/08/2007'),datenum('15-Dec-2010'),9464.5; ...
    datenum('08/08/2007'),datenum('16-Mar-2011'),9462.5; ...
    datenum('08/08/2007'),datenum('15-Jun-2011'),9456.5; ...
    datenum('08/08/2007'),datenum('21-Sep-2011'),9454; ...
    datenum('08/08/2007'),datenum('21-Dec-2011'),9449.5; ...
    datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
    datenum('08/08/2007'),datenum('08/08/2017'),.0545; ...
    datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
    datenum('08/08/2007'),datenum('08/08/2022'),.0559; ...
    datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
    datenum('08/08/2007'),datenum('08/08/2032'),.0566; ...
    datenum('08/08/2007'),datenum('08/08/2037'),.0566];

Construct the Curve via Bootstrapping

The bootstrap method is called as a static method of the IRDataCurve class. Inputs to
this method include the curve type (Zero or Forward), settle date, instrument types,
instrument data, and optional arguments including an interpolation method,
compounding, and an options structure for bootstrapping. Note that in this example, we
are passing in an IRBootstrapOptions object which includes information for the
convexity adjustment to forward rates.

IRsigma = .01;
CurveSettle = datenum('08/10/2007');
bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
    InstrumentTypes, Instruments,'InterpMethod','pchip',...
    'Compounding',-1,'IRBootstrapOptions',...
    IRBootstrapOptions('ConvexityAdjustment',@(t) .5*IRsigma^2.*t.^2));

Plot

We can now plot both the forward and zero curves.

PlottingDates = (CurveSettle+20:30:CurveSettle+365*25)';
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
BootstrappedForwardRates = bootModel.getForwardRates(PlottingDates);
BootstrappedZeroRates = bootModel.getZeroRates(PlottingDates);

figure
hold on
plot(TimeToMaturity,BootstrappedForwardRates,'r')
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plot(TimeToMaturity,BootstrappedZeroRates,'g')
title('Bootstrapped Curve')
xlabel('Time')
legend({'Forward','Zero'})

Bibliography

This example draws from the following papers and journal articles:

[1] Hagan, P., West, G. (2006), "Interpolation Methods for Curve Construction", Applied
Mathematical Finance, Vol 13, No. 2
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Dual Curve Bootstrapping
This example shows how to bootstrap a forward curve using a different curve for
discounting.

Define the Data

Data is needed for both the forward and discount curve. For this particular example, it is
assumed that the data is provided for EONIA (the discount curve) and EURIBOR (the
forward curve). However, this approach can be used in any case where the curve to be
built is different than the curve used for discounting cash flows. While the data in this
example is hardcoded, it could also be imported into MATLAB with Datafeed Toolbox™ or
Database Toolbox™.
Settle = datenum('20-Aug-2013');

% Deposit data
EONIADepositRates = [.0007 .00067]';
EONIADepositMat = datenum({'3-Sep-2013','20-Sep-2013'});
EONIADepositBasis = 2; % act/360
EONIADepositPeriod = 0;

% FRA
EONIAFRARates = [.00025 .0003 .00043 .00054]';
EONIAFRAStartDate = datenum({'11-Sep-2013','9-Oct-2013','13-Nov-2013','11-Dec-2013'});
EONIAFRAEndDate = datenum({'9-Oct-2013','13-Nov-2013','11-Dec-2013','11-Jan-2014'});
EONIAFRABasis = 2; % act/360
EONIAFRAPeriod = 0;

% Swap data
EONIASwapRates = [.0003 .001 .002 .004 .008 .012 .0155 .018 .0193 .02]';
EONIASwapMat = datemnth(Settle,12*[2:5 7 10 15 20 25 30]');
EONIASwapBasis = 5; % 30/360 ISDA
EONIASwapPeriod = 1;

% EURIBOR Deposit data
EURIBORDepositRates = [.0022 .0021 .002 .0019]';
EURIBORDepositMat = datenum({'3-Sep-2013','20-Sep-2013','21-Oct-2013','20-Nov-2013'});
EURIBORDepositBasis = 2; % act/360
EURIBORDepositPeriod = 0;

% EURIBOR Futures
EURIBORFRARates = [9982 9978 9976 9975]';
EURIBORFRAStartDate = datenum({'18-Dec-2013','19-Mar-2014','18-Jun-2014','17-Sep-2014'});
EURIBORFRAEndDate = datenum({'18-Mar-2014','19-Jun-2014','18-Sep-2014','17-Dec-2014'});
EURIBORFRABasis = 2; % act/360
EURIBORFRAPeriod = 4;

% EURIBOR Swap data
EURIBORSwapRates = [.0026 .0044 .0062 .0082 .012 .015 .018 .02 .021 .0215]';
EURIBORSwapMat = datemnth(Settle,12*[2:5 7 10 15 20 25 30]');
EURIBORSwapBasis = 5; % 30/360 ISDA
EURIBORSwapPeriod = 1;
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Construct a EONIA Discount Curve

Build the EONIA curve. This is essentially the same as the single curve case.
CurveType = 'zero';
CurveCompounding = 1;
CurveBasis = 3; % act/365

nEONIADeposits = length(EONIADepositMat);
nEONIAFRA = length(EONIAFRAEndDate);
nEONIASwaps = length(EONIASwapMat);

EONIAInstrumentTypes = [repmat({'deposit'},nEONIADeposits,1);
    repmat({'fra'},nEONIAFRA,1);repmat({'swap'},nEONIASwaps,1)];

EONIAPeriod = [repmat(EONIADepositPeriod,nEONIADeposits,1);
    repmat(EONIAFRAPeriod,nEONIAFRA,1);repmat(EONIASwapPeriod,nEONIASwaps,1)];

EONIABasis = [repmat(EONIADepositBasis,nEONIADeposits,1);
    repmat(EONIAFRABasis,nEONIAFRA,1);repmat(EONIASwapBasis,nEONIASwaps,1)];

EONIAInstrumentData = [[repmat(Settle,[nEONIADeposits 1]);EONIAFRAStartDate;repmat(Settle,[nEONIASwaps 1])] ...
    [EONIADepositMat;EONIAFRAEndDate;EONIASwapMat] ...
    [EONIADepositRates;EONIAFRARates;EONIASwapRates]];

EONIACurve = IRDataCurve.bootstrap(CurveType,Settle,EONIAInstrumentTypes,...
    EONIAInstrumentData,'Compounding',CurveCompounding,'Basis',CurveBasis,...
    'InstrumentPeriod',EONIAPeriod,'InstrumentBasis',EONIABasis)

EONIACurve = 

             Type: zero
           Settle: 735466 (20-Aug-2013)
      Compounding: 1
            Basis: 3 (actual/365)
     InterpMethod: linear
            Dates: [16x1 double]
             Data: [16x1 double]

Construct a EURIBOR Forward Curve

The EURIBOR forward curve is built first using a single curve approach.
nEURIBORDeposits = length(EURIBORDepositMat);
nEURIBORFRA = length(EURIBORFRAEndDate);
nEURIBORSwaps = length(EURIBORSwapMat);

EURIBORInstrumentTypes = [repmat({'deposit'},nEURIBORDeposits,1);
    repmat({'futures'},nEURIBORFRA,1);repmat({'swap'},nEURIBORSwaps,1)];

EURIBORPeriod = [repmat(EURIBORDepositPeriod,nEURIBORDeposits,1);
    repmat(EURIBORFRAPeriod,nEURIBORFRA,1);repmat(EURIBORSwapPeriod,nEURIBORSwaps,1)];

EURIBORBasis = [repmat(EURIBORDepositBasis,nEURIBORDeposits,1);
    repmat(EURIBORFRABasis,nEURIBORFRA,1);repmat(EURIBORSwapBasis,nEURIBORSwaps,1)];
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EURIBORInstrumentData = [repmat(Settle,size(EURIBORInstrumentTypes)) ...
    [EURIBORDepositMat;EURIBORFRAEndDate;EURIBORSwapMat] ...
    [EURIBORDepositRates;EURIBORFRARates;EURIBORSwapRates]];

EURIBORCurve_Single = IRDataCurve.bootstrap(CurveType,Settle,EURIBORInstrumentTypes,...
    EURIBORInstrumentData,'Compounding',CurveCompounding,'Basis',CurveBasis,...
    'InstrumentPeriod',EURIBORPeriod,'InstrumentBasis',EURIBORBasis)

EURIBORCurve_Single = 

             Type: zero
           Settle: 735466 (20-Aug-2013)
      Compounding: 1
            Basis: 3 (actual/365)
     InterpMethod: linear
            Dates: [18x1 double]
             Data: [18x1 double]

Build the EURIBOR Curve with the EONIA Curve

Next, build a curve using the EONIA curve as a discounting curve. To do this, specify the
EONIA curve as an optional input argument.
EURIBORCurve = IRDataCurve.bootstrap(CurveType,Settle,EURIBORInstrumentTypes,...
    EURIBORInstrumentData,'DiscountCurve',EONIACurve,'Compounding',...
    CurveCompounding,'Basis',CurveBasis,'InstrumentPeriod',EURIBORPeriod,...
    'InstrumentBasis',EURIBORBasis)

EURIBORCurve = 

             Type: zero
           Settle: 735466 (20-Aug-2013)
      Compounding: 1
            Basis: 3 (actual/365)
     InterpMethod: linear
            Dates: [18x1 double]
             Data: [18x1 double]

Plot the Results

Plot the results to compare the curves.
PlottingDates = (Settle+20:30:Settle+365*30)';
TimeToMaturity = yearfrac(Settle,PlottingDates);

figure
plot(TimeToMaturity, getZeroRates(EONIACurve, PlottingDates),'b')
hold on
plot(TimeToMaturity, getZeroRates(EURIBORCurve_Single, PlottingDates),'r')
plot(TimeToMaturity, getZeroRates(EURIBORCurve, PlottingDates),'g')
title('Comparison of Single Curve and Dual Curve Bootstrapping')
legend({'EONIA','EURIBOR','EURIBOR w/ EONIA Discounting'},'location','southeast')
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As expected, the difference between the two different EURIBOR curves is small but
nontrivial.
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Creating an IRFunctionCurve Object
To create an IRFunctionCurve object, see the following options:

In this section...
“Fitting IRFunctionCurve Object Using a Function Handle” on page 9-22
“Fitting IRFunctionCurve Object Using Nelson-Siegel Method” on page 9-22
“Fitting IRFunctionCurve Object Using Svensson Method” on page 9-24
“Fitting IRFunctionCurve Object Using Smoothing Spline Method” on page 9-26
“Using fitFunction to Create Custom Fitting Function” on page 9-29

Fitting IRFunctionCurve Object Using a Function Handle
You can use the constructor IRFunctionCurve with a MATLAB function handle to define
an interest-rate curve. For more information on defining a function handle, see the
MATLAB Programming Fundamentals documentation.

Example

This example uses a FunctionHandle argument with a value @(t) t.^2 to construct an
interest-rate curve:

rr = IRFunctionCurve('Zero',today,@(t) t.^2)

rr = 

  Properties:
    FunctionHandle: @(t)t.^2
              Type: 'Zero'
            Settle: 733600
       Compounding: 2
             Basis: 0

Fitting IRFunctionCurve Object Using Nelson-Siegel Method
Use the method, fitNelsonSiegel, for the Nelson-Siegel model that fits the empirical
form of the yield curve with a prespecified functional form of the spot rates which is a
function of the time to maturity of the bonds.
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The Nelson-Siegel model represents a dynamic three-factor model: level, slope, and
curvature. However, the Nelson-Siegel factors are unobserved, or latent, which allows for
measurement error, and the associated loadings have economic restrictions (forward
rates are always positive, and the discount factor approaches zero as maturity increases).
For more information, see “Zero-coupon yield curves: technical documentation,” BIS
Papers, Bank for International Settlements, Number 25, October 2005.

Example

This example uses IRFunctionCurve to model the default-free term structure of interest
rates in the United Kingdom.

Load the data:

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds:
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data:

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

The IRFunctionCurve object provides the capability to fit a Nelson-Siegel curve to
observed market data with the fitNelsonSiegel method. The fitting is done by calling
the Optimization Toolbox function lsqnonlin. This method has required inputs of Type,
Settle, and a matrix of instrument data.
NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...
Instruments,'Compounding',-1,'InstrumentPeriod',InstrumentPeriod);

Plot the Nelson-Siegel interest-rate curve for forward rates:
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
NSForwardRates = getForwardRates(NSModel, PlottingDates);
plot(TimeToMaturity,NSForwardRates)
title('Nelson Siegel model of UK instantaneous nominal forward curve')
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Fitting IRFunctionCurve Object Using Svensson Method
Use the method, fitSvensson, for the Svensson model to improve the flexibility of the
curves and the fit for a Nelson-Siegel model. In 1994, Svensson extended Nelson and
Siegel’s function by adding a further term that allows for a second “hump.” The extra
precision is achieved at the cost of adding two more parameters, β3 and τ2, which have to
be estimated.

Example

In this example of using the fitSvensson method, an IRFitOptions structure,
previously defined using the IRFitOptions constructor, is used. Thus, you must specify
FitType, InitialGuess, UpperBound, LowerBound, and the OptOptions
optimization parameters for lsqnonlin.

Load the data:

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds:
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);
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Aggregate the data:

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Define OptOptions for the IRFitOptions constructor:
OptOptions = optimoptions('lsqnonlin','MaxFunEvals',1000);
fIRFitOptions = IRFitOptions([5.82 -2.55 -.87 0.45 3.9 0.44],...
'FitType','durationweightedprice','OptOptions',OptOptions,...
'LowerBound',[0 -Inf -Inf -Inf 0 0],'UpperBound',[Inf Inf Inf Inf Inf Inf]);

Fit the interest-rate curve using a Svensson model:
SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...
Instruments,'IRFitOptions', fIRFitOptions, 'Compounding',-1,...
'InstrumentPeriod',InstrumentPeriod)

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

SvenssonModel = 

             Type: Zero
           Settle: 733528 (30-Apr-2008)
      Compounding: -1
            Basis: 0 (actual/actual)

The status message, output from lsqnonlin, indicates that the optimization to find
parameters for the Svensson equation terminated successfully.

Plot the Svensson interest-rate curve for forward rates:
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
SvenssonForwardRates = getForwardRates(SvenssonModel, PlottingDates);
plot(TimeToMaturity,SvenssonForwardRates)
title('Svensson model of UK instantaneous nominal forward curve')
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Fitting IRFunctionCurve Object Using Smoothing Spline
Method
Use the method, fitSmoothingSpline, to model the term structure with a spline,
specifically, the term structure represents the forward curve with a cubic spline.

Note You must have a license for Curve Fitting Toolbox software to use the
fitSmoothingSpline method.

Example

The IRFunctionCurve object is used to fit a smoothing spline representation of the
forward curve with a penalty function. Required inputs are Type, Settle, the matrix of
Instruments, and Lambdafun, a function handle containing the penalty function

Load the data:

load ukdata20080430

Convert repo rates to be equivalent zero coupon bonds:
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RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data:

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Choose parameters for Lambdafun:

L = 9.2;
S = -1;
mu = 1;

Define the Lambdafun penalty function:

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu));
t = 0:.1:25;
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')
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Use the fitSmoothinSpline method to fit the interest-rate curve and model the
Lambdafun penalty function:
VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
Instruments,lambdafun,'Compounding',-1, 'InstrumentPeriod',InstrumentPeriod);

Plot the smoothing spline interest-rate curve for forward rates:
PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
VRPForwardRates = getForwardRates(VRPModel, PlottingDates);
plot(TimeToMaturity,VRPForwardRates)
title('Smoothing Spline model of UK instantaneous nominal forward curve')
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Using fitFunction to Create Custom Fitting Function
When using an IRFunctionCurve object, you can create a custom fitting function with
the fitFunction method. To use fitFunction, you must define a FunctionHandle.
In addition, you must also use the constructor IRFitOptions to define
IRFitOptionsObj to support an InitialGuess for the parameters of the curve
function.

Example

The following example demonstrates the use of fitFunction with a FunctionHandle
and an IRFitOptionsObj:
Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');

Define the FunctionHandle:
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functionHandle = @(t,theta) polyval(theta,t);

Define the OptOptions for IRFitOptions:

OptOptions = optimoptions('lsqnonlin','display','iter');

Define fitFunction:
CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...
functionHandle,Instruments, IRFitOptions([.05 .05 .05],'FitType','price',...
'OptOptions',OptOptions));

                                         Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality   CG-iterations
     0          4         38036.7                      4.92e+04
     1          8         38036.7             10       4.92e+04            0
     2         12         38036.7            2.5       4.92e+04            0
     3         16         38036.7          0.625       4.92e+04            0
     4         20         38036.7        0.15625       4.92e+04            0
     5         24         30741.5      0.0390625       1.72e+05            0
     6         28         30741.5       0.078125       1.72e+05            0
     7         32         30741.5      0.0195312       1.72e+05            0
     8         36         28713.6     0.00488281       2.33e+05            0
     9         40         20323.3     0.00976562       9.47e+05            0
    10         44         20323.3      0.0195312       9.47e+05            0
    11         48         20323.3     0.00488281       9.47e+05            0
    12         52         20323.3      0.0012207       9.47e+05            0
    13         56         19698.8    0.000305176       1.08e+06            0
    14         60           17493    0.000610352          7e+06            0
    15         64           17493      0.0012207          7e+06            0
    16         68           17493    0.000305176          7e+06            0
    17         72         15455.1    7.62939e-05       2.25e+07            0
    18         76         15455.1    0.000177499       2.25e+07            0
    19         80         13317.1     3.8147e-05       3.18e+07            0
    20         84         12865.3    7.62939e-05       7.83e+07            0
    21         88         11779.8    7.62939e-05       7.58e+06            0
    22         92         11747.6    0.000152588       1.45e+05            0
    23         96         11720.9    0.000305176       2.33e+05            0
    24        100         11667.2    0.000610352       1.48e+05            0
    25        104         11558.6      0.0012207       3.55e+05            0
    26        108         11335.5     0.00244141       1.57e+05            0
    27        112         10863.8     0.00488281       6.36e+05            0
    28        116         9797.14     0.00976562       2.53e+05            0
    29        120         6882.83      0.0195312       9.18e+05            0
    30        124         6882.83      0.0373993       9.18e+05            0
    31        128         3218.45     0.00934981       1.96e+06            0
    32        132         612.703      0.0186996       3.01e+06            0
    33        136         13.0998      0.0253882       3.05e+06            0
    34        140       0.0762922     0.00154002       5.05e+04            0
    35        144       0.0731652    3.61102e-06           29.9            0
    36        148       0.0731652    6.32335e-08          0.063            0

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

Plot the custom function that is defined using fitFunction:
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Yields = bndyield(CleanPrice,CouponRate,Settle(1),Maturity);
scatter(Maturity,Yields);
PlottingPoints = min(Maturity):30:max(Maturity);
hold on;
plot(PlottingPoints, getParYields(CustomModel, PlottingPoints),'r');
datetick
legend('Market Yields','Fitted Yield Curve')
title('Custom Function fit to Market Data')

See Also
IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Bootstrapping a Swap Curve” on page 9-13
• “Dual Curve Bootstrapping” on page 9-17
• “Creating an IRDataCurve Object” on page 9-6
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-41
• “Analysis of Inflation Indexed Instruments”
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• “Fitting Interest Rate Curve Functions” on page 9-33

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

External Websites
• Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
• Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk

Applications (30 min 00 sec)
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Fitting Interest Rate Curve Functions
This example shows how to use IRFunctionCurve objects to model the term structure of
interest rates (also referred to as the yield curve). This can be contrasted with modeling
the term structure with vectors of dates and data and interpolating between the points
(which can currently be done with the function prbyzero).

The term structure can refer to at least three different curves: the discount curve, zero
curve, or forward curve.

The IRFunctionCurve object allows you to model an interest-rate curve as a function.

This example explores using IRFunctionCurve to model the default-free term structure
of interest rates in the United Kingdom. Three different forms for the term structure are
implemented and are discussed in more detail later:

• Nelson-Siegel
• Svensson
• Smoothing Cubic Spline with a so-called Variable Roughness Penalty (VRP)

Choosing the Data

The first question in modeling the yield curve is what data should be used. To model a
default-free yield curve, default-free, option-free market instruments must be used. The
most significant component of the data is UK Government Bonds (known as Gilts).
Historical data is retrieved from the following site:

http://www.dmo.gov.uk

Repo data is used to construct the short end of the yield curve. Repo data is retrieved
from the following site:

http://www.bba.org.uk

Note also that the data must be specified as a matrix where the columns are Settle,
Maturity, CleanPrice, and CouponRate -- and that instruments must be bonds or
synthetically converted to bonds.

Market data for a close date of April 30, 2008, has been downloaded and saved to the
following data file (ukdata20080430), which can be loaded into MATLAB® with the
following command:
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% Load the data
load ukdata20080430

% Convert repo rates to be equivalent zero coupon bonds
RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

% Aggregate the data
Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];

CurveSettle = datenum('30-Apr-2008');

Fit Nelson-Siegel Model to Market Data

The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled
with the following:

This can be integrated to derive an equation for the zero curve (see [6] for more
information on the equations and the derivation):

See [1] for more information.

The IRFunctionCurve object provides the capability to fit a Nelson Siegel curve to
observed market data with the fitNelsonSiegel method. The fitting is done by calling
the Optimization Toolbox™ function lsqnonlin.

The fitNelsonSiegel method has required inputs: Curve Type, Curve Settle, and a
matrix of instrument data.

Optional input arguments, specified in name-value pairs, are:
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• IRFitOptions structure: Provides capability to choose which quantity to be
minimized (price, yield, or duration weighted price) and other optimization parameters
(for example, upper and lower bounds for parameters)

• Curve Compounding and Basis (day-count convention)
• Additional instrument parameters, Period, Basis, FirstCouponDate, and so on.

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',CurveSettle,...
    Instruments,'InstrumentPeriod',InstrumentPeriod);

Fit Svensson Model

A very similar model to the Nelson-Siegel is the Svensson model, which adds two
additional parameters to account for greater flexibility in the term structure. This model
proposes that the forward rate can be modeled with the following form:

As above, this can be integrated to derive an equation for the zero curve:

See [2] for more information.

Fitting the parameters to this model proceeds in a similar fashion to the Nelson-Siegel
model using the fitSvensson method.

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',CurveSettle,...
    Instruments,'InstrumentPeriod',InstrumentPeriod);

Fit Smoothing Spline

The term structure can also be modeled with a spline -- specifically, one way to model the
term structure is by representing the forward curve with a cubic spline. To ensure that
the spline is sufficiently smooth, a penalty is imposed relating to the curvature (second
derivative) of the spline:
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where the first term is the difference between the observed price P and the predicted
price, P_hat, (weighted by the bond's duration, D) summed over all bonds in our data set
and the second term is the penalty term (where lambda is a penalty function and f is the
spline).

See [3], [4], [5] below.

There have been different proposals for the specification of the penalty function lambda.
One approach, advocated by [4], and currently used by the UK Debt Management Office,
is a penalty function of the following form:

The parameters L, S, and mu are typically estimated from historical data.

The IRFunctionCurve object can be used to fit a smoothing spline representation of the
forward curve with a penalty function using the method fitSmoothingSpline.

Required inputs, like for the methods above, are a Curve Type, Curve Settle,
Instruments matrix, and a function handle (Lambdafun) containing the penalty
function.

Optional parameters are similar to fitNelsonSiegel and fitSvensson.

% Parameters chosen to be roughly similar to [4] below.
L = 9.2;
S = -1;
mu = 1;

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu)); % Construct penalty function
t = 0:.1:25; % Construct data to plot penalty function
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')
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VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
    Instruments,lambdafun,'Compounding',-1,...
    'InstrumentPeriod',InstrumentPeriod);

Use Fitted Curves and Plot Results

Once a curve has been constructed, methods can be called to extract the Forward and
Zero Rates and the Discount Factors. This curve can also be converted into a RateSpec
structure using the toRateSpec method. The RateSpec can then be used with many
other functions in the Financial Instruments Toolbox™

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
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NSForwardRates = NSModel.getForwardRates(PlottingDates);
SvenssonForwardRates = SvenssonModel.getForwardRates(PlottingDates);
VRPForwardRates = VRPModel.getForwardRates(PlottingDates);

figure
hold on
plot(TimeToMaturity,NSForwardRates,'r')
plot(TimeToMaturity,SvenssonForwardRates,'g')
plot(TimeToMaturity,VRPForwardRates,'b')
title('UK instantaneous nominal forward curve')
xlabel('Years ahead')
legend({'Nelson Siegel','Svensson','VRP'})
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Compare with this Link

This link provides a live look at the derived yield curve published by the UK

http://www.bankofengland.co.uk
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Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Bootstrapping a Swap Curve” on page 9-13
• “Dual Curve Bootstrapping” on page 9-17
• “Creating an IRDataCurve Object” on page 9-6
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-41
• “Analysis of Inflation Indexed Instruments”

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

External Websites
• Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
• Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk

Applications (30 min 00 sec)
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Converting an IRDataCurve or IRFunctionCurve Object

In this section...
“Introduction” on page 9-41
“Using the toRateSpec Method” on page 9-41
“Using Vector of Dates and Data Methods” on page 9-43

Introduction
The IRDataCurve and IRFunctionCurve objects for interest-rate curves support
conversion to:

• A RateSpec structure. The RateSpec generated from an IRDataCurve or
IRFunctionCurve object, using the toRateSpec method, is identical to the
RateSpec structure created with intenvset using Financial Instruments Toolbox
software.

• A vector of dates and data from an IRDataCurve object acceptable to prbyzero,
bkcall, bkput, tfutbyprice, and tfutbyyield or any function that requires a
term structure of interest rates.

Using the toRateSpec Method
To convert an IRDataCurve or IRFunctionCurve object to a RateSpec structure, you
must first create an interest-rate curve object. Then, use the toRateSpec method for an
IRDataCurve object or thetoRateSpec method for an IRFunctionCurve object.

Example

Create a data vector from the following data: https://www.ustreas.gov/offices/
domestic-finance/debt-management/
interest-rate/yield.shtml:
Data = [1.85 1.84 1.91 2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[30 90 180 360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],2);
scatter(Dates,Data)
datetick
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Create an IRDataCurve interest-rate curve object:

rr = IRDataCurve('Zero',today,Dates,Data);

Convert to a RateSpec:

toRateSpec(rr, today+30:30:today+365)

ans = 
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 733569
    ValuationDate: 733569
            Basis: 0
     EndMonthRule: 1

9 Interest-Rate Curve Objects

9-42



Using Vector of Dates and Data Methods
You can use the getZeroRates method for an IRDataCurve object with a Dates
property to create a vector of dates and data acceptable for prbyzero in Financial
Toolbox software and bkcall, bkput, tfutbyprice, and tfutbyyield in Financial
Instruments Toolbox software.

Example

This is an example of using the IRDataCurve method getZeroRates with prbyzero:
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(today,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);
irdc = IRDataCurve('Zero',today,Dates,Data,'InterpMethod','pchip');
Maturity = daysadd(today,8*360,1);
CouponRate = .055;
ZeroDates = daysadd(today,180:180:8*360,1);
ZeroRates = getZeroRates(irdc, ZeroDates);
BondPrice = prbyzero([Maturity CouponRate], today, ZeroRates, ZeroDates)

BondPrice =
  113.9250

See Also
IRBootstrapOptions | IRDataCurve | IRFitOptions | IRFunctionCurve

Related Examples
• “Creating an IRFunctionCurve Object” on page 9-22
• “Dual Curve Bootstrapping” on page 9-17
• “Analysis of Inflation Indexed Instruments”
• “Fitting Interest Rate Curve Functions” on page 9-33

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

 See Also
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Numerix Workflows

• “Working with Simple Numerix Trades” on page 10-2
• “Working with Advanced Numerix Trades” on page 10-5
• “Use Numerix to Price Cash Deposits” on page 10-10
• “Use Numerix for Interest-Rate Risk Assessment” on page 10-13
• “Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call

Objects” on page 10-16
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Working with Simple Numerix Trades
This example shows how to price a callable reverse floater using Numerix CROSSASSET.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Create a market.
quotes = java.util.HashMap;
quotes.put('IR.USD-LIBOR-3M.SWAP-1Y.MID', 0.0066056);
quotes.put('IR.USD-LIBOR-3M.SWAP-10Y.MID', 0.022465005);
quotes.put('IR.USD-LIBOR-3M.SWAP-20Y.MID', 0.027544995);
market = Market('EOD_14-NOV-2011', DateExtensions.date('14-Nov-2011'), quotes.entrySet);

Define a trade instance for a callable reverse floater based on instrument template
located in the Repository.
tradeDescriptor = 'TRADE.IR.CALLABLEREVERSEFLOATER';
tradeParameters = java.util.HashMap;
tradeParameters.put('Trade ID','1001');
tradeParameters.put('Quote Type', 'MID');
tradeParameters.put('Currency', 'USD');
tradeParameters.put('Notional', 1000000.0);
tradeParameters.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters.put('IR Index', 'LIBOR');
tradeParameters.put('IR Index Tenor', '3M');
tradeParameters.put('Structured Freq', '3M');
tradeParameters.put('Structured Side', 'Receive');
tradeParameters.put('Structured Coupon Floor', 0.0);
tradeParameters.put('Structured Coupon UpBd', 0.08);
tradeParameters.put('StructuredCoupon Multiplier', 1.4);
tradeParameters.put('Structured Coupon Cap', 0.05);
tradeParameters.put('Structured Basis', 'ACT/360');
tradeParameters.put('Funding Freq', '3M');
tradeParameters.put('Funding Side', 'Pay');
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tradeParameters.put('Funding Spread', 0.003);
tradeParameters.put('Funding Basis', 'ACT/360');
tradeParameters.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters.put('Option Side', 'Short');
tradeParameters.put('Option Type', 'Right to Terminate');
tradeParameters.put('Call Frequency', '3M');
tradeParameters.put('Model', 'IR.USD-LIBOR-3M.MID.DET');
tradeParameters.put('Method', 'BackwardAnalytic');

Create the trade instance.
trade = RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters)

Price the trade.
results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);

Parse the results for MATLAB and display.

r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])

r = 

    Category: {13x1 cell}
    Currency: {13x1 cell}
        Name: {13x1 cell}
        Data: {13x1 cell}

    'Reporting Currency'           'Price'       ''       'USD'        
    'Structured Cashflow Log'      'Cashflow'    ''        {41x20 cell}
    'Structured Leg PV Accrued'    'Price'       'USD'    [          0]
    'PV'                           'Price'       'USD'    [ 6.4133e+04]
    'Structured Leg PV Clean'      'Price'       'USD'    [ 4.2637e+05]
    'Option PV'                    'Price'       'USD'    [-1.3220e+05]
    'Funding Cashflow Log'         'Cashflow'    ''        {41x20 cell}
    'Structured Leg PV'            'Price'       'USD'    [ 4.2637e+05]
    'Funding Leg PV'               'Price'       'USD'    [-2.3004e+05]
    'Funding Leg PV Accrued'       'Price'       'USD'    [          0]
    'Funding Leg PV Clean'         'Price'       'USD'    [-2.3004e+05]
    'Yield Risk Report'            ''            ''        { 4x30 cell}
    'Messages'                     ''            ''        { 4x1  cell}

See Also
numerix | numerixCrossAsset | parseResults

Related Examples
• “Working with Advanced Numerix Trades” on page 10-5
• “Use Numerix to Price Cash Deposits” on page 10-10
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• “Use Numerix for Interest-Rate Risk Assessment” on page 10-13

External Websites
• https://www.numerix.com/CrossAsset
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Working with Advanced Numerix Trades
This example shows how to price multiple trades from MATLAB using Numerix
CROSSASSET.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Specify the hybrid model for multiple trades.
hySpec = HybridModelSpecification;
hySpec.addHW1F('IR-USD', 'USD', 'LIBOR', '3M', 'MeanReversion(0.5),DiagonalSwaption(ATM, 10Y)');
hySpec.addHW1F('IR-EUR', 'EUR', 'EURIBOR', '6M', 'MeanReversion(0.5),DiagonalSwaption(ATM, 10Y)');
hySpec.addFXBlack('FX-USDEUR', 'USD', 'EUR', 'LIBOR', '3M', 'EURIBOR', '6M', 'StrikeFXEuropean(ATM, 10Y)');
% 5 Specify the factor correlations.
hyCorrelations = HybridModelCorrelationMatrix(hySpec);
hyCorrelations.add('IR-USD', 'IR-EUR', 0.5);
hyCorrelations.add('IR-USD', 'FX-USDEUR', 0.25);
hyCorrelations.add('IR-EUR', 'FX-USDEUR', 0.25);

% Specify the model parameters.
hybridModelParameters = java.util.HashMap;
hybridModelParameters.put('Quote Type', 'MID');
hybridModelParameters.put('Payout Currency', 'USD');
hybridModelParameters.put('Specification', hySpec);
hybridModelParameters.put('Correlations', hyCorrelations);

Specify exposure calculation parameters.
observationDates = CustomObservationSchedule;
observationDates.add(DateExtensions.date(2011, 12, 1));
for y = 2012:2013
  for m = 1:12
    observationDates.add(DateExtensions.date(y, m, 1));
  end
end

exposureParameters = java.util.HashMap;
exposureParameters.put('Model ID', 'HYBRID');
exposureParameters.put('Observation Dates', observationDates);
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Define the first trade instance.
tradeParameters1 = java.util.HashMap;
tradeParameters1.put('Trade ID', 'RVFL1001');
tradeParameters1.put('Quote Type', 'MID');
tradeParameters1.put('Currency', 'USD');
tradeParameters1.put('Notional', 1000000.0);
tradeParameters1.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters1.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters1.put('IR Index', 'LIBOR');
tradeParameters1.put('IR Index Tenor', '3M');
tradeParameters1.put('Structured Freq', '3M');
tradeParameters1.put('Structured Side', 'Receive');
tradeParameters1.put('Structured Coupon Floor', 0.0);
tradeParameters1.put('Structured Coupon UpBd', 0.08);
tradeParameters1.put('StructuredCoupon Multiplier', 1.4);
tradeParameters1.put('Structured Coupon Cap', 0.05);
tradeParameters1.put('Structured Basis', 'ACT/360');
tradeParameters1.put('Funding Freq', '3M');
tradeParameters1.put('Funding Side', 'Pay');
tradeParameters1.put('Funding Spread', 0.003);
tradeParameters1.put('Funding Basis', 'ACT/360');
tradeParameters1.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters1.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters1.put('Option Side', 'Short');
tradeParameters1.put('Option Type', 'Right to Terminate');
tradeParameters1.put('Call Frequency', '3M');
tradeParameters1.put('Model', 'HYBRID');
tradeParameters1.put('Method', 'BackwardMC');
tradeInstance1 = RepositoryExtensions.createTradeInstance(n.Repository, 'TRADE.IR.CALLABLEREVERSEFLOATER', tradeParameters1);

Define the second trade instance.
tradeParameters2 = java.util.HashMap;
tradeParameters2.put('Trade ID', 'CASHDEP1001');
tradeParameters2.put('Quote Type', 'MID');
tradeParameters2.put('Currency', 'USD');
tradeParameters2.put('Coupon Rate', 0.05);
tradeParameters2.put('Yield', 0.044);
tradeParameters2.put('Notional', 100.0);
tradeParameters2.put('Effective Date', DateExtensions.date('1-Apr-2012'));
tradeParameters2.put('Maturity', DateExtensions.date('1-Apr-2013'));
tradeParameters2.put('IR Index', 'LIBOR');
tradeParameters2.put('IR Index Tenor', '3M');
tradeParameters2.put('Model', 'HYBRID');
tradeParameters2.put('Method', 'BACKWARDMC');
tradeInstance2 = RepositoryExtensions.createTradeInstance(n.Repository, 'IR.CASHDEPOSIT', tradeParameters2);

Create the third trade instance.
tradeParameters3 = java.util.HashMap;
tradeParameters3.put('Trade ID', 'FXFWD1001');
tradeParameters3.put('Quote Type', 'MID');
tradeParameters3.put('Base Currency', 'USD');
tradeParameters3.put('Term Currency', 'EUR');
tradeParameters3.put('Delivery Date', DateExtensions.date('1-Jun-2012'));
tradeParameters3.put('Contract FX Forward Rate', 80.5);
tradeParameters3.put('Base Notional', 10000000.0);
tradeParameters3.put('Base IR Index', 'LIBOR');
tradeParameters3.put('Term IR Index', 'EURIBOR');
tradeParameters3.put('Base IR Index Tenor', '3m');
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tradeParameters3.put('Term IR Index Tenor', '6m');
tradeParameters3.put('Calendar', 'NewYork Target');
tradeParameters3.put('Spot Lag', '2bd');
tradeParameters3.put('Model', 'HYBRID');
tradeParameters3.put('Method', 'BACKWARDMC');
tradeInstance3 = RepositoryExtensions.createTradeInstance(n.Repository, 'FX.FXFORWARD', tradeParameters3);

Set tradeInstances for all three trade instances.
tradeInstances = java.util.ArrayList;
tradeInstances.add(tradeInstance1);
tradeInstances.add(tradeInstance2);
tradeInstances.add(tradeInstance3);
n.Parameters.setInstances(tradeInstances);

Add a custom lookup so these trade instances reference the hybrid model.
n.Parameters.getLookups.add(0,ExactLookupRule('HYBRID','MODEL.HYBRID',hybridModelParameters.entrySet));

Add another custom lookup so that exposure report has parameters defined.
n.Parameters.getLookups.add(1,ExactLookupRule('RISK.REPORT.EXPOSURE','REPORT.EXPOSURE',exposureParameters.entrySet));

Perform the calculation.

results = n.Context.calculate(n.Parameters, Request.getExposure);

Parse the results for MATLAB and display.
r = n.parseResults(results)

disp([r.Trade(2) r.Market(2)])
disp([r.Results{2}.Name r.Results{2}.Category r.Results{2}.Currency r.Results{2}.Data])
disp([r.Results{2}.Name{1}])
disp([r.Results{2}.Data{1}])

r = 

      Trade: {3x1 cell}
     Market: {3x1 cell}
    Results: {3x1 cell}

 'CASHDEP1001'    'EOD'

    'Exposure'                     ''    ''    {21x501 cell}
    'Exposure.Discount Factors'    ''    ''    {21x501 cell}
    'Messages'                     ''    ''    {12x1   cell}

Exposure
  Columns 1 through 3

    'DATE'                            'VALUE 1'             'VALUE 2'         
    'Tue May 01 13:00:00 EDT 2012'    [104.198166609924]    [103.386222783828]
    'Fri Jun 01 13:00:00 EDT 2012'    [ 104.09953599675]    [102.117465067435]
    'Sun Jul 01 13:00:00 EDT 2012'    [105.524567506006]    [100.055731577867]
    'Wed Aug 01 13:00:00 EDT 2012'    [105.787455961524]    [100.318762976796]
    'Sat Sep 01 13:00:00 EDT 2012'    [104.417483614373]    [100.764337265155]
    'Mon Oct 01 13:00:00 EDT 2012'    [104.692275556824]    [100.980213613911]
    'Thu Nov 01 13:00:00 EDT 2012'    [104.443818312902]    [101.478508725115]
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    'Sat Dec 01 12:00:00 EST 2012'    [104.736646932343]    [101.679769557039]
    'Tue Jan 01 12:00:00 EST 2013'    [104.577562970494]    [102.423339265735]
    'Fri Feb 01 12:00:00 EST 2013'    [ 104.28994278039]    [103.117326879887]
    'Fri Mar 01 12:00:00 EST 2013'    [ 104.70469459715]    [104.232180198939]
    'Mon Apr 01 13:00:00 EDT 2013'    [ 105.07334321718]    [ 105.05089338769]
    'Wed May 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Sat Jun 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Mon Jul 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Thu Aug 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Sun Sep 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Tue Oct 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Fri Nov 01 13:00:00 EDT 2013'    [               0]    [               0]
    'Sun Dec 01 12:00:00 EST 2013'    [               0]    [               0]

.

.

.

  Columns 499 through 501

    'VALUE 498'           'VALUE 499'           'VALUE 500'       
    [ 105.36273206453]    [104.335982034187]    [104.141595030057]
    [105.904822463264]    [104.238089023172]    [104.276676080686]
    [103.893060436208]    [103.613968079212]    [106.188617261199]
    [103.183889382889]    [105.499763150412]    [105.440275818983]
    [103.310404527817]    [105.233622768447]    [105.267337892552]
    [103.274239052394]    [104.716952177783]    [ 104.33099834332]
    [103.583983117053]    [104.710250522521]    [105.501004542869]
    [103.379982561438]    [105.146939039653]    [104.681616459661]
    [103.821169954095]    [105.567274949306]    [104.835971977691]
    [104.016530403399]    [105.254054161819]    [104.842156238753]
    [104.481475787501]    [105.197179985119]    [104.962752610848]
    [105.061984636083]    [105.077227736476]    [105.077766765965]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]
    [               0]    [               0]    [               0]

Plot the results for the second trade instance, CASHDEP1001, with the corresponding
Exposure Discount Factors.
figure('Tag','NumerixAdvancedRiskExample');

for ii=1:3
   % Get dates
   dates = cell2mat(r.Results{ii}.Data{expIndex}(2:end,1));
   dates = dates(:,4:end);
   dates = floor(datenum(dates));
   % Get exposures
   mtm = cell2mat(r.Results{ii}.Data{expIndex}(2:end,2:end))';
   exposures = max(0,mtm);  % Exposure at contract level, no netting
   EE = mean(exposures);  % Expected Exposure
   PFE = prctile(exposures,95);  % Potential Future Exposure
   subplot(3,1,ii)
   plot(dates,EE,dates,PFE)
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   title(r.Trade{ii})
   datetick
end

See Also
numerix | numerixCrossAsset | parseResults

Related Examples
• “Working with Simple Numerix Trades” on page 10-2
• “Use Numerix to Price Cash Deposits” on page 10-10
• “Use Numerix for Interest-Rate Risk Assessment” on page 10-13

External Websites
• https://www.numerix.com/CrossAsset
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Use Numerix to Price Cash Deposits
This example shows how to use the Numerix CROSSASSET API to price a cash deposit
from MATLAB. The trade parameters are read from the Cashdeposit1.csv in the
Numerix Data Trades folder.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Create a market.
market = Market('EOD_16-APR-2012', DateExtensions.date('16-APR-2012'), []);

Read the Cashdeposit1.csv file from the Numerix Trades folder.
[~,~,tradeInfo] = xlsread([n.TradesPath '\Cashdeposit1.csv'])

tradeInfo = 

    'Template'          'String'      'TRADE.IR.CASHDEPOSIT'
    'Trade ID'          'ID'          'CASHDEP1001'         
    'Quote Type'        'String'      'MID'                 
    'Effective Date'    'Date'        '4/1/2012'            
    'Maturity'          'Date'        '4/1/2013'            
    'Notional'          'Double'      [                 100]
    'Currency'          'Currency'    'USD'                 
    'Coupon Rate'       'Double'      [              0.0500]
    'Yield'             'Double'      [              0.0440]
    'IR Index'          'String'      'Libor'               
    'IR Index Tenor'    'Tenor'       '3m'                  

Define a trade instance from the imported CASHDEP1001 instrument.
tradeDescriptor = tradeInfo{1,3};
tradeParameters = java.util.HashMap;
numTradeInfoFields = size(tradeInfo,1);
for i = 2:numTradeInfoFields
  switch tradeInfo{i,2}
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    case {'DATE','Date'}
      tradeParameters.put(tradeInfo{i,1},DateExtensions.date(datestr(tradeInfo{i,3},'dd-mmm-yyyy')));
    otherwise
      tradeParameters.put(tradeInfo{i,1},tradeInfo{i,3});
  end
end

Create the trade instance.
trade = RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters);

Price the trade.
results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);

Parse the results for MATLAB and display.

r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])

 r = 

    Category: {9x1 cell}
    Currency: {9x1 cell}
        Name: {9x1 cell}
        Data: {9x1 cell}

    'Modified Duration'     'Price'    ''       [   0.9349]
    'Accrued Interest'      'Price'    'USD'    [   0.2083]
    'Reporting Currency'    'Price'    ''       'USD'      
    'PV'                    'Price'    'USD'    [ 100.7607]
    'Instrument'            'Price'    ''       [1x85 char]
    'Clean Price'           'Price'    'USD'    [ 100.5524]
    'Convexity'             'Price'    ''       [   1.7481]
    'YTM'                   'Price'    ''                []
    'Messages'              ''         ''                []

See Also
numerix | numerixCrossAsset | parseResults

Related Examples
• “Working with Simple Numerix Trades” on page 10-2
• “Working with Advanced Numerix Trades” on page 10-5
• “Use Numerix for Interest-Rate Risk Assessment” on page 10-13
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External Websites
• https://www.numerix.com/CrossAsset
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Use Numerix for Interest-Rate Risk Assessment
This example shows how to use the Numerix CROSSASSET API for interest-rate curve
stripping for risk assessment.

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Specify the current market associated with the Numerix CROSSASSET environment.
markets = get(n.Parameters,'Markets');
currentMarket = markets.get(0);
outInstance = RefObject(currentMarket);

Define the interest-rate curve key IR.USD-LIBOR-3M.MID.
n.Context.tryResolveId('IR.USD-LIBOR-3M.MID',outInstance);
currentInstance = outInstance.argvalue;

Set the instance and market.
n.Parameters.setMarkets(java.util.Arrays.asList(currentMarket));
n.Parameters.setInstances(java.util.Arrays.asList(currentInstance));

Calculate the interest-rate curve stripping.
results = n.Context.calculate(n.Parameters,Request.getAll);

The calculation returns the results from stripping the interest-rate curve for IR.USD-
LIBOR-3M.MID. Parse the results for MATLAB and display.
% IR.USD-LIBOR-3M.MID.  
r = n.parseResults(results)

disp([r.Instance r.Market])
disp([r.Results{1}.Name r.Results{1}.Category r.Results{1}.Currency r.Results{1}.Data])
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disp([r.Results{1}.Name{1}])
disp([r.Results{1}.Data{1}])

r = 

    Instance: {'IR.USD-LIBOR-3M.MID'}
      Market: {'EOD'}
     Results: {[1x1 struct]}

 'IR.USD-LIBOR-3M.MID'    'EOD'

'Curve Info'    ''    ''    {30x3 cell}
'Messages'      ''    ''    { 7x1 cell}

Curve Info

  'KEY'                                  'DATE'                            'DISCOUNTFACTOR'
    'CASH RATE 16-APR-2012 17-APR-2012'    'Tue Apr 17 13:00:00 EDT 2012'    [        1.0000]
    'CASH RATE 16-APR-2012 18-APR-2012'    'Wed Apr 18 13:00:00 EDT 2012'    [        1.0000]
    'CASH RATE 16-APR-2012 23-APR-2012'    'Mon Apr 23 13:00:00 EDT 2012'    [        1.0000]
    'CASH RATE 16-APR-2012 30-APR-2012'    'Mon Apr 30 13:00:00 EDT 2012'    [        0.9999]
    'CASH RATE 16-APR-2012 16-MAY-2012'    'Wed May 16 13:00:00 EDT 2012'    [        0.9998]
    'CASH RATE 16-APR-2012 18-JUN-2012'    'Mon Jun 18 13:00:00 EDT 2012'    [        0.9994]
    'CASH RATE 16-APR-2012 16-JUL-2012'    'Mon Jul 16 13:00:00 EDT 2012'    [        0.9988]
    'CASH RATE 18-MAY-2012 12-AUG-2012'    'Sun Aug 12 13:00:00 EDT 2012'    [        0.9987]
    'CASH RATE 20-JUN-2012 20-SEP-2012'    'Thu Sep 20 13:00:00 EDT 2012'    [        0.9981]
    'CASH RATE 18-JUL-2012 18-OCT-2012'    'Thu Oct 18 13:00:00 EDT 2012'    [        0.9975]
    'CASH RATE 15-AUG-2012 15-NOV-2012'    'Thu Nov 15 12:00:00 EST 2012'    [        0.9973]
    'CASH RATE 19-SEP-2012 19-DEC-2012'    'Wed Dec 19 12:00:00 EST 2012'    [        0.9968]
    'CASH RATE 17-OCT-2012 17-JAN-2013'    'Thu Jan 17 12:00:00 EST 2013'    [        0.9962]
    'CASH RATE 19-DEC-2012 19-MAR-2013'    'Tue Mar 19 13:00:00 EDT 2013'    [        0.9955]
    'SWAP RATE 18-APR-2012 19-APR-2016'    'Tue Apr 19 13:00:00 EDT 2016'    [        0.9645]
    'SWAP RATE 18-APR-2012 18-APR-2017'    'Tue Apr 18 13:00:00 EDT 2017'    [        0.9445]
    'SWAP RATE 18-APR-2012 18-APR-2018'    'Wed Apr 18 13:00:00 EDT 2018'    [        0.9199]
    'SWAP RATE 18-APR-2012 18-APR-2019'    'Thu Apr 18 13:00:00 EDT 2019'    [        0.8925]
    'SWAP RATE 18-APR-2012 21-APR-2020'    'Tue Apr 21 13:00:00 EDT 2020'    [        0.8639]
    'SWAP RATE 18-APR-2012 19-APR-2021'    'Mon Apr 19 13:00:00 EDT 2021'    [        0.8356]
    'SWAP RATE 18-APR-2012 19-APR-2022'    'Tue Apr 19 13:00:00 EDT 2022'    [        0.8069]
    'SWAP RATE 18-APR-2012 18-APR-2023'    'Tue Apr 18 13:00:00 EDT 2023'    [        0.7784]
    'SWAP RATE 18-APR-2012 18-APR-2024'    'Thu Apr 18 13:00:00 EDT 2024'    [        0.7506]
    'SWAP RATE 18-APR-2012 19-APR-2027'    'Mon Apr 19 13:00:00 EDT 2027'    [        0.6733]
    'SWAP RATE 18-APR-2012 20-APR-2032'    'Tue Apr 20 13:00:00 EDT 2032'    [        0.5682]
    'SWAP RATE 18-APR-2012 20-APR-2037'    'Mon Apr 20 13:00:00 EDT 2037'    [        0.4828]
    'SWAP RATE 18-APR-2012 21-APR-2042'    'Mon Apr 21 13:00:00 EDT 2042'    [        0.4112]
    'SWAP RATE 18-APR-2012 18-APR-2052'    'Thu Apr 18 13:00:00 EDT 2052'    [        0.3087]
    'SWAP RATE 18-APR-2012 18-APR-2062'    'Tue Apr 18 13:00:00 EDT 2062'    [        0.2414]

See Also
numerix | numerixCrossAsset | parseResults

Related Examples
• “Working with Simple Numerix Trades” on page 10-2
• “Working with Advanced Numerix Trades” on page 10-5
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• “Use Numerix to Price Cash Deposits” on page 10-10

External Websites
• https://www.numerix.com/CrossAsset

 See Also
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Numerix CROSSASSET Interface Workflow Example
Using Matrix, Data, and Call Objects

This example shows how to use the Numerix CROSSASSET API to create and price a
vanilla European option.

Construct a numerixCrossAsset object.
c = numerixCrossAsset 

 c = 

numerixCrossAsset with properties:

Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]

Create and register data as a Matrix with the Numerix Cross Asset Integration Layer
Application using the applicationMatrix method.
rowData = [41992, 42020, 42449, 42905, 43115];
colData = [390, 395, 400, 405];
volData = [0.35778, 0.35132, 0.34394, 0.33582;...
           0.33405, 0.32819, 0.32669, 0.31904;...
           0.31576, 0.31235, 0.30371, 0.30261;...
           0.29391, 0.29366, 0.28962, 0.28932;...
           0.28787, NaN,     0.28347, NaN    ];
applicationMatrix(c,'BYSTRIKEVOLDATA',rowData,colData,volData);

Create and register the yield curve data with the Application object. Use a table for
optimal display purposes. Dates must be relative to '01/01/1900' and the Numerix Cross
Asset Integration Layer API supports date number representation only. MATLAB
datetime's get converted automatically, otherwise date numbers must be input and based
relative to '01/01/1900'.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                  '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'},'locale','en_US');

Define the corresponding discount factors.
discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                  0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                  0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                  0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                  0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                  0.213809;0.152345];
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Supported Numerix Cross Asset Integration Layer API names are DATE and
DISCOUNTFACTOR for the creation of the data.
curveData = table(dates,discountFactors,'VariableNames',{'DATE','DISCOUNTFACTOR'});
applicationData(c,'USD_3MLIBOR_CURVE',curveData);

Define the headers for registering the RATESPEC and DIVSPEC call objects.
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};

Data is required to create dividend curve. Create and register the DIVSPEC call object
using name-value pairs in this example.
applicationCall(c,headers,'ID','DIVSPEC','OBJECT','MARKET DATA','TYPE','DIVIDEND',...
                  'COMMENT','Comments here','SKIP',false,'NOWDATE',41688,...
                  'CURRENCY','USD','RATE/DIVIDEND',0,'BASIS','ACT/360');

Create the EQUITYVOLSPEC call object. BYSTRIKEVOLDATA denotes the volatility matrix
object created previously, using an array of names and an array of values in this example.
applicationCall(c,headers,{'ID','OBJECT','TYPE','COMMENT','SKIP','NOWDATE','CURRENCY','VOLATILITYBASIS',...
                           'DATA','INTERPMETHOD','INTERPVARIABLE','EXTRAPOLATION'},...
                          {'EQVOLSPEC','MARKET DATA','EQ VOL','Comments here',...
                           false,41688,'USD','ACT/360','BYSTRIKEVOLDATA',...
                           'LINEAR','VOL','FLAT EXTRAPOLATION'});

Create the RATESPEC call object. USD_3MLIBOR_CURVE denotes yield curve data object
created previously using name-value pairs.
applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
                  'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',...
                  'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Create the EuropeanOptionEQ instrument. Create the STOCKSPEC call object using the
applicationCall method.
applicationCall(c,headers,'ID','STOCKSPEC','OBJECT','INSTRUMENT','TYPE','EQ EUROPEAN',...
                  'COMMENT','Comments here','SKIP',false,'FLAVOR','PUT',...
                  'CURRENCY','USD','ENDDATE',43976,'SETTLEMENTDATE',43976,...
                  'STRIKE',112,'SIGMA1',0.2,'NOTIONAL',100);

Price the portfolio by creating and registering call object to run pricing analytics. Create
the OPTIONSPEC_CLOSEFORM call object headers for registering the
OPTIONSPEC_CLOSEFORM call object.
headers = {'ATM','DELTA','DELTA TRADER','FORWARD DELTA','FORWARD DELTA TRADER', ...
           'FUTURES DELTA','FUTURES DELTA TRADER','GAMMA','GAMMA TRADER', ...
           'ID','LOCAL ID','NOTIONAL','PRICE','PV','RHO','RHO TRADER', ...
           'SIGMA1','STRIKE','THETA','TIMER','TIMER CPU','UPDATED','VANNA', ...
           'VANNA TRADER','VEGA','VEGA TRADER','VOLGA','VOLGA TRADER'};

applicationCall(c,headers,'ID','OPTIONSPEC_CLOSEFORM','OBJECT','ANALYTIC',...
                  'TYPE','EUROPEAN OPTION','COMMENT','Comments here',...
                  'SKIP',false,'NOWDATE',41688,'OPTION','STOCKSPEC',...

 Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call Objects
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                  'DIVIDENDCURVE','DIVSPEC','DOMESTICYIELDCURVE','RATESPEC',...
                  'SPOTPRICE',112,'SPOTDATE',41688,'MODEL','BLACK');

Create an output structure in MATLAB from the Application object using the getdata
method.
appData = getdata(c);

Display the results.
[appData.OPTIONSPEC_CLOSEFORM.OUTPUT_HEADERS 
appData.OPTIONSPEC_CLOSEFORM.OUTPUT_VALUES]

ans =
 
  28×2 cell array
 
    'PRICE'                   [             1467.24]
    'PV'                      [             1467.24]
    'DELTA'                   [              -30.54]
    'FORWARD DELTA'           [              -30.54]
    'FUTURES DELTA'           [              -26.83]
    'GAMMA'                   [                0.62]
    'VEGA'                    [             9827.91]
    'VOLGA'                   [              205.45]
    'VANNA'                   [               -1.44]
    'DELTA TRADER'            [              -34.20]
    'FORWARD DELTA TRADER'    [              -34.20]
    'FUTURES DELTA TRADER'    [              -30.05]
    'GAMMA TRADER'            [                0.78]
    'VEGA TRADER'             [               98.28]
    'VOLGA TRADER'            [                0.02]
    'VANNA TRADER'            [               -0.02]
    'SIGMA1'                  [                0.20]
    'STRIKE'                  [              112.00]
    'NOTIONAL'                [              100.00]
    'RHO'                     [           -30638.08]
    'THETA'                   [               -0.15]
    'RHO TRADER'              [               -3.06]
    'ATM'                     [              127.48]
    'UPDATED'                 '12 @ 01:37:24 PM'    
    'ID'                      'OPTIONSPEC_CLOSEFORM'
    'TIMER'                   [                0.17]
    'TIMER CPU'               [                0.06]
    'LOCAL ID'                'OPTIONSPEC_CLOSEFORM' 

Close the numerixCrossAsset object.
cloce(c)

See Also
applicationCall | applicationData | applicationMatrix | close | getdata |
numerixCrossAsset
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External Websites
• https://www.numerix.com/CrossAsset

 See Also
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@IRBootstrapOptions
Create specific options for bootstrapping an interest-rate curve object

In this section...
“Hierarchy” on page A-2
“Constructor” on page A-2
“Public Read-Only Properties” on page A-2
“Methods” on page A-3

Hierarchy
Superclasses: None

Subclasses: None

Constructor
IRBootstrapOptions

Public Read-Only Properties
Name Description
ConvexityAdjustment Controls the convexity adjustment to interest rate

futures. This can be specified as a function handle
that takes time to maturity as an input and returns a
value which is ConvexityAdjustment.
Alternatively, you can define
ConvexityAdjustment as an N-by-1 vector of
values, where N is the number of interest rate
futures. In either case, the ConvexityAdjustment
is subtracted from the futures rate.

For more information on defining a function handle,
see the MATLAB Programming Fundamentals
documentation.
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Methods
There are no methods.

See Also
IRDataCurve | bootstrap

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Creating an IRDataCurve Object” on page 9-6
• “IRDataCurve Constructor with Dates and Data” on page 9-6
• “IRDataCurve Bootstrapping Based on Market Instruments” on page 9-7
• “Bootstrapping a Swap Curve” on page 9-13
• “Dual Curve Bootstrapping” on page 9-17

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

 See Also
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@IRCurve
Base abstract class for interest-rate curve objects

In this section...
“Hierarchy” on page A-4
“Description” on page A-4
“Constructor” on page A-4
“Public Read-Only Properties” on page A-4
“Methods” on page A-6

Hierarchy
Superclasses: None

Subclasses: @IRDataCurve on page A-7, @IRFunctionCurve on page A-13

Description
IRCurve is an abstract class; you cannot create instances of it directly. You can create
IRDataCurve and IRFunctionCurve objects that are derived from this class.

Constructor
@IRCurve is an abstract class. To construct an IRCurve object, use one of the subclass
constructors, IRDataCurve or IRFunctionCurve.

Public Read-Only Properties
Name Description
Type Type of interest-rate curve: zero, forward, or discount.
Settle Scalar for the Settle date of the curve.

A @IRCurve
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Name Description
Compounding Scalar that sets the compounding frequency per year for the

IRCurve object:

• -1 =  Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Basis Day-count basis of the interest-rate curve. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/actual (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

 @IRCurve
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Methods
Classes that inherit from the IRCurve abstract class must implement the following
methods.

Method Description
getForwardRates Returns forward rates for input dates.
getZeroRates Returns zero rates for input dates.
getDiscountFactors Returns discount factors for input dates.
getParYields Returns par yields for input dates.
toRateSpec Converts to be a RateSpec object. This is identical to

the RateSpec structure produced by the Financial
Instruments Toolbox function intenvset.

See Also
IRDataCurve | IRFunctionCurve

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Creating an IRDataCurve Object” on page 9-6
• “Creating an IRFunctionCurve Object” on page 9-22

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

A See Also
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@IRDataCurve
Represent interest-rate curve object based on vector of dates and data

In this section...
“Hierarchy” on page A-7
“Description” on page A-7
“Constructor” on page A-7
“Public Read-Only Properties” on page A-8
“Methods” on page A-9

Hierarchy
Superclasses: @IRCurve on page A-4

Subclasses: None

Description
IRDataCurve is a representation of an interest-rate curve object with dates and data.
You can construct this object directly by specifying dates and corresponding interest rates
or discount factors; alternatively, you can bootstrap the object from market data. After an
interest-rate curve object is constructed, you can:

• Calculate forward and zero rates and determine par yields.
• Extract the discount factors.
• Convert to a RateSpec structure that is identical to the RateSpec structure produced

by the Financial Instruments Toolbox function intenvset.

Constructor
IRDataCurve

 @IRDataCurve
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Public Read-Only Properties
Name Description
Type Type of interest-rate curve: zero, forward, or discount.
Settle Scalar for the Settle date of the curve.
Compounding Scalar that sets the compounding frequency per year for the

IRCurve object:

• -1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

A @IRDataCurve
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Name Description
Basis Day-count basis of the financial curve. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/actual (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Dates Dates corresponding to rate data.
Data Interest-rate data or discount factors for the curve object.
InterpMethod Values are:

• 'linear' — Linear interpolation (default).
• 'constant' — Piecewise constant interpolation.
• 'pchip' — Piecewise cubic Hermite interpolation.
• 'spline' — Cubic spline interpolation.

Methods
The following table contains links to methods with supporting reference pages, including
examples.

 @IRDataCurve
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Method Description
getForwardRates Returns forward rates for input dates.
getZeroRates Returns zero rates for input dates.
getDiscountFactors Returns discount factors for input dates.
getParYields Returns par yields for input dates.
toRateSpec Converts to be a RateSpec object. This structure is

identical to the RateSpec produced by the Financial
Instruments Toolbox function intenvset.

bootstrap Bootstraps an interest rate curve from market data.

See Also
IRBootstrapOptions | IRFunctionCurve | bootstrap | getDiscountFactors |
getForwardRates | getParYields | getZeroRates | toRateSpec

Related Examples
• “Creating Interest-Rate Curve Objects” on page 9-4
• “Creating an IRDataCurve Object” on page 9-6
• “IRDataCurve Constructor with Dates and Data” on page 9-6
• “IRDataCurve Bootstrapping Based on Market Instruments” on page 9-7
• “Bootstrapping a Swap Curve” on page 9-13
• “Dual Curve Bootstrapping” on page 9-17
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-41
• “Using the toRateSpec Method” on page 9-41
• “Using Vector of Dates and Data Methods” on page 9-43
• “Analysis of Inflation Indexed Instruments”

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

A See Also
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@IRFitOptions
Object to specify fitting options for an IRFunctionCurve interest-rate curve object

In this section...
“Hierarchy” on page A-11
“Description” on page A-11
“Constructor” on page A-11
“Public Read-Only Properties” on page A-11
“Methods” on page A-12

Hierarchy
Superclasses: None

Subclasses: None

Description
The IRFitOptions object allows you to specify options relating to the fitting process for
an IRFunctionCurve object. Input arguments are specified in parameter/value pairs.
The IRFitOptions structure provides the capability to choose which quantity to be
minimized and other optimization parameters.

Constructor
IRFitOptions

Public Read-Only Properties
Name Description
FitType Price, Yield, or DurationWeightedPrice determines

which is minimized in the curve fitting process.
DurationWeightedPrice is the default.

InitialGuess Initial guess for the parameters of the curve function.

 @IRFitOptions
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Name Description
UpperBound Upper bound for the parameters of the curve function.
LowerBound Lower bound for the parameters of the curve function.
OptOptions Optimization structure based on the output from the

Optimization Toolbox function optimset or
optimoptions. This optimization structure is evaluated by
lsqnonlin.

A Inequality constraint for parameters, ignored if
OptimFunction is set to lsqnonlin.

b Inequality constraint for parameters, ignored if
OptimFunction is set to lsqnonlin.

OptimFunction Optimization function used to fit function, either
lsqnonlin or fmincon.

Methods
There are no methods.

See Also
IRFunctionCurve

Related Examples
• “Fitting Interest Rate Curve Functions” on page 9-33
• “Using fitFunction to Create Custom Fitting Function” on page 9-29

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2

A See Also

A-12



@IRFunctionCurve
Represent an interest-rate curve object using a function

In this section...
“Hierarchy” on page A-13
“Description” on page A-13
“Constructor” on page A-13
“Public Read-Only Properties” on page A-14
“Methods” on page A-15

Hierarchy
Superclasses: @IRCurve on page A-4

Subclasses: None

Description
IRFunctionCurve is a representation of an interest-rate curve object. You can construct
this object directly by specifying a function handle or a function can be fit to market data
using methods of the object. After an interest-rate curve object is constructed; you can:

• Calculate forward and zero rates and determine par yields.
• Extract the discount factors.
• Convert to a RateSpec structure; this is identical to the RateSpec structure

produced by the Financial Instruments Toolbox function intenvset.

Constructor
IRFunctionCurve
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Public Read-Only Properties
Name Description
Type Type of interest-rate curve: zero, forward, or discount.
Settle Scalar for the Settle date of the curve.
Compounding Scalar that sets the compounding frequency per year for the

IRCurve object:

• -1 =  Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

A @IRFunctionCurve
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Name Description
Basis Day-count basis of the interest-rate curve. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/actual (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
FunctionHandle Function handle that defines the interest-rate curve. For more

information on defining a function handle, see the MATLAB
Programming Fundamentals documentation.

Parameters Fitted parameters for function.

Methods
The following table contains links to methods with supporting reference pages, including
examples.

Method Description
getForwardRates Returns forward rates for input dates.
getZeroRates Returns zero rates for input dates.
getDiscountFactors Returns discount factors for input dates.

 @IRFunctionCurve
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Method Description
getParYields Returns par yields for input dates.
toRateSpec Converts to be a RateSpec object. This is

identical to the RateSpec structure produced by
the Financial Instruments Toolbox function
intenvset.

fitSvensson Fits a Svensson function to market data.
fitNelsonSiegel Fits a Nelson-Siegel function to market data.
fitSmoothingSpline Fits a smoothing spline function to market data.
fitFunction Fits a custom function to market data.

See Also
IRDataCurve | IRFitOptions | fitFunction | fitNelsonSiegel |
fitSmoothingSpline | fitSvensson | getDiscountFactors | getForwardRates |
getParYields | getZeroRates | toRateSpec

Related Examples
• “Creating an IRFunctionCurve Object” on page 9-22
• “Fitting Interest Rate Curve Functions” on page 9-33
• “Fitting IRFunctionCurve Object Using a Function Handle” on page 9-22
• “Fitting IRFunctionCurve Object Using Nelson-Siegel Method” on page 9-22
• “Fitting IRFunctionCurve Object Using Svensson Method” on page 9-24
• “Fitting IRFunctionCurve Object Using Smoothing Spline Method” on page 9-26
• “Using fitFunction to Create Custom Fitting Function” on page 9-29
• “Converting an IRDataCurve or IRFunctionCurve Object” on page 9-41
• “Analysis of Inflation Indexed Instruments”

More About
• “Interest-Rate Curve Objects and Workflow” on page 9-2
• “Creating Interest-Rate Curve Objects” on page 9-4

A See Also
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External Websites
• Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
• Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk

Applications (30 min 00 sec)

 See Also
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asianbycrr
Price Asian option from Cox-Ross-Rubinstein binomial tree

Syntax
Price = asianbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbycrr( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates) prices
Asian options using a Cox-Ross-Rubinstein binomial tree.

Price = asianbycrr( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) adds
optional arguments for AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price a Floating-Strike Asian Option Using a CRR Binomial Tree

This example shows how to price a floating-strike Asian option using a CRR binomial tree
using the file deriv.mat, which provides CRRTree. The CRRTree structure contains the
stock specification and time information needed to price the option.

load deriv.mat;

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Price = asianbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 1.2177
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Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values.

To compute the value of a floating-strike Asian option, Strike must be specified as NaN.
Floating-strike Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every Asian option is set to the ValuationDate of the stock
tree. The Asian argument, Settle, is ignored.

Data Types: double | char

 asianbycrr
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ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as arithmetic for arithmetic average, or geometric for
geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
scalar

Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.
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Data Types: double

AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: char | double

Output Arguments
Price — Expected prices for Asian options at time 0
vector

Expected prices for Asian options at time 0, returned as a NINST-by-1 vector. Pricing of
Asian options is done using Hull-White (1993). Therefore, for these options there are no
unique prices on the tree nodes except for the root node.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-

Dependent Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
crrtree | instasian

Topics
“Pricing Asian Options”
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced before R2006a

 asianbycrr
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asianbyeqp
Price Asian option from Equal Probabilities binomial tree

Syntax
Price = asianbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbyeqp( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates) prices
Asian options using an Equal Probabilities binomial tree.

Price = asianbyeqp( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) adds
optional arguments for AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price a Floating-Strike Asian Option Using an EQP Equity Tree

This example shows how to price a floating-strike Asian option using an EQP equity tree
by loading the file deriv.mat, which provides EQPTree. The EQPTree structure contains
the stock specification and time information needed to price the option.

load deriv.mat;

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Price = asianbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 1.2724
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Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values.

To compute the value of a floating-strike Asian option, Strike must be specified as NaN.
Floating-strike Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every Asian option is set to the ValuationDate of the stock
tree. The Asian argument, Settle, is ignored.

Data Types: double | char

 asianbyeqp
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ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as arithmetic for arithmetic average, or geometric for
geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
scalar

Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.
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Data Types: double

AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: char | double

Output Arguments
Price — Expected prices for Asian options at time 0
vector

Expected prices for Asian options at time 0, returned as a NINST-by-1 vector. Pricing of
Asian options is done using Hull-White (1993). Therefore, for these options there are no
unique prices on the tree nodes except for the root node.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-

Dependent Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
eqptree | instasian

Topics
“Pricing Asian Options”
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced before R2006a
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asianbyitt
Price Asian options using implied trinomial tree (ITT)

Syntax
Price = asianbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbyitt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates) prices
Asian options using an implied trinomial tree (ITT).

Price = asianbyitt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) adds
optional arguments for AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price a Floating-Strike Asian Option Using an ITT Equity Tree

This example shows how to price a floating-strike Asian option using an ITT equity tree by
loading the file deriv.mat, which provides ITTTree. The ITTTree structure contains the
stock specification and time information needed to price the option.

load deriv.mat;

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2007';

Price = asianbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 1.0778
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Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a cell array
of character vectors.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values.

To compute the value of a floating-strike Asian option, Strike must be specified as NaN.
Floating-strike Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every Asian option is set to the ValuationDate of the stock
tree. The Asian argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector
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Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as arithmetic for arithmetic average, or geometric for
geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
scalar

Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.

Data Types: double
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AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: char | double

Output Arguments
Price — Expected prices for Asian options at time 0
vector

Expected prices for Asian options at time 0, returned as a NINST-by-1 vector. Pricing of
Asian options is done using Hull-White (1993). Therefore, for these options there are no
unique prices on the tree nodes except for the root node.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-

Dependent Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
instasian | itttree

Topics
“Pricing Asian Options”
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2007a
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asianbyls
Price European or American Asian options using Monte Carlo simulations

Syntax
Price = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = asianbyls( ___ ,Name,Value)

[Price,Paths,Times,Z] = asianbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates)
[Price,Paths,Times,Z] = asianbyls( ___ ,Name,Value)

Description
Price = asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns fixed- and floating-strike Asian option prices using the
Longstaff-Schwartz model. asianbyls computes prices of European and American Asian
options.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

To compute the value of a floating-strike Asian option, Strike should be specified as NaN.
Fixed-strike Asian options are also known as average price options and floating-strike
Asian options are also known as average strike options.

Price = asianbyls( ___ ,Name,Value) adds optional name-value pair arguments.

[Price,Paths,Times,Z] = asianbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates) returns fixed- and floating-strike Asian option Price, Paths,
Times, and Z values using the Longstaff-Schwartz model. asianbyls computes prices of
European and American Asian options.

[Price,Paths,Times,Z] = asianbyls( ___ ,Name,Value) adds optional name-
value pair arguments.
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Examples

Compute the Price of an Asian Option Using the Longstaff-Schwartz Model

Define the RateSpec.

Rates = 0.05;
StartDate = 'Jan-1-2013';
EndDate = 'Jan-1-2014';
RateSpec = intenvset('ValuationDate', StartDate, 'StartDates', StartDate, ...
'EndDates', EndDate,'Compounding', -1, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.2;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 100
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the Asian 'call' option.
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Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 110;
OptSpec = 'call';

Compute the price for the European arithmetic average price for the Asian option using
the Longstaff-Schwartz model.

NumTrials = 10000;
NumPeriods = 100;
AvgType = 'arithmetic';
Antithetic= true;
Price= asianbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, ...
'NumTrials', NumTrials, 'NumPeriods', NumPeriods,'Antithetic', Antithetic, 'AvgType', AvgType)

Price = 1.9876

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with a value of 'call' or 'put'
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Definition of option, specified as 'call' or 'put' using a character vector
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified with a nonnegative scalar integer. To compute the
value of a floating-strike Asian option, Strike should be specified as NaN. Floating-strike
Asian options are also known as average strike options.
Data Types: double

Settle — Settlement or trade date
date character vector | nonnegative scalar integer

Settlement or trade date for the Asian option, specified as a nonnegative scalar integer or
date character vector. By default, asianbyls calculates the price of Asian options based
on averages that start on the settlement date.
Data Types: double | char

ExerciseDates — Option exercise dates
date character vector | nonnegative scalar integer

Option exercise dates, specified as a nonnegative scalar integer or date character vector:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or cell array of date character vectors, the option can be exercised between
Settle and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: Price =
asianbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'Nu
mTrials',NumTrials,'NumPeriods',NumPeriods,'Antithetic',Antithetic,'
AvgType','arithmetic')

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as the comma-separated pair consisting of 'AvgType' and
arithmetic for arithmetic average, or geometric for geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
numeric

Average price of underlying asset at Settle, specified as the comma-separated pair
consisting of 'AvgPrice' and a scalar numeric value. The AvgPrice is assumed to be
calculated in the time window starting at AvgDate and ending on Settle. In other
words, the average is backward looking.

Note Use this argument when AvgDate < Settle.
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Data Types: double

AvgDate — Date averaging period begins
serial date number

Date averaging period begins, specified as the comma-separated pair consisting of
'AvgDate' and a scalar serial date number.
Data Types: double

NumTrials — Simulation trials
1000 (default) | numeric

Simulation trials, specified as the comma-separated pair consisting of 'NumTrials' and
a scalar number of independent sample paths.
Data Types: double

NumPeriods — Simulation periods per trial
100 (default) | numeric

Simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' scalar numeric value. NumPeriods is considered only when pricing
European Asian options. For American Asian options, NumPeriods is equal to the number
of exercise days during the life of the option.
Data Types: double

Z — Dependent random variates
nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener
processes) that drive the simulation, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-2-by-NumTrials 3-D time series array.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Logical flag to indicate antithetic sampling, specified as the comma-separated pair
consisting of 'Antithetic' and a value of true or false.
Data Types: logical
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Output Arguments
Price — Expected price of Asian option
scalar

Expected price of the Asian option, returned as a 1-by-1 scalar.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1)-by-1-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with the simulated paths, returned as a (NumPeriods + 1)-
by-1 column vector of observation times associated with the simulated paths. Each
element of Times is associated with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, returned, if Z is specified as an optional input argument, the
same value is returned. Otherwise, Z contains the random variates generated internally.

See Also
asianbycrr | asianbykv | asianbylevy | asiansensbyls | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 38 sec)
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Introduced in R2013b
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asianbystt
Price Asian options using standard trinomial tree

Syntax
Price = asianbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = asianbystt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate)

Description
Price = asianbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates) prices
Asian options using a standard trinomial (STT) tree.

Price = asianbystt( ___ ,AmericanOpt,AvgType,AvgPrice,AvgDate) prices
Asian options using a standard trinomial (STT) tree with optional arguments for
AmericanOpt, AvgType, AvgPrice, and AvgDate.

Examples

Price an Asian Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8694
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            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the Asian option and compute the price.

Settle = '01-Jan-2009';
ExerciseDates = [datenum('1/1/12');datenum('1/1/13')];
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OptSpec = 'call';
Strike = 100;

Price = asianbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 2×1

    1.6905
    2.6203

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values. To compute the value of a floating-strike Asian option, Strike
should be specified as NaN. Floating-strike Asian options are also known as average strike
options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the Asian option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.
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Note The Settle date for every Asian option is set to the ValuationDate of the stock
tree. The Asian argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of
serial date numbers or cell array of character vectors, the option can be exercised
between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as arithmetic for arithmetic average, or geometric for
geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
scalar
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Average price of underlying asset at Settle, specified as a scalar.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
scalar

Date averaging period begins, specified as a scalar.
Data Types: double

Output Arguments
Price — Expected prices for Asian options at time 0
matrix

Expected prices for Asian options at time 0, returned as a NINST-by-1 matrix. Pricing of
Asian options is done using Hull-White (1993). Consequently, for these options there are
no unique prices on the tree nodes with the exception of the root node.

References
[1] Hull, J., and A. White. “Efficient Procedures for Valuing European and American Path-

Dependent Options.” Journal of Derivatives. Vol. 1, pp. 21–31.

See Also
instasian | sttprice | sttsens | stttimespec | stttree

Topics
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)
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Introduced in R2015b
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asiansensbyls
Calculate price and sensitivities for European or American Asian options using Monte
Carlo simulations

Syntax
PriceSens = asiansensbyls(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates)
PriceSens = asiansensbyls( ___ ,Name,Value)

[PriceSens,Path,Times,Z] = asiansensbyls(RateSpec,StockSpec,OptSpec,
StrikeSettle,ExerciseDates)
[PriceSens,Path,Times,Z] = asiansensbyls( ___ ,Name,Value)

Description
PriceSens = asiansensbyls(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates) returns Asian option prices or sensitivities for fixed- and floating-strike
Asian options using the Longstaff-Schwartz model. asiansensbyls supports European
and American Asian options.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

To compute the value of a floating-strike Asian option, Strike should be specified as NaN.
Fixed-strike Asian options are also known as average price options and floating-strike
Asian options are also known as average strike options.

PriceSens = asiansensbyls( ___ ,Name,Value) returns Asian option prices or
sensitivities for fixed- and floating-strike Asian options using optional name-value pair
arguments and the Longstaff-Schwartz model.

[PriceSens,Path,Times,Z] = asiansensbyls(RateSpec,StockSpec,OptSpec,
StrikeSettle,ExerciseDates) returns Asian option prices or sensitivities
(PriceSens, Path, Times, and Z) for fixed- and floating-strike Asian options using the
Longstaff-Schwartz model.
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[PriceSens,Path,Times,Z] = asiansensbyls( ___ ,Name,Value) returns Asian
option prices or sensitivities (PriceSens, Path, Times, and Z) for fixed- and floating-
strike Asian options using optional name-value pair arguments and the Longstaff-
Schwartz model.

Examples

Compute the Price and Sensitivities of an Asian Option Using the Longstaff-
Schwartz Model

Define the RateSpec.

Rates = 0.05;
StartDate = 'Jan-1-2013';
EndDate = 'Jan-1-2014';
RateSpec = intenvset('ValuationDate', StartDate, 'StartDates', StartDate, ...
'EndDates', EndDate,'Compounding', -1, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.2;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 100
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       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the Asian 'call' option.

Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 110;
OptSpec = 'call';

Compute the price for the European arithmetic average price and sensitivities for the
Asian option using the Longstaff-Schwartz model.

NumTrials = 10000;
NumPeriods = 100;
AvgType = 'arithmetic';
Antithetic= true;
OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, ...
'NumTrials', NumTrials, 'NumPeriods', NumPeriods,'Antithetic', Antithetic, 'AvgType', ...
AvgType,'OutSpec',OutSpec)

PriceSens = 1.9876

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.
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stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified with a nonnegative scalar integer. To compute the
value of a floating-strike Asian option, Strike should be specified as NaN. Floating-strike
Asian options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
nonnegative scalar integer | date character vector

Settlement date or trade date for the Asian option, specified as a nonnegative scalar
integer or date character vector.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or cell array of character vectors, the option can be exercised between
Settle and the single listed ExerciseDates.

Data Types: double | char
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
asiansensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates
,'NumTrials',NumTrials,'NumPeriods',
NumPeriods,'Antithetic',Antithetic,'AvgType',AvgType,'OutSpec',
{'All'})

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

AvgType — Average types
arithmetic (default) | character vector with values of arithmetic or geometric

Average types, specified as the comma-separated pair consisting of 'AvgType' and
arithmetic for arithmetic average, or geometric for geometric average.
Data Types: char

AvgPrice — Average price of underlying asset at Settle
numeric
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Average price of underlying asset at Settle, specified as the comma-separated pair
consisting of 'AvgPrice' and a scalar numeric value.

Note Use this argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number

Date averaging period begins, specified as the comma-separated pair consisting of
'AvgDate' and a scalar serial date number.
Data Types: double

NumTrials — Simulation trials
1000 (default) | numeric

Simulation trials, specified as the comma-separated pair consisting of 'NumTrials' and
a scalar number of independent sample paths.
Data Types: double

NumPeriods — Simulation periods per trial
100 (default) | numeric

Simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar numeric value. NumPeriods is considered only when pricing
European Asian options. For American Asian options, NumPeriod is equal to the number
of exercise days during the life of the option.
Data Types: double

Z — Dependent random variates
nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener
processes) that drive the simulation, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-2-by-NumTrials 3-D time series array.
Data Types: single | double
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Antithetic — Indicates antithetic sampling
false (default) | logical flag with value of true or false

Indicates antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities of Asian option
scalar

Expected price or sensitivities (defined by OutSpec) of the Asian option, returned as a 1-
by-1 array.

Path — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1)-by-2-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.
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Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NumPeriods + 1)-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, returned, if Z is specified as an optional input argument, the
same value is returned. Otherwise, Z contains the random variates generated internally.

See Also
asianbycrr | asianbykv | asianbylevy | asianbyls | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asianbykv
Prices European geometric Asian options using Kemna-Vorst model

Syntax
Price = asianbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)

Description
Price = asianbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns prices of European geometric Asian options using the Kemna-
Vorst model.

Examples

Compute the Price of an Asian Option Using the Kemna-Vorst Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.035;
Basis = 1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates,'Rates', Rates,  'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
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       StartDates: 735235
    ValuationDate: 735235
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.15;
DivType = 'continuous';
DivAmounts = 0.03;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 100
       DividendType: {'continuous'}
    DividendAmounts: 0.0300
    ExDividendDates: []

Define the Asian 'call' and 'put' options.

Strike = 102;
OptSpec = {'put'; 'call'};
Settle = 'Jan-1-2013';
Maturity = 'Apr-1-2013';

Compute the European geometric Average Price for the Asian option using the Kemna-
Vorst model.

Price = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

    2.8881
    0.9210
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Input Arguments
RateSpec — Interest-rate term structure
structure

The annualized continuously compounded interest-rate term structure specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of
character vectors.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers using a NINST-by-1 vector.
Data Types: single | double

Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates or trade dates for the Asian option, specified as a character vector or as
serial date numbers using a NINST-by-1 vector or cell array of character vector dates.
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Data Types: double | char | cell

ExerciseDates — European option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

European option exercise dates, specified as serial date numbers or date character
vectors using a NINST-by-1 vector or cell array of character vector dates. For a European
option, there is only one ExerciseDates on the option expiry date.
Data Types: double | char | cell

Output Arguments
Price — Expected prices of an Asian option
vector

Expected prices of the Asian option, returned as an NINST-by-1 vector.

See Also
asianbycrr | asianbylevy | asianbyls | asiansensbykv | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asiansensbykv
Calculate prices or sensitivities of European geometric Asian options using Kemna-Vorst
model

Syntax
PriceSens = asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = asiansensbykv( ___ ,Name,Value)

Description
PriceSens = asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns prices or sensitivities of European geometric Asian options
using Kemna-Vorst model.

PriceSens = asiansensbykv( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price and Sensitivities of an Asian Option Using the Kemna-Vorst
Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.035;
Basis = 1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates,'Rates', Rates,  'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.15;
DivType = 'continuous';
DivAmounts = 0.03;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 100
       DividendType: {'continuous'}
    DividendAmounts: 0.0300
    ExDividendDates: []

Define the Asian 'call' and 'put' options.

Strike = 102;
OptSpec = {'put'; 'call'};
Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';

Compute the European geometric Average Price and sensitivities for the Asian option
using the Kemna-Vorst model.

OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbykv(RateSpec, StockSpec, OptSpec, Strike,...
Settle, ExerciseDates,'OutSpec', OutSpec)

PriceSens = 2×1
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    4.3871
    2.5163

Input Arguments
RateSpec — Interest-rate term structure
structure

The annualized continuously compounded interest-rate term structure specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of
character vectors.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers using a NINST- by-1
vector.
Data Types: single | double
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Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates or trade dates for the Asian option, specified as serial date numbers or
date character vectors using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

European option exercise dates, specified as serial date numbers or date character
vectors using a NINST-by-1 vector or cell array of character vector dates. For a European
option, there is only one ExerciseDates on the option expiry date.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
asiansensbykv(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates
,'OutSpec',{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values: 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta' and 'All'. | cell array of character vectors with
values: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta' and 'All'.

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as:
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Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities of the Asian option
vector

Expected prices or sensitivities (defined by OutSpec) of the Asian option, returned as an
1-by-1 vector. If the OutSpec is not specified only price is returned.

See Also
asianbycrr | asianbykv | asianbylevy | asianbyls | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asianbylevy
Price of European arithmetic Asian options using Levy model

Syntax
Price = asianbylevy(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)

Description
Price = asianbylevy(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns European arithmetic average pricing for Asian options using
the Levy model.

Examples

Compute the Price of an Asian Option Using the Levy Model

Define the RateSpec.

Rates = 0.07;
StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, 'EndDates', ...
EndDates, 'Rates', Rates, 'Compounding', -1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9324
            Rates: 0.0700
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
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    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 6.8;
Sigma = 0.14;
DivType = 'continuous';
DivAmounts = 0.09;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 6.8000
       DividendType: {'continuous'}
    DividendAmounts: 0.0900
    ExDividendDates: []

Define two options for 'call' and 'put'.

Settle = 'Jan-1-2013';
Maturity = 'July-1-2013';
Strike = 6.9;
OptSpec = {'call'; 'put'};

Compute the European arithmetic average price for the Asian option using the Levy
model.

Price= asianbylevy(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

    0.0944
    0.2237
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers as a NINST-by-1 vector.
Data Types: single | double

Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates or trade dates for the Asian option, specified as serial date numbers or
date character vectors using a NINST-by-1 vector or cell array of character vector dates.
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Data Types: double | char | cell

ExerciseDates — Option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Option exercise dates, specified as serial date numbers or date character vectors using a
NINST-by-1 vector or cell array of character vector dates. For a European option, there is
only one ExerciseDates on the option expiry date.
Data Types: double | char | cell

Output Arguments
Price — Expected prices of Asian option
vector

Expected prices of the Asian option, returned as a NINST-by-1 vector.

See Also
asianbycrr | asianbykv | asianbyls | asiansensbylevy | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asiansensbylevy
Calculate prices or sensitivities of European arithmetic Asian options using Levy model

Syntax
PriceSens = asiansensbylevy(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates)
PriceSens = asiansensbylevy( ___ ,Name,Value)

Description
PriceSens = asiansensbylevy(RateSpec,StockSpec,OptSpec,StrikeSettle,
ExerciseDates) returns European average pricing or sensitivities for arithmetic Asian
options using the Levy model.

PriceSens = asiansensbylevy( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price and Sensitivities of an Asian Option Using the Levy Model

Define the RateSpec.

Rates = 0.07;
StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, 'EndDates', ...
EndDates, 'Rates', Rates, 'Compounding', -1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9324
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            Rates: 0.0700
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 6.8;
Sigma = 0.14;
DivType = 'continuous';
DivAmounts = 0.09;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 6.8000
       DividendType: {'continuous'}
    DividendAmounts: 0.0900
    ExDividendDates: []

Define two options for a 'call' and 'put'.

Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2014';
Strike = 6.9;
OptSpec = {'call'; 'put'};

Compute the European arithmetic average price and sensitivities for the Asian option
using the Levy model.

OutSpec = {'Price', 'Delta', 'Gamma'};
PriceSens = asiansensbylevy(RateSpec, StockSpec, OptSpec, Strike,...
Settle, ExerciseDates,'OutSpec', OutSpec)

PriceSens = 2×1

    0.1358
    0.2921
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified with nonnegative integers using a NINST-by-1 vector.
Data Types: single | double

Settle — Settlement dates or trade dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors
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Settlement dates or trade dates for the Asian option, specified as serial date numbers or
date character vectors using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Option exercise dates
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Option exercise dates, specified as serial date numbers or date character vectors using a
NINST-by-1 vector or cell array of character vector dates. For a European option, there is
only one ExerciseDates on the option expiry date.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
asiansensbylevy(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDat
es,'OutSpec',{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values: 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell
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Output Arguments
PriceSens — Expected prices or sensitivities of Asian option
vector

Expected prices or sensitivities (defined by OutSpec) of the Asian option, returned as an
1-by-1 vector. If the OutSpec is not specified only the price is returned.

See Also
asianbycrr | asianbykv | asianbykv | asianbyls | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2013b
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asianbyhhm
Price European discrete arithmetic fixed Asian options using Haug, Haug, Margrabe
model

Syntax
Price = asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = asianbyhhm( ___ ,Name,Value)

Description
Price = asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) prices European discrete arithmetic fixed Asian options using the
Haug, Haug, Margrabe model.

Price = asianbyhhm( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price an Asian Option with Averaging Period Starting Before the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);
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Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price of the Asian option using the Haug, Haug, Margrabe approximation.
Assume that the averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 12;
AvgDate = 'Jan-1-2013';
AvgPrice = 100;

Price = asianbyhhm(RateSpec, StockSpec, OptSpec, Strike, Settle, ExerciseDates, ...
'NumFixings', NumFixings, 'AvgDate', AvgDate, 'AvgPrice', AvgPrice)

Price = 5.8216

Price an Asian Option with Averaging Period Starting After the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);
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Calculate the price of the Asian option using the Haug, Haug, Margrabe approximation.
Assume that the averaging period starts after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 15;
AvgDate = 'Jan-1-2013';

Price = asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'NumFixings',NumFixings,'AvgDate',AvgDate)

Price = 1.3785e-07

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of
character vectors, or string array.
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Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector
of strike price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using
serial date numbers, date character vectors, datetime, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry
date.

Data Types: double | char | datetime | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
asianbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'N
umFixings',15)

AvgPrice — Average price of underlying asset at the Settle date
vector
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Average price of underlying asset at the Settle date, specified as the comma-separated
pair consisting of 'AvgPrice' and a NINST-by-1 vector.

Note Use the AvgPrice argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number | date character vector | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of
'AvgDate' and a NINST-by-1 vector using serial date numbers, date character vectors,
datetimes, or string array.
Data Types: char | double | datetime | string

NumFixings — Total number of fixings or averaging points
10 (default) | vector

Total number of fixings or averaging points, specified as the comma-separated pair
consisting of 'NumFixings' and a NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices for fixed Asian options
vector

Expected prices for fixed Asian options, returned as a NINST-by-1 vector.

Definitions
Fixed Asian Options
Fixed Asian options have a specified strike.

The payoff at maturity for a fixed (average price) Asian option is:
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•
Fixed call (average price option): max( , )0 S X

av
-

•
Fixed put (average price option): max( , )0 X S

av
-

where:

S
av  is the arithmetic or geometric average price of underlying asset.

S  is the price at maturity of the underlying asset.

X  is the strike price.

References
[1] Haug, E. G. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education,

2007.

See Also
asianbycrr | asianbykv | asianbylevy | asianbyls | asianbytw |
asiansensbyhhm | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2018a
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asiansensbyhhm
Calculate price and sensitivities of European discrete arithmetic fixed Asian options using
Haug, Haug, Margrabe model

Syntax
PriceSens = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = asiansensbyhhm( ___ ,Name,Value)

Description
PriceSens = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) calculates prices and sensitivities for European discrete arithmetic
fixed Asian options using the Haug, Haug, Margrabe model.

PriceSens = asiansensbyhhm( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute Price and Sensitivities for Asian Option with Averaging Period Starting
Before the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.
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 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Haug, Haug, Margrabe
approximation. Assume that the averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 12;
AvgDate = 'Jan-1-2013';
AvgPrice = 100;
OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'NumFixings',NumFixings,'AvgDate',AvgDate,'AvgPrice',AvgPrice,'OutSpec',OutSpec)

Price = 5.8216

Delta = 0.5907

Gamma = 0.0143

Compute Price and Sensitivities for Asian Option with Averaging Period Starting
After the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.
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 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Haug, Haug, Margrabe
approximation. Assume that the averaging period started after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
NumFixings = 15;
AvgDate = 'Jan-1-2013';
OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'NumFixings',NumFixings,'AvgDate',AvgDate,'OutSpec',OutSpec)

Price = 1.3785e-07

Delta = 1.1438e-07

Gamma = 9.0830e-08

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure
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Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of
character vectors, or string array.
Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector
of strike price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using
serial date numbers, date character vectors, datetimes, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry
date.
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Data Types: double | char | datetime | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
asiansensbyhhm(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDate
s,'OutSpec',{'All'},'NumFixings',15)

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' |
string array with values "Price", "Delta", "Gamma", "Vega", "Lambda", "Rho",
"Theta", and "All"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors or string array with possible
values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and
'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the same as specifying OutSpec to include each
sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell | string

AvgPrice — Average price of underlying asset at the Settle date
vector

Average price of underlying asset at the Settle date, specified as the comma-separated
pair consisting of 'AvgPrice' and a NINST-by-1 vector.

Note Use the AvgPrice argument when AvgDate < Settle.
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Data Types: double

AvgDate — Date averaging period begins
character vector | serial date number | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of
'AvgDate' and a NINST-by-1 vector using character vectors, serial date numbers,
datetimes, or string arrays.
Data Types: char | double | datetime | string

NumFixings — Total number of fixings or averaging points
10 (default) | vector

Total number of fixings or averaging points, specified as the comma-separated pair
consisting of 'NumFixings' and a NINST-by-1 vector.
Data Types: double

Output Arguments
PriceSens — Expected prices or sensitivities for fixed Asian options
vector

Expected prices or sensitivities for fixed Asian options, returned as a NINST-by-1 vector.
asianbyhhm calculates prices of European arithmetic fixed (average price) Asian options
with discretely monitoring.

Definitions

Fixed Asian Options
Fixed Asian options have a specified strike.

The payoff at maturity for a fixed (average price) Asian option is:

•
Fixed call (average price option): max( , )0 S X

av
-

•
Fixed put (average price option): max( , )0 X S

av
-
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where:

S
av  is the arithmetic or geometric average price of underlying asset.

S  is the price at maturity of the underlying asset.

X  is the strike price.

References
[1] Haug, E. G. The Complete Guide to Option Pricing Formulas. McGraw-Hill Education,

2007.

See Also
asianbycrr | asianbyhhm | asianbykv | asianbylevy | asianbyls | asianbytw |
intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2018a
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asianbytw
Price European arithmetic fixed Asian options using Turnbull-Wakeman model

Syntax
Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = asianbytw( ___ ,Name,Value)

Description
Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) prices European arithmetic fixed Asian options using the Turnbull-
Wakeman model.

Price = asianbytw( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Price an Asian Option with Averaging Period Before the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);
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Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price of the Asian option using the Turnbull-Wakeman approximation.
Assume that the averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';
AvgPrice = 100;

Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate,'AvgPrice',AvgPrice)

Price = 5.6731

Price an Asian Option with Averaging Period After the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.

 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);
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Calculate the price of the Asian option using the Turnbull-Wakeman approximation.
Assume that the averaging period starts after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';

Price = asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate)

Price = 1.0774e-08

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of
character vectors, or string array.
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Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integer

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector
of strike price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using
serial date numbers, date character vectors, datetimes, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry
date.

Data Types: double | char | datetime | string

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
asianbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,'Av
gPrice',1500)

AvgPrice — Average price of underlying asset at the Settle date
vector
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Average price of underlying asset at the Settle date, specified as the comma-separated
pair consisting of 'AvgPrice' and a NINST-by-1 vector.

Note Use the AvgPrice argument when AvgDate < Settle.

Data Types: double

AvgDate — Date averaging period begins
serial date number | date character vector | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of
'AvgDate' and a NINST-by-1 vector using serial date numbers, date character vectors,
datetimes, or string arrays.
Data Types: char | double | datetime | string

Output Arguments
Price — Expected prices for fixed Asian options
vector

Expected prices for Asian options, returned as a NINST-by-1 vector.

Definitions

Fixed Asian Options
Fixed Asian options have a specified strike.

The payoff at maturity for a fixed (average price) Asian option is:

•
Fixed call (average price option): max( , )0 S X

av
-

•
Fixed put (average price option): max( , )0 X S

av
-

where:
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S
av  is the arithmetic or geometric average price of underlying asset.

S  is the price at maturity of the underlying asset.

X  is the strike price.

References
[1] Turnbull, S. M. and L. M. Wakeman. "A Quick Algorithm for Pricing European Average

Options."Journal of Financial and Quantitative Analysis Vol. 26(3).1991, pp.
377-389.

See Also
asianbycrr | asianbyhhm | asianbykv | asianbylevy | asianbyls |
asiansensbytw | intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2018a
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asiansensbytw
Calculate price and sensitivities of European fixed arithmetic Asian options using
Turnbull-Wakeman model

Syntax
PriceSens = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
PriceSens = asiansensbytw( ___ ,Name,Value)

Description
PriceSens = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) calculates prices and sensitivities for European fixed arithmetic Asian
options using the Turnbull-Wakeman model.

PriceSens = asiansensbytw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute Price and Sensitivities for Asian Option with Averaging Period Before
the Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.
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 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Turnbull-Wakeman
approximation. Assume that the averaging period has started before the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';
AvgPrice = 100;
OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate,'AvgPrice',AvgPrice,'OutSpec',OutSpec)

Price = 5.6731

Delta = 0.5995

Gamma = 0.0135

Compute Price and Sensitivities for Asian Option with Averaging Period After the
Settle Date

Define the Asian option parameters.

AssetPrice = 100;
Strike = 95;
Rates = 0.1;
Sigma = 0.15;
Settle = 'Apr-1-2013';
Maturity = 'Oct-1-2013';

Create a RateSpec using the intenvset function.
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 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', ...
 Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

Create a StockSpec for the underlying asset using the stockspec function.

DividendType = 'Continuous';
DividendAmounts = 0.05;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

Calculate the price and sensitivities of the Asian option using the Turnbull-Wakeman
approximation. Assume that the averaging period starts after the Settle date.

OptSpec = 'Call';
ExerciseDates = 'Oct-1-2013';
AvgDate = 'Jan-1-2013';
OutSpec = {'Price','Delta','Gamma'};

[Price,Delta,Gamma] = asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates, ...
'AvgDate',AvgDate,'OutSpec',OutSpec)

Price = 1.0774e-08

Delta = 1.0380e-08

Gamma = 9.6246e-09

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.
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stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put' | string array with values "call" or "put"

Definition of option, specified as 'call' or 'put' using a character vector, cell array of
character vectors, or string array.
Data Types: char | cell | string

Strike — Option strike price value
nonnegative integer | vector of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 vector
of strike price values.
Data Types: double

Settle — Settlement dates or trade dates
serial date number | date character vector | datetime | string array

Settlement date or trade date for the Asian option, specified as a NINST-by-1 vector using
serial date numbers, date character vectors, datetimes, or string arrays.
Data Types: double | char

ExerciseDates — European option exercise dates
serial date number | date character vector | datetime | string array

European option exercise dates, specified as a NINST-by-1 vector using serial date
numbers, date character vectors, datetimes, or string arrays.

Note For a European option, there is only one ExerciseDates on the option expiry
date.

Data Types: double | char | datetime | string
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
asiansensbytw(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates
,'OutSpec',{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All' |
string array with values "Price", "Delta", "Gamma", "Vega", "Lambda", "Rho",
"Theta", and "All"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors or string array with possible
values of 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and
'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the same as specifying OutSpec to include each
sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell | string

AvgPrice — Average price of underlying asset at the Settle date
vector

Average price of underlying asset at the Settle date, specified as the comma-separated
pair consisting of 'AvgPrice' and a NINST-by-1 vector.

Note Use the AvgPrice argument when AvgDate < Settle.

Data Types: double

 asiansensbytw

11-77



AvgDate — Date averaging period begins
serial date number | date character vector | datetime | string array

Date averaging period begins, specified as the comma-separated pair consisting of
'AvgDate' and a NINST-by-1 vector using serial date numbers, date character vectors,
datetimes, or string arrays.
Data Types: char | double | datetime | string

Output Arguments
PriceSens — Expected prices or sensitivities for fixed Asian options
vector

Expected prices or sensitivities for fixed Asian options, returned as a NINST-by-1 vector.
asiansensbytw calculates prices of European arithmetic fixed (average price) Asian
options.

Definitions

Fixed Asian Options
Fixed Asian options have a specified strike.

The payoff at maturity for a fixed (average price) Asian option is:

•
Fixed call (average price option): max( , )0 S X

av
-

•
Fixed put (average price option): max( , )0 X S

av
-

where:

S
av  is the arithmetic or geometric average price of underlying asset.

S  is the price at maturity of the underlying asset.

X  is the strike price.
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References
[1] Turnbull, S. M. and L. M. Wakeman. "A Quick Algorithm for Pricing European Average

Options."Journal of Financial and Quantitative Analysis Vol. 26(3).1991, pp.
377-389.

See Also
asianbycrr | asianbyhhm | asianbykv | asianbylevy | asianbyls | asianbytw |
intenvset | stockspec

Topics
“Pricing Asian Options”
“Asian Option” on page 3-43
“Supported Equity Derivatives” on page 3-24

External Websites
How to Price Asian Options Efficiently Using MATLAB (4 min 37 sec)

Introduced in R2018a
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assetbybls
Determine price of asset-or-nothing digital options using Black-Scholes model

Syntax
Price =
assetbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Arguments
RateSpec The annualized continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors with values of

'call' or 'put'.
Strike NINST-by-1 vector of payoff strike price values.

Description
Price =
assetbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
computes asset-or-nothing option prices using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.

Examples
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Compute Asset-Or-Nothing Digital Option Prices Using the Black-Scholes Option
Pricing Model

Consider two asset-or-nothing put options on a nondividend paying stock with a strike of
95 and 93 and expiring on January 30, 2009. On November 3, 2008 the stock is trading at
97.50. Using this data, calculate the price of the asset-or-nothing put options if the risk-
free rate is 4.5% and the volatility is 22%. First, create the RateSpec.

Settle = 'Nov-3-2008';
Maturity = 'Jan-30-2009';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9893
            Rates: 0.0450
         EndTimes: 0.2391
       StartTimes: 0
         EndDates: 733803
       StartDates: 733715
    ValuationDate: 733715
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 97.5000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the put options.
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OptSpec = {'put'};
Strike = [95;93];

Calculate the price.

Paon = assetbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Paon = 2×1

   33.7666
   26.9662

See Also
assetsensbybls | cashbybls | gapbybls | supersharebybls

Topics
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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assetsensbybls
Determine price or sensitivities of asset-or-nothing digital options using Black-Scholes
model

Syntax
PriceSens =
assetsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
PriceSens =
assetsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Out
Spec)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors with values of

'call' or 'put'.
Strike NINST-by-1 vector of strike price values.

 assetsensbybls

11-83



OutSpec (Optional) All optional inputs are specified as matching
parameter name-value pairs. The parameter name is specified
as a character vector, followed by the corresponding parameter
value. You can specify parameter name-value pairs in any order.
Names are case-insensitive and partial matches are allowed
provided no ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of character vectors
indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lambda';
'Rho'} specifies that the output should be Price, Lambda,
and Rho, in that order.

To invoke from a function: [Price, Lambda, Rho] =
assetsensbybls(..., 'OutSpec', {'Price',
'Lambda', 'Rho'})

OutSpec = {'All'} specifies that the output should be
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in
that order. This is the same as specifying OutSpec as
OutSpec = {'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description
PriceSens =
assetsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)
computes asset-or-nothing option prices using the Black-Scholes option pricing model.

PriceSens =
assetsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Out
Spec) includes the parameter/value pairs defined for OutSpec, and computes asset-or-
nothing option prices or sensitivities using the Black-Scholes option pricing model.

PriceSens is a NINST-by-1 vector of expected option prices or sensitivities.
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Examples

Compute Asset-Or-Nothing Digital Option Prices and Sensitivities Using the
Black-Scholes Option Pricing Model

Consider two asset-or-nothing put options on a nondividend paying stock with a strike of
95 and 93 and expiring on January 30, 2009. On November 3, 2008 the stock is trading at
97.50. Using this data, calculate the price and sensitivity of the asset-or-nothing put
options if the risk-free rate is 4.5% and the volatility is 22%. First, create the RateSpec.

Settle = 'Nov-3-2008';
Maturity = 'Jan-30-2009';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9893
            Rates: 0.0450
         EndTimes: 0.2391
       StartTimes: 0
         EndDates: 733803
       StartDates: 733715
    ValuationDate: 733715
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 97.50;
Sigma = .22;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 97.5000
       DividendType: []
    DividendAmounts: 0
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    ExDividendDates: []

Define the put options.

OptSpec = {'put'};
Strike = [95;93];

Calculate the delta, price, and gamma.

OutSpec = { 'delta';'price';'gamma'};
[Delta, Price, Gamma] = assetsensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, 'OutSpec', OutSpec)

Delta = 2×1

   -3.0833
   -2.8337

Price = 2×1

   33.7666
   26.9662

Gamma = 2×1

    0.0941
    0.1439

See Also
assetbybls | cashbybls | gapbybls | supersharebybls

Topics
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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barrierbycrr
Price barrier option from Cox-Ross-Rubinstein binomial tree

Syntax
[Price,PriceTree] = barrierbycrr(CRRTree,OptSpec,Strike,Settle,
AmericanOpt,ExerciseDates,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbycrr( ___ ,Rebate,Options)

Description
[Price,PriceTree] = barrierbycrr(CRRTree,OptSpec,Strike,Settle,
AmericanOpt,ExerciseDates,BarrierSpec,Barrier) calculates prices for barrier
options using a Cox-Ross-Rubinstein binomial tree.

[Price,PriceTree] = barrierbycrr( ___ ,Rebate,Options) adds optional
arguments for Rebate and Options.

Examples

Price a Barrier Option Using a CRR Binomial Tree

This example shows how to price a barrier option using a CRR binomial tree by loading
the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock
specification and time information needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
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Barrier = 102;

Price = barrierbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price = 12.1272

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with
values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vector values.
Data Types: char | cell

Strike — Option strike price value
integer

Option strike price value for a European or an American Option, specified as NINST-by-1
matrix of strike price values. Each row is the schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the barrier option, specified as a NINST-by-1 matrix of serial
date numbers or date character vectors. The Settle date for every barrier is set to the
ValuationDate of the stock tree. The barrier argument Settle is ignored.
Data Types: double | char
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ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or a date character vector:

• For a European option, use a 1-by-1 matrix of dates. Each row is the schedule for one
option. For a European option, there is only one ExerciseDates on the option expiry
date which is the maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1, the option can
be exercised between ValuationDate of the stock tree and the single listed date in
ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
scalar with values 0 or 1

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors
with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector or a cell array of character vectors
with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option. Note, barrierbyfd does not support
American knock-in barrier options.

• 'UO' — Up Knock Out
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This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually, with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option. Note, barrierbyfd does not support American knock-in
barrier options.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier value
integer

Barrier value, specified as a NINST-by-1 matrix.
Data Types: double
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Rebate — Rebate value
0 (default) | integer

(Optional) Rebate value, specified as a NINST-by-1 matrix of integers. For Knock In
options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the
barrier is reached.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with
derivset.
Data Types: struct

Output Arguments
Price — Expected prices for barrier options at time 0
vector

Expected prices for barrier options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.
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Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for

Options with Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
crrtree | instbarrier

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing European Call Options Using Different Equity Models”
“Barrier Option” on page 3-26
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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barrierbyeqp
Price barrier option from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = barrierbyeqp(EQPTree,OptSpec,Strike,Settle,
AmericanOpt,ExerciseDates,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbyeqp( ___ ,Rebate,Options)

Description
[Price,PriceTree] = barrierbyeqp(EQPTree,OptSpec,Strike,Settle,
AmericanOpt,ExerciseDates,BarrierSpec,Barrier) calculates prices for barrier
options using an Equal Probabilities binomial tree.

[Price,PriceTree] = barrierbyeqp( ___ ,Rebate,Options) adds optional
arguments for Rebate and Options.

Examples

Price a Barrier Option Using an EQP Equity Tree

This example shows how to price a barrier option using an EQP equity tree by loading the
file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock
specification and time information needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
BarrierSpec = 'UI';
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Barrier = 102;

Price = barrierbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt, BarrierSpec, Barrier)

Price = 12.2632

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with
values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vector values.
Data Types: char | cell

Strike — Option strike price value
integer

Option strike price value for a European or an American Option, specified as NINST-by-1
matrix of strike price values. Each row is the schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the barrier option, specified as a NINST-by-1 matrix of serial
date numbers or date character vectors. The Settle date for every barrier is set to the
ValuationDate of the stock tree. The barrier argument Settle is ignored.
Data Types: double | char
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ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or a date character vector:

• For a European option, use a 1-by-1 matrix of dates. Each row is the schedule for one
option. For a European option, there is only one ExerciseDates on the option expiry
date which is the maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1, the option can
be exercised between ValuationDate of the stock tree and the single listed date in
ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
scalar with values 0 or 1

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors
with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector or a cell array of character vectors
with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option. Note, barrierbyfd does not support
American knock-in barrier options.

• 'UO' — Up Knock Out
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This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually, with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option. Note, barrierbyfd does not support American knock-in
barrier options.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier value
integer

Barrier value, specified as a NINST-by-1 matrix.
Data Types: double
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Rebate — Rebate value
0 (default) | integer

(Optional) Rebate value, specified as a NINST-by-1 matrix of integers. For Knock In
options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the
barrier is reached.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with
derivset.
Data Types: struct

Output Arguments
Price — Expected prices for barrier options at time 0
vector

Expected prices for barrier options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.
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Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for

Options with Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
eqptree | instbarrier

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing European Call Options Using Different Equity Models”
“Barrier Option” on page 3-26
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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barrierbyfd
Calculate barrier option prices using finite difference method

Syntax
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = barrierbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
calculates barrier option prices on a single underlying asset using the finite difference
method. barrierbyfd assumes that the barrier is continuously monitored.
barrierbyfd does not support American knock-in barrier options.

[Price,PriceGrid,AssetPrices,Times] = barrierbyfd( ___ ,Name,Value)
adds optional name-value pair arguments. barrierbyfd assumes that the barrier is
continuously monitored. barrierbyfd does not support American knock-in barrier
options.

Examples

Price a Barrier Down and Out Call Option Using Finite Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
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Basis = 1;
 
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity,'Rates', Rate, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

StockSpec = stockspec(Volatility, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of a European Down and Out call option using Finite Difference.

Barrier = 40;
BarrierSpec = 'DO';
OptSpec = 'Call';
Price = barrierbyfd(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,...
BarrierSpec, Barrier)

Price = 8.5021
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of an option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
integer

Option strike price value, specified as an integer.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
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Data Types: double | char

ExerciseDates — Option exercise dates
date character vector | nonnegative scalar integer | datetime object

Option exercise dates, specified as a date character vector, a nonnegative scalar integer,
or datetime object:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date which is the maturity of the
instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or a cell array of date character vectors, the option can be exercised between
Settle and the single listed date in ExerciseDates.

Data Types: double | char

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option. Note, barrierbyfd does not support
American knock-in barrier options.

• 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually, with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In
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This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option. Note, barrierbyfd does not support American knock-in
barrier options.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
scalar integer

Barrier value, specified as a scalar integer.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: Price =
barrierbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,Barrie
rSpec,Barrier,Rebate,1000)

Rebate — Rebate value
0 (default) | numeric integer

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar
numeric integer. For Knock In options, the rebate is paid at expiry. For Knock Out options,
the rebate is paid when the barrier is reached.
Data Types: double

AssetGridSize — Size of asset grid used for a finite difference grid
400 (default) | positive numeric

Size of the asset grid used for finite difference grid, specified as the comma-separated
pair consisting of 'AssetGridSize' and a scalar positive numeric.
Data Types: double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive numeric

Size of the time grid used for the finite difference grid, specified as the comma-separated
pair consisting of 'TimeGridSize' and a scalar positive numeric.
Data Types: double

Output Arguments
Price — Expected prices for barrier options
matrix

Expected prices for barrier options, returned as a NINST-by-1 matrix.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a grid that
is two-dimensional with size PriceGridSize*length(Times). The number of columns
does not have to be equal to the TimeGridSize, because ex-dividend dates in the
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StockSpec are added to the time grid. The price for t = 0 is contained in
PriceGrid(:, end).

AssetPrices — Prices of asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of
PriceGrid, returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to the second dimension of the PriceGrid, returned as a vector.

Limitations
barrierbyfd does not support American knock-in barrier options.

Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Hull, J. Options, Futures, and Other Derivatives. Fourth Edition. Prentice Hall. 2000,

pp. 646–649.

[2] Aitsahlia, F., L. Imhof, and T.L. Lai. “Pricing and hedging of American knock-in
options.” The Journal of Derivatives. Vol. 11.3 , 2004, pp. 44–50.
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[3] Rubinstein M. and E. Reiner. “Breaking down the barriers.” Risk. Vol. 4(8), 1991, pp.
28–35.

See Also
barrierbybls | barrierbyls | barriersensbybls | barriersensbyfd |
barriersensbyls

Topics
“Barrier Option” on page 3-26
“Supported Equity Derivatives” on page 3-24

Introduced in R2016b

11 Functions — Alphabetical List

11-106



barriersensbyfd
Calculate barrier option prices or sensitivities using finite difference method

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd( ___ ,
Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
calculates barrier option prices or sensitivities of a single underlying asset using the finite
difference method. barrierbyfd assumes that the barrier is continuously monitored.
barriersesbyfd does not support American knock-in barrier options.

[PriceSens,PriceGrid,AssetPrices,Times] = barriersensbyfd( ___ ,
Name,Value) adds optional name-value pair arguments. barriersesbyfd assumes that
the barrier is continuously monitored. barriersensbyfd does not support American
knock-in barrier options.

Examples

Calculate Price and Sensitivities for a Barrier Down and Out Call Option Using
Finite Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
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Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
 
RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity,'Rates',Rate,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the Price, Delta, and Theta of a European Down and Out call option using
the finite difference method.

Barrier = 40;
BarrierSpec = 'DO';
OptSpec = 'Call';
OutSpec = {'price';'delta';'theta'};
[Price, Delta, Theta] = barriersensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,...
Maturity, BarrierSpec,Barrier,'Outspec',OutSpec)

Price = 8.5021
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Delta = 0.8568

Theta = -1.8501

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of an option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
integer

Option strike price value, specified as an integer.
Data Types: double
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Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
Data Types: double | char

ExerciseDates — Option exercise dates
nonnegative scalar integer | date character vector | datetime object

Option exercise dates, specified as a nonnegative scalar integer, a date character vector,
or datetime object:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date which is the maturity of the
instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or a cell array of date character vectors, the option can be exercised between
Settle and the single listed date in ExerciseDates.

Data Types: double | char

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option. Note, barrierbyfd does not support
American knock-in barrier options.

• 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
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the price of the underlying asset passes above the barrier level. Usually, with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option. Note, barrierbyfd does not support American knock-in
barrier options.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price, as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
scalar integer

Barrier value, specified as a scalar integer.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
barriersensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,Ba
rrierSpec,Barrier,Rebate,1000,AmericanOpt,1)

Rebate — Rebate value
0 (default) | numeric integer

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar
numeric integer. For Knock In options, the rebate is paid at expiry. For Knock Out options,
the rebate is paid when the barrier is reached.
Data Types: double

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the same as specifying OutSpec to include each
sensitivity.
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

AssetGridSize — Size of asset grid used for finite difference grid
400 (default) | positive numeric

Size of the asset grid used for a finite difference grid, specified as the comma-separated
pair consisting of 'AssetGridSize' and a scalar positive numeric.
Data Types: double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive numeric

11 Functions — Alphabetical List

11-112



Size of the time grid used for a finite difference grid, specified as the comma-separated
pair consisting of 'TimeGridSize' and a scalar positive numeric.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Note barriersensbyfd does not support American knock-in barrier options.

Data Types: double

Output Arguments
PriceSens — Expected prices or sensitivities values for barrier options
matrix

Expected prices or sensitivities (defined using OutSpec) for barrier options, returned as a
NINST-by-1 matrix.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a two-
dimensional grid with size PriceGridSize*length(Times). The number of columns
does not have to be equal to the TimeGridSize, because ex-dividend dates in the
StockSpec are added to the time grid. The price for t = 0 is contained in
PriceGrid(:, end).

AssetPrices — Prices of the asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of
PriceGrid, returned as a vector.
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Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to the second dimension of the PriceGrid, returned as a vector.

Limitations
barriersensbyfd does not support American knock-in barrier options.

Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000,

pp. 646–649.

[2] Aitsahlia, F., L. Imhof, and T.L. Lai. “Pricing and hedging of American knock-in
options.” The Journal of Derivatives. Vol. 11.3 , 2004, pp. 44–50.

[3] Rubinstein M. and E. Reiner. “Breaking down the barriers.” Risk. Vol. 4(8), 1991, pp.
28–35.

See Also
barrierbybls | barrierbyfd | barrierbyls | barriersensbybls |
barriersensbyls
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Topics
“Barrier Option” on page 3-26
“Supported Equity Derivatives” on page 3-24

Introduced in R2016b
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barrierbyls
Price European or American barrier options using Monte Carlo simulations

Syntax
[Price,Paths,Times,Z] = barrierbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[Price,Paths,Times,Z] = barrierbyls( ___ ,Name,Value)

Description
[Price,Paths,Times,Z] = barrierbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates barrier option
prices on a single underlying asset using the Longstaff-Schwartz model. barrierbyls
computes prices of European and American barrier options.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

[Price,Paths,Times,Z] = barrierbyls( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price an American Barrier Down In Put Option

Compute the price of an American down in put option using the following data:

Rates = 0.0325;
Settle = '01-Jan-2016';
Maturity = '01-Jan-2017';
Compounding = -1;
Basis = 1;

Define a RateSpec.
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 RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',Maturity, ...
     'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9680
            Rates: 0.0325
         EndTimes: 1
       StartTimes: 0
         EndDates: 736696
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.

 AssetPrice = 40;
 Volatility = 0.20;
 StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 40
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of an American barrier down in put option.

Strike = 45;
OptSpec = 'put';
Barrier = 35;
BarrierSpec = 'DI';
AmericanOpt = 1;

Price = barrierbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,BarrierSpec,...
Barrier,'NumTrials',2000,'AmericanOpt',AmericanOpt)

Price = 4.7306
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
integer

Option strike price value, specified as an integer.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
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Data Types: double | char

ExerciseDates — Option exercise dates
nonnegative scalar integer | date character vector | datetime object

Option exercise dates, specified as a nonnegative scalar integer, a date character vector,
or a datetime object:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date which is the maturity of the
instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or a cell array of date character vectors, the option can be exercised between
Settle and the single listed date in ExerciseDates.

Data Types: double | char

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option.

• 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
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(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually, the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
scalar integer

Barrier value, specified as a scalar integer.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
barrierbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,Barrie
rSpec,Barrier,Rebate,1000)
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AmericanOpt — Option type
0 (European) (default) | values [0,1]

Option type, specified as the comma-separated pair consisting of 'AnericanOpt' and a
NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: double

Rebate — Rebate value
0 (default) | scalar integer

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar
integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the
rebate is paid when the barrier is reached.
Data Types: double

NumTrials — Number of independent sample paths
1000 (default) | nonnegative integer

Number of independent sample paths (simulation trials), specified as the comma-
separated pair consisting of 'NumTrials' and a scalar nonnegative integer.
Data Types: double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative integer

Number of simulation periods per trial, specified as the comma-separated pair consisting
of 'NumPeriods' and a scalar nonnegative integer.
Data Types: double
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Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair
consisting of 'Z' and a NumPeriods-by-1-by-NumTrials 3-D time series array. The Z
value generates the Brownian motion vector (that is, Wiener processes) that drives the
simulation.
Data Types: double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected prices for barrier options
matrix

Expected prices for barrier options, returned as a NINST-by-1 matrix.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-
NumTrials 3-D time series array of simulated paths of correlated state variables. Each
row of Paths is the transpose of the state vector X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

11 Functions — Alphabetical List

11-122



Time series array of dependent random variates, returned as a NumPeriods-by-1-by-
NumTrials 3-D array whenZ is specified as an input argument. If the Z input argument is
not specified, then the Z output argument contains the random variates generated
internally.

Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000,

pp. 646–649.

[2] Aitsahlia, F., L. Imhof, and T.L. Lai. “Pricing and hedging of American knock-in
options.” The Journal of Derivatives. Vol. 11.3 , 2004, pp. 44–50.

[3] Rubinstein M. and E. Reiner. “Breaking down the barriers.” Risk. Vol. 4(8), 1991, pp.
28–35.

See Also
barrierbybls | barrierbyfd | barriersensbybls | barriersensbyfd |
barriersensbyls

Topics
“Barrier Option” on page 3-26
“Supported Equity Derivatives” on page 3-24
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Introduced in R2016b
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barriersensbyls
Calculate price and sensitivities for European or American barrier options using Monte
Carlo simulations

Syntax
[PriceSens,Paths,Times,Z] = barriersensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier)
[PriceSens,Paths,Times,Z] = barriersensbyls( ___ ,Name,Value)

Description
[PriceSens,Paths,Times,Z] = barriersensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,BarrierSpec,Barrier) calculates
barrier option prices or sensitivities on a single underlying asset using the Longstaff-
Schwartz model. barriersensbyls computes prices of European and American barrier
options.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

[PriceSens,Paths,Times,Z] = barriersensbyls( ___ ,Name,Value) adds
optional name-value pair arguments.

Examples

Compute the Delta and Gamma of an American Barrier Down In Put Option

Compute the price of an American down in put option using the following data:

Rates = 0.0325;
Settle = '01-Jan-2016';
Maturity = '01-Jan-2017';
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Compounding = -1;
Basis = 1;

Define a RateSpec.

 RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',Maturity, ...
     'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9680
            Rates: 0.0325
         EndTimes: 1
       StartTimes: 0
         EndDates: 736696
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.

 AssetPrice = 40;
 Volatility = 0.20;
 StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 40
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the delta and gamma of an American barrier down in put option.

Strike = 45;
OptSpec = 'put';
Barrier = 35;
BarrierSpec = 'DI';
AmericanOpt = 1;
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OutSpec = {'delta','gamma'};

[Delta,Gamma] = barriersensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,...
Maturity,BarrierSpec,Barrier,'NumTrials',2000,'AmericanOpt',AmericanOpt,'OutSpec',OutSpec)

Delta = -0.6346

Gamma = -0.3091

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string
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Strike — Option strike price value
integer

Option strike price value, specified as an integer.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
Data Types: double | char

ExerciseDates — Option exercise dates
nonnegative scalar integer | date character vector | datetime object

Option exercise dates, specified as a nonnegative scalar integer, a date character vector,
or a datetime object:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date which is the maturity of the
instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or a cell array of date character vectors, the option can be exercised between
Settle and the single listed date in ExerciseDates.

Data Types: double | char

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option.
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• 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually, the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
scalar integer

Barrier value, specified as a scalar integer.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
barriersensbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,Ba
rrierSpec,Barrier,Rebate,1000)

AmericanOpt — Option type
0 (European) (default) | values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: double

Rebate — Rebate value
0 (default) | numeric integer

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar
numeric integer. For Knock In options, the rebate is paid at expiry. For Knock Out options,
the rebate is paid when the barrier is reached.
Data Types: double

NumTrials — Number of independent sample paths
1000 (default) | nonnegative integer

Number of independent sample paths (simulation trials), specified as the comma-
separated pair consisting of 'NumTrials' and a scalar nonnegative integer.
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Data Types: double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative integer

Number of simulation periods per trial, specified as the comma-separated pair consisting
of 'NumPeriods' and a scalar nonnegative integer.
Data Types: double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair
consisting of 'Z' and a NumPeriods-by-1-by-NumTrials 3-D time series array. The Z
value generates the Brownian motion vector (that is, Wiener processes) that drives the
simulation.
Data Types: double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a scalar value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the same as specifying OutSpec to include each
sensitivity.
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}
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Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for barrier options
matrix

Expected prices or sensitivities (defined using OutSpec) for barrier options, returned as a
NINST-by-1 matrix.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-
NumTrials 3-D time series array of simulated paths of correlated state variables. Each
row of Paths is the transpose of the state vector X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-
NumTrials 3-D array when Z is specified as an input argument. If the Z input argument
is not specified, then the Z output argument contains the random variates generated
internally.

Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.
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A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000, pp.

646-649.

[2] Aitsahlia, F., L. Imhof and T.L. Lai. “Pricing and hedging of American knock-in
options.” The Journal of Derivatives. Vol. 11.3, 2004, pp. 44–50.

[3] Broadie, M., P. Glasserman and S. Kou. "A continuity correction for discrete barrier
options." Mathematical Finance. Vol. 7.4 , 1997, pp. 3250–349.

[4] Moon, K.S. "Efficient Monte Carlo algorithm for pricing barrier options."
Communications of the Korean Mathematical Society. Vol 23.2, 2008 pp. 85–294.

[5] Papatheodorou, B. “Enhanced Monte Carlo methods for pricing and hedging exotic
options." University of Oxford thesis, 2005.

[6] Rubinstein M. and E. Reiner. “Breaking down the barriers.” Risk. Vol. 4(8), 1991, pp.
28–35.

See Also
barrierbybls | barrierbybls | barrierbyfd | barriersensbyfd |
barriersensbyls

Topics
“Barrier Option” on page 3-26
“Supported Equity Derivatives” on page 3-24

Introduced in R2016b

 barriersensbyls

11-133



barrierbybls
Price European barrier options using Black-Scholes option pricing model

Syntax
Price = barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier)
Price = barrierbybls( ___ ,Name,Value)

Description
Price = barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates,BarrierSpec,Barrier) calculates European barrier option prices
using the Black-Scholes option pricing model.

Price = barrierbybls( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price an European Barrier Down Out Call Option

Compute the price of an European barrier down out call option using the following data:

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-jan-2016';
Compounding = -1;
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.

AssetPrice = 50;
Volatility = 0.30;
StockSpec = stockspec(Volatility, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of an European barrier down out call option using the Black-Scholes
option pricing model.

Strike = 50;
OptSpec = 'call';
Barrier = 45;
BarrierSpec = 'DO';

Price = barrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
Maturity,  BarrierSpec, Barrier)

Price = 4.4285
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Price European Barrier Down Out and Down In Call Options

Compute the price of European down out and down in call options using the following
data:

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-jan-2016';
Compounding = -1;
Basis = 1;

Define a RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.

AssetPrice = 50;
Volatility = 0.30;
StockSpec = stockspec(Volatility, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
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Calculate the price of European barrier down out and down in call options using the
Black-Scholes Option Pricing model.

Strike = 50;
OptSpec = 'Call';
Barrier = 45;
BarrierSpec = {'DO';'DI'};

Price = barrierbybls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,  BarrierSpec, Barrier)

Price = 2×1

    4.4285
    2.3301

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'
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Definition of the option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
integer

Option strike price value, specified as an integer.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
Data Types: double | char

ExerciseDates — Option exercise dates
nonnegative scalar integer | date character vector | datetime object

Option exercise dates, specified as a nonnegative scalar integer, a date character vector,
or a datetime object:

• NINST-by-1 vector of exercise dates. For a European option, there is only one
ExerciseDates on the option expiry date which is the maturity of the instrument.

Data Types: double | char

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option.

• 'UO' — Up Knock Out
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This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually, the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
scalar integer

Barrier value, specified as a scalar integer.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
barrierbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,Barri
erSpec,Barrier,Rebate,1000)

Rebate — Rebate value
0 (default) | scalar integer

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar
integer. For Knock In options, the rebate is paid at expiry. For Knock Out options, the
rebate is paid when the barrier is reached.
Data Types: double

Output Arguments
Price — Expected prices for barrier options
matrix

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.

Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.
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barriersensbybls
Calculate price or sensitivities for European barrier options using Black-Scholes option
pricing model

Syntax
PriceSens = barriersensbybls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates,BarrierSpec,Barrier)
PriceSens = barriersensbybls( ___ ,Name,Value)

Description
PriceSens = barriersensbybls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates,BarrierSpec,Barrier) calculates European barrier option
prices or sensitivities using the Black-Scholes option pricing model.

PriceSens = barriersensbybls( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Calculate Price and Sensitivities for European Barrier Down Out and Down In Call
Options

Compute price of European barrier down out and down in call options using the following
data:

Rates = 0.035;
Settle = '01-Jan-2015';
Maturity = '01-April-2015';
Compounding = -1;
Basis = 1;

Define a RateSpec.
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 RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates', Maturity, ...
     'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9913
            Rates: 0.0350
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 736055
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Define a StockSpec.

AssetPrice = 19;
Volatility = 0.40;
DivType = 'Continuous'; 
DivAmount = 0.035;
StockSpec = stockspec(Volatility, AssetPrice, DivType, DivAmount)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.4000
         AssetPrice: 19
       DividendType: {'continuous'}
    DividendAmounts: 0.0350
    ExDividendDates: []

Calculate the price, delta, and gamma for European barrier down out and down in call
options using the Black-Scholes option pricing model.

OptSpec = 'Call';
Strike = 20;
Barrier = 18;
BarrierSpec = {'DO';'DI'};
OutSpec = {'price', 'delta', 'gamma'};

[Price, Delta, Gamma] = barriersensbybls(RateSpec, StockSpec, OptSpec, Strike, Settle,...
Maturity,  BarrierSpec, Barrier,'OutSpec', OutSpec)
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Price = 2×1

    0.6287
    0.4655

Delta = 2×1

    0.6376
   -0.2036

Gamma = 2×1

    0.0255
    0.0773

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
integer

Option strike price value, specified as an integer.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
Data Types: double | char

ExerciseDates — Option exercise dates
nonnegative scalar integer | date character vector | datetime object

Option exercise dates, specified as a nonnegative scalar integer, date character vector, or
datetime object:

• NINST-by-1 vector of exercise dates. For a European option, there is only one
ExerciseDates on the option expiry date which is the maturity of the instrument.

Data Types: double | char

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
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(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option.

• 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually, the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
scalar integer

Barrier value, specified as a scalar integer.
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Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
barriersensbybls(RateSpec,StockSpec,OptSpec,Strike,Settle,Maturity,B
arrierSpec,Barrier,'Rebate',1000,'OutSpec','Delta')

Rebate — Rebate value
0 (default) | numeric integer

Rebate value, specified as the comma-separated pair consisting of 'Rebate' and a scalar
numeric integer. For Knock In options, the rebate is paid at expiry. For Knock Out options,
the rebate is paid when the barrier is reached.
Data Types: double

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the same as specifying OutSpec to include each
sensitivity.
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell
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Output Arguments
PriceSens — Expected prices or sensitivities for barrier options
matrix

Expected prices at time 0 or sensitivities (defined using OutSpec) for barrier options,
returned as a NINST-by-1 matrix.

Definitions
Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000, pp.

646–649.

[2] Aitsahlia, F., L. Imhof, and T.L. Lai. “Pricing and hedging of American knock-in
options.” The Journal of Derivatives. Vol. 11.3, 2004, pp. 44–50.

[3] Rubinstein M. and E. Reiner. “Breaking down the barriers.” Risk. Vol. 4(8), 1991, pp.
28–35.

See Also
barrierbybls | barrierbyfd | barrierbyls | barriersensbyfd |
barriersensbyls

Topics
“Barrier Option” on page 3-26
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“Supported Equity Derivatives” on page 3-24

Introduced in R2016b
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barrierbyitt
Price barrier options using implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = barrierbyitt(ITTTree,OptSpec,Strike,Settle,
AmericanOpt,ExerciseDates,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbyitt( ___ ,Rebate,Options)

Description
[Price,PriceTree] = barrierbyitt(ITTTree,OptSpec,Strike,Settle,
AmericanOpt,ExerciseDates,BarrierSpec,Barrier) calculates prices for barrier
options using implied trinomial tree (ITT).

[Price,PriceTree] = barrierbyitt( ___ ,Rebate,Options) adds optional
arguments for Rebate and Options.

Examples

Price a Barrier Option Using an ITT Tree

This example shows how to price a barrier option using an ITT tree by loading the file
deriv.mat, which provides ITTTree. The ITTTree structure contains the stock specification
and time information needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike =  85;
Settle = '01-Jan-2006';
ExerciseDates = '31-Dec-2008';
AmericanOpt = 1;
BarrierSpec = 'UI';
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Barrier =  115;

Price = barrierbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,...
BarrierSpec,Barrier)

Price = 2.4074

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with
values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vector values.
Data Types: char | cell

Strike — Option strike price value
integer

Option strike price value for a European or an American Option, specified as NINST-by-1
matrix of strike price values. Each row is the schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date for the barrier option, specified as a NINST-by-1 matrix of serial
date numbers or date character vectors. The Settle date for every barrier is set to the
ValuationDate of the stock tree. The barrier argument Settle is ignored.
Data Types: double | char
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ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or a date character vector:

• For a European option, use a 1-by-1 matrix of dates. Each row is the schedule for one
option. For a European option, there is only one ExerciseDates on the option expiry
date which is the maturity of the instrument.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1, the option can
be exercised between ValuationDate of the stock tree and the single listed date in
ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
scalar with values 0 or 1

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors
with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector or a cell array of character vectors
with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option. Note, barrierbyfd does not support
American knock-in barrier options.

• 'UO' — Up Knock Out
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This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually, with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option. Note, barrierbyfd does not support American knock-in
barrier options.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char | cell

Barrier — Barrier value
integer

Barrier value, specified as a NINST-by-1 matrix.
Data Types: double
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Rebate — Rebate value
0 (default) | integer

(Optional) Rebate value, specified as a NINST-by-1 matrix of integers. For Knock In
options, the rebate is paid at expiry. For Knock Out options, the rebate is paid when the
barrier is reached.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with
derivset.
Data Types: struct

Output Arguments
Price — Expected prices for barrier options at time 0
vector

Expected prices for barrier options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.
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Definitions

Barrier Option
A Barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for

Options with Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
instbarrier | itttree

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing European Call Options Using Different Equity Models”
“Barrier Option” on page 3-26
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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barrierbystt
Price barrier options using standard trinomial tree

Syntax
[Price,PriceTree] = barrierbystt(STTTree,OptSpec,Strike,Settle,
ExerciseDates,AmericanOpt,BarrierSpec,Barrier)
[Price,PriceTree] = barrierbystt( ___ ,Name,Value)

Description
[Price,PriceTree] = barrierbystt(STTTree,OptSpec,Strike,Settle,
ExerciseDates,AmericanOpt,BarrierSpec,Barrier) prices barrier options using
a standard trinomial (STT) tree.

[Price,PriceTree] = barrierbystt( ___ ,Name,Value) prices barrier options
using a standard trinomial (STT) tree with an optional name-value pair argument for
Rebate and Options.

Examples

Price a Barrier Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the barrier option and compute the price.
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Settle = '1/1/09';
ExerciseDates = '1/1/12';
OptSpec =  'call';
Strike = 105;
AmericanOpt = 1;
BarrierSpec = 'UI';
Barrier = 115;

Price= barrierbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates,...
AmericanOpt, BarrierSpec, Barrier)

Price = 3.7977

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-
by-1 cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — European or American option strike price value
matrix of nonnegative integers

European or American option strike price value, specified with a nonnegative integer
using a NINST-by-1 matrix of strike price values. Each row is the schedule for one option.
To compute the value of a floating-strike barrier option, Strike should be specified as
NaN. Floating-strike barrier options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector
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Settlement date or trade date for the barrier option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every barrier option is set to the ValuationDate of the stock
tree. The barrier argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of
serial date numbers or cell array of character vectors, the option can be exercised
between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
scalar with values [0,1]

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO' | cell array of character vectors
with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector or cell array of character vectors with
the following values:
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• 'UI' — Up Knock In
• 'UO' — Up Knock Out
• 'DI' — Down Knock In
• 'DO' — Down Knock Up

Data Types: char | cell

Barrier — Barrier levels
matrix of barrier levels

Barrier levels, specified as a NINST-by-1 matrix.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
barrierbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates,1,'UI',
115,'Rebate',25)

Rebate — Rebate values
0 (default) | matrix of rebate values

Rebate values, specified as the comma-separated pair consisting of 'Rebate' and a
NINST-by-1 matrix of rebate values. For Knock In options, the rebate is paid at expiry. For
Knock Out options, the rebate is paid when the barrier is reached.
Data Types: single | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct
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Output Arguments
Price — Expected prices for barrier options at time 0
matrix

Expected prices for barrier options at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure with vector of barrier option prices at each node
tree structure

Structure with a vector of barrier option prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

References
[1] Derman, E., I. Kani, D. Ergener and I. Bardhan. “Enhanced Numerical Methods for

Options with Barriers.” Financial Analysts Journal. (Nov.-Dec.), 1995, pp. 65–74.

See Also
derivset | instbarrier | sttprice | sttsens | stttimespec | stttree

Topics
“Barrier Option” on page 3-26
“Supported Equity Derivatives” on page 3-24

Introduced in R2015b
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basketbyju
Price European basket options using Nengjiu Ju approximation model

Syntax
Price =
basketbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturity)

Description
Price =
basketbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturity)
prices European basket options using the Nengjiu Ju approximation model.

Input Arguments
RateSpec

Annualized, continuously compounded rate term structure. For more information on the
interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks specification, see
basketstockspec.

OptSpec

Character vector or 2-by-1 cell array of character vectors with values of 'call' or
'put'.

Strike

Scalar for the option strike price.
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Settle

Scalar of the settlement or trade date specified as a character vector or serial date
number.

Maturity

Maturity date specified as a character vector or serial date number.

Output Arguments
Price

Price of the basket option.

Examples
Find a European call basket option of two stocks. Assume that the stocks are currently
trading at $10 and $11.50 with annual volatilities of 20% and 25%, respectively. The
basket contains one unit of the first stock and one unit of the second stock. The
correlation between the assets is 30%. On January 1, 2009, an investor wants to buy a 1-
year call option with a strike price of $21.50. The current annualized, continuously
compounded interest rate is 5%. Use this data to compute the price of the call basket
option with the Ju approximation model.
Settle = 'Jan-1-2009';
Maturity  = 'Jan-1-2010';

% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
Corr = [1 0.30; 0.30 1];

% Define BasketStockSpec
AssetPrice =  [10;11.50]; 
Volatility = [0.2;0.25];
Quantity = [1;1];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option
OptSpec = {'call'};

 basketbyju

11-163



Strike = 21.5;
PriceCorr30 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

This returns:

PriceCorr30 =

   2.12214

Compute the price of the basket instrument for these two stocks with a correlation of
60%. Then compare this cost to the total cost of buying two individual call options:
Corr = [1 0.60; 0.60 1];

% Define the new BasketStockSpec
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option with Correlation = -0.60
PriceCorr60 = basketbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity)

This returns:

PriceCorr60 =

   2.27566

The following table summarizes the sensitivity of the option to correlation changes. In
general, the premium of the basket option decreases with lower correlation and increases
with higher correlation.

Correlation -0.60 -0.30 0 0.30 0.60
Premium 1.52830 1.76006 1.9527 2.1221 2.2756

Compute the cost of two vanilla 1-year call options using the Black-Scholes (BLS) model
on the individual assets:
StockSpec = stockspec(Volatility, AssetPrice);
StrikeVanilla= [10;11.5];

PriceVanillaOption = optstockbybls(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, StrikeVanilla)

This returns:

PriceVanillaOption =

    1.0451
    1.4186
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Find the total cost of buying two individual call options:

sum(PriceVanillaOption) 

This returns:

ans=2.4637

The total cost of purchasing two individual call options is $2.4637, compared to the
maximum cost of the basket option of $2.27 with a correlation of 60%.

References
Nengjiu Ju. “Pricing Asian and Basket Options Via Taylor Expansion.” Journal of
Computational Finance. Vol. 5, 2002.

See Also
basketsensbyju | basketstockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Basket Option” on page 3-27
“Supported Equity Derivatives” on page 3-24

Introduced in R2009b
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basketbyls
Price European or American basket options using Monte Carlo simulations

Syntax
Price = basketbyls(RateSpec,BasketStockSpec,OptSpec,
Strike,Settle,ExerciseDates)
Price =
basketbyls(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,ExerciseDa
tes,'ParameterName',ParameterValue, ...)

Description
Price = basketbyls(RateSpec,BasketStockSpec,OptSpec,
Strike,Settle,ExerciseDates) prices basket options using the Longstaff-Schwartz
model.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

Price =
basketbyls(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,ExerciseDa
tes,'ParameterName',ParameterValue, ...) accepts optional inputs as one or
more comma-separated parameter/value pairs. 'ParameterName' is the name of the
parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter-value pairs in any order. Names are case-
insensitive and partial matches are allowable, if no ambiguities exist.

Input Arguments
RateSpec

Annualized, continuously compounded rate term structure. For more information on the
interest rate specification, see intenvset.
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BasketStockSpec

BasketStock specification. For information on the basket of stocks specification, see
basketstockspec.

OptSpec

Character vector or 2-by-1 cell array of character vectors with values of 'call' or
'put'.

Strike

The option strike price:

• For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES
(Bermuda) vector of strike price.

• For an American option, Strike is a scalar vector of the strike price.

Settle

Scalar of the settlement or trade date specified as a character vector or serial date
number.

ExerciseDates

The exercise date for the option:

• For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between, or including, the pair of dates
on that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the
option exercises between the Settle date and the single listed ExerciseDate.

Parameter–Value Pairs
AmericanOpt

Parameter values are a scalar flag.
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• 0 — European/Bermuda
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Default: 0

NumPeriods

Parameter value is a scalar number of simulation periods per trial. NumPeriods is
considered only when pricing European basket options. For American and Bermuda
basket options, NumPeriod equals the number of exercise days during the life of the
option.

Default: 100

NumTrials

Parameter value is a scalar number of independent sample paths (simulation trials).

Default: 1000

Output Arguments
Price

Price of the basket option.

Examples

Prices Basket Options Using the Longstaff-Schwartz Model

Find an American call basket option of three stocks. The stocks are currently trading at
$35, $40 and $45 with annual volatilities of 12%, 15% and 18%, respectively. The basket
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contains 33.33% of each stock. Assume the correlation between all pair of assets is 50%.
On May 1, 2009, an investor wants to buy a three-year call option with a strike price of
$42. The current annualized continuously compounded interest rate is 5%. Use this data
to compute the price of the call basket option using the Longstaff-Schwartz model.

Settle = 'May-1-2009';
Maturity  = 'May-1-2012';

% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric,
% and have ones along the main diagonal.
Corr = [1 0.50 0.50; 0.50 1 0.50;0.50 0.50 1];

% Define BasketStockSpec
AssetPrice =  [35;40;45]; 
Volatility = [0.12;0.15;0.18];
Quantity = [0.333;0.333;0.333];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option
OptSpec = {'call'};
Strike = 42;
AmericanOpt = 1; % American option
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt)

Price = 5.4687

Increase the number of simulation trials to 2000 to give the following results:

NumTrial = 2000;
Price = basketbyls(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity,...
'AmericanOpt',AmericanOpt,'NumTrials',NumTrial)

Price = 5.5501
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References
Longstaff, F.A., and E.S. Schwartz. “Valuing American Options by Simulation: A Simple
Least-Squares Approach.” The Review of Financial Studies. Vol. 14, No. 1, Spring 2001,
pp. 113–147.

See Also
basketsensbyls | basketstockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Basket Option” on page 3-27
“Supported Equity Derivatives” on page 3-24

Introduced in R2009b

11 Functions — Alphabetical List

11-170



basketsensbyju
Determine European basket options price or sensitivities using Nengjiu Ju approximation
model

Syntax
PriceSens =
basketsensbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturi
ty)
PriceSens =
basketsensbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturi
ty,'ParameterName',ParameterValue, ...)

Description
PriceSens =
basketsensbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturi
ty) calculates prices or sensitivities for basket options using the Nengjiu Ju
approximation model.

PriceSens =
basketsensbyju(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Maturi
ty,'ParameterName',ParameterValue, ...) accepts optional inputs as one or
more comma-separated parameter-value pairs. 'ParameterName' is the name of the
parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter-value pairs in any order. Names are case-
insensitive and partial matches are allowable, if no ambiguities exist.

Input Arguments
RateSpec

Annualized, continuously compounded rate term structure. For more information on the
interest rate specification, see intenvset.
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BasketStockSpec

BasketStock specification. For information on the basket of stocks specification, see
basketstockspec.

OptSpec

Character vector or a 2-by-1 cell array of character vectors with values of 'call' or
'put'.

Strike

Scalar of the option strike price.

Settle

Scalar of the settlement or trade date specified as a character vector or serial date
number.

Maturity

Maturity date, specified as a character vector or serial date number.

Parameter–Value Pairs
OutSpec

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating
the nature and order of the outputs for the function. Possible values are 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. For example,
OutSpec = {'Price', 'Lambda', 'Rho'} specifies that the output is Price,
Lambda, and Rho, in that order.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as
OutSpec = {'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta',
'Price'};.

Default: OutSpec = {'Price'}

UndIdx

Scalar of the index of the underlying instrument to compute the sensitivity.
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Default: UndIdx = []

Output Arguments
PriceSens

Expected prices or sensitivities values for the basket option.

Examples

Calculate Prices and Sensitivities for Basket Options Using the Nengjiu Ju
Approximation Model

Find a European call basket option of five stocks. Assume that the basket contains:

• 5% of the first stock trading at $110
• 15% of the second stock trading at $75
• 20% of the third stock trading at $40
• 25% of the fourth stock trading at $125
• 35% of the fifth stock trading at $92

These stocks have annual volatilities of 20% and the correlation between the assets is
zero. On May 1, 2009, an investor wants to buy a 1-year call option with a strike price of
$90. The current annualized, continuously compounded interest is 5%. Use this data to
compute price and delta of the call basket option with the Ju approximation model.

Settle = 'May-1-2009';
Maturity  = 'May-1-2010';

% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', ...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, and
% have ones along the main diagonal.
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NumInst  = 5;
InstIdx = ones(NumInst,1);
Corr = diag(ones(5,1), 0);

% Define BasketStockSpec
AssetPrice =  [110; 75; 40; 125; 92]; 
Volatility = 0.2;
Quantity = [0.05; 0.15; 0.2; 0.25; 0.35];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the call basket option. Calculate also the delta 
% of the first stock.
OptSpec = {'call'};
Strike = 90;
OutSpec = {'Price','Delta'}; 
UndIdx = 1; % First element in the basket
[Price, Delta] = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, ...
Maturity, 'OutSpec', OutSpec,'UndIdx', UndIdx)

Price = 5.1610

Delta = 0.0297

Compute Delta with respect to the second asset:

UndIdx = 2; % Second element in the basket
OutSpec = {'Delta'}; 
Delta = basketsensbyju(RateSpec, BasketStockSpec, OptSpec, Strike, Settle, Maturity, ...
'OutSpec',OutSpec,'UndIdx',UndIdx)

Delta = 0.0906

References
Nengjiu Ju. “Pricing Asian and Basket Options Via Taylor Expansion.” Journal of
Computational Finance. Vol. 5, 2002.

See Also
basketbyju | basketstockspec
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Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Basket Option” on page 3-27
“Supported Equity Derivatives” on page 3-24

Introduced in R2009b
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basketsensbyls
Calculate price and sensitivities for European or American basket options using Monte
Carlo simulations

Syntax
PriceSens =
basketsensbyls(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Exerci
seDates)
PriceSens =
basketsensbyls(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Exerci
seDates,'ParameterName',ParameterValue, ...)

Description
PriceSens =
basketsensbyls(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Exerci
seDates) prices basket options using the Longstaff-Schwartz model.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

PriceSens =
basketsensbyls(RateSpec,BasketStockSpec,OptSpec,Strike,Settle,Exerci
seDates,'ParameterName',ParameterValue, ...) accepts optional inputs as one
or more comma-separated parameter/value pairs. 'ParameterName' is the name of the
parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter-value pairs in any order. Names are case-
insensitive and partial matches are allowable, if no ambiguities exist.
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Input Arguments
RateSpec

Annualized, continuously compounded rate term structure. For more information on the
interest rate specification, see intenvset.

BasketStockSpec

BasketStock specification. For information on the basket of stocks specification, see
basketstockspec.

OptSpec

Character vector or 2-by-1 cell array of character vectors with values for 'call' or
'put'.

Strike

The option strike price:

• For a European or Bermuda option, Strike is a scalar (European) or 1-by-NSTRIKES
(Bermuda) vector of strike price.

• For an American option, Strike is a scalar vector of strike price.

Settle

Scalar of settlement or trade date.

ExerciseDates

The exercise date for the option:

• For a European or Bermuda option, ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.
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Parameter–Value Pairs
AmericanOpt

Parameter values are a scalar flag.

• 0 — European/Bermuda
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Default: 0

NumPeriods

Parameter value is a scalar number of simulation periods. NumPeriods is considered only
when pricing European basket options. For American and Bermuda basket options,
NumPeriod equals the number of exercise days during the life of the option.

Default: 100

NumTrials

Parameter value is a scalar number of independent sample paths (simulation trials).

Default: 1000

OutSpec

Parameter value is an NOUT-by-1 or 1-by-NOUT cell array of character vectors indicating
the nature and order of the outputs for the function. Possible values are 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'. For example,
OutSpec = {'Price','Lambda','Rho'} specifies that the output is Price, Lambda,
and Rho, in that order.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec as
OutSpec = {'Delta','Gamma','Vega','Lambda','Rho','Theta','Price'};.
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Default: OutSpec = {'Price'}

UndIdx

Scalar of the index of the underlying instrument to compute the sensitivity.

Default: UndIdx = []

Output Arguments
PriceSens

Expected prices or sensitivities values.

Examples

Calculate Price and Sensitivities for Basket Options Using the Longstaff-
Schwartz Model

Find a European put basket option of two stocks. The basket contains 50% of each stock.
The stocks are currently trading at $90 and $75, with annual volatilities of 15%. Assume
that the correlation between the assets is zero. On May 1, 2009, an investor wants to buy
a one-year put option with a strike price of $80. The current annualized, continuously
compounded interest is 5%. Use this data to compute price and delta of the put basket
option with the Longstaff-Schwartz approximation model.

Settle = 'May-1-2009';
Maturity  = 'May-1-2010';

% Define RateSpec
Rate = 0.05;
Compounding = -1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates',...
Settle, 'EndDates', Maturity, 'Rates', Rate, 'Compounding', Compounding);

% Define the Correlation matrix. Correlation matrices are symmetric, 
% and have ones along the main diagonal.
NumInst  = 2;
InstIdx = ones(NumInst,1);
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Corr = diag(ones(NumInst,1), 0);

% Define BasketStockSpec
AssetPrice =  [90; 75]; 
Volatility = 0.15;
Quantity = [0.50; 0.50];
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, Corr);

% Compute the price of the put basket option. Calculate also the delta 
% of the first stock.
OptSpec = {'put'};
Strike = 80;
OutSpec = {'Price','Delta'}; 
UndIdx = 1; % First element in the basket
                                     
[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

PriceSens = 0.9822

Delta = -0.0995

Compute the Price and Delta of the basket with a correlation of -20%:

NewCorr = [1 -0.20; -0.20 1];

% Define the new BasketStockSpec.
BasketStockSpec = basketstockspec(Volatility, AssetPrice, Quantity, NewCorr);

% Compute the price and delta of the put basket option. 
[PriceSens, Delta] = basketsensbyls(RateSpec, BasketStockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec,'UndIdx', UndIdx)

PriceSens = 0.7814

Delta = -0.0961

References
Longstaff, F.A., and E.S. Schwartz. “Valuing American Options by Simulation: A Simple
Least-Squares Approach.” The Review of Financial Studies. Vol. 14, No. 1, Spring 2001,
pp. 113–147.
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See Also
basketbyls | basketstockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Basket Option” on page 3-27
“Supported Equity Derivatives” on page 3-24

Introduced in R2009b
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basketstockspec
Specify basket stock structure using Longstaff-Schwartz model

Syntax
BasketStockSpec =
basketstockspec(Sigma,AssetPrice,Quantity,Correlation)
BasketStockSpec =
basketstockspec(Sigma,AssetPrice,Quantity,Correlation,'ParameterName
',ParameterValue, ...)

Description
BasketStockSpec =
basketstockspec(Sigma,AssetPrice,Quantity,Correlation) creates a basket
stock structure.

BasketStockSpec =
basketstockspec(Sigma,AssetPrice,Quantity,Correlation,'ParameterName
',ParameterValue, ...) accepts optional inputs as one or more comma-separated
parameter/value pairs. 'ParameterName' is the name of the parameter inside single
quotes. ParameterValue is the value corresponding to 'ParameterName'. Specify
parameter-value pairs in any order. Names are case-insensitive and partial matches are
allowable, if no ambiguities exist.

Input Arguments
Sigma

NINST-by-1 vector of decimal annual price volatility of the underlying security.

AssetPrice

NINST-by-1 vector of underlying asset price values at time 0.
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Quantity

NINST-by-1 vector of quantities of the instruments contained in the basket.

Correlation

NINST-by-NINST matrix of correlation values.

Parameter–Value Pairs
DividendAmounts

NINST-by-1 cell array specifying the dividend amounts for basket instruments. Each
element of the cell array is a 1-by-NDIV row vector of cash dividends or a scalar
representing a continuous annualized dividend yield for the corresponding instrument.

DividendType

NINST-by-1 cell array of character vectors specifying each stock's dividend type. Dividend
type must be either cash for actual dollar dividends or continuous for continuous
dividend yield.

ExDividendDates

NINST-by-1 cell array specifying the ex-dividend dates for the basket instruments. Each
row is a 1-by-NDIV matrix of ex-dividend dates for cash type. For rows that correspond to
basket instruments with continuous dividend type, the cell is empty. If none of the
basket instruments pay continuous dividends, do not specify ExDividendDates.

Output Arguments
BasketStockSpec

Structure encapsulating the properties of a basket stock structure.

Examples
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Create a Basket Stock Structure for Three Stocks

Find a basket option of three stocks. The stocks are currently trading at $56, $92 and
$125 with annual volatilities of 20%, 12% and 15%, respectively. The basket option
contains 25% of the first stock, 40% of the second stock, and 35% of the third. The first
stock provides a continuous dividend of 1%, while the other two provide no dividends. The
correlation between the first and second asset is 30%, between the second and third asset
11%, and between the first and third asset 16%. Use this data to create the
BasketStockSpec structure:

AssetPrice = [56;92;125];
Sigma = [0.20;0.12;0.15];

% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
NumInst  = 3;
Corr = zeros(NumInst,1);
Corr(1,2) = .30;
Corr(2,3) = .11;
Corr(1,3) = .16;
Corr = triu(Corr,1) + tril(Corr',-1) + diag(ones(NumInst,1), 0);

% Define dividends
DivType = cell(NumInst,1);
DivType{1}='continuous';
DivAmounts = cell(NumInst,1);
DivAmounts{1} = 0.01;

Quantity = [0.25; 0.40; 0.35];

BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Corr, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts)

BasketStockSpec = struct with fields:
             FinObj: 'BasketStockSpec'
              Sigma: [3x1 double]
         AssetPrice: [3x1 double]
           Quantity: [3x1 double]
        Correlation: [3x3 double]
       DividendType: {3x1 cell}
    DividendAmounts: {3x1 cell}
    ExDividendDates: {3x1 cell}
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Examine the BasketStockSpec structure.

BasketStockSpec.Correlation

ans = 3×3

    1.0000    0.3000    0.1600
    0.3000    1.0000    0.1100
    0.1600    0.1100    1.0000

Create a Basket Stock Structure for Two Stocks

Find a basket option of two stocks. The stocks are currently trading at $60 and $55 with
volatilities of 30% per annum. The basket option contains 50% of each stock. The first
stock provides a cash dividend of $0.25 on May 1, 2009 and September 1, 2009. The
second stock provides a continuous dividend of 3%. The correlation between the assets is
40%. Use this data to create the structure BasketStockSpec:

AssetPrice = [60;55];
Sigma = [0.30;0.30];

% Create the Correlation matrix. Correlation matrices are symmetric and
% have ones along the main diagonal.
Correlation = [1 0.40;0.40 1];

% Define dividends
NumInst  = 2;
DivType = cell(NumInst,1);
DivType{1}='cash';
DivType{2}='continuous';

DivAmounts = cell(NumInst,1);
DivAmounts{1} = [0.25 0.25];
DivAmounts{2} = 0.03;

ExDates = cell(NumInst,1);
ExDates{1} = {'May-1-2009' 'Sept-1-2009'};

Quantity = [0.5; 0.50];
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BasketStockSpec = basketstockspec(Sigma, AssetPrice, Quantity, Correlation, ...
'DividendType', DivType, 'DividendAmounts', DivAmounts, 'ExDividendDates',ExDates)

BasketStockSpec = struct with fields:
             FinObj: 'BasketStockSpec'
              Sigma: [2x1 double]
         AssetPrice: [2x1 double]
           Quantity: [2x1 double]
        Correlation: [2x2 double]
       DividendType: {2x1 cell}
    DividendAmounts: {2x1 cell}
    ExDividendDates: {2x1 cell}

Examine the BasketStockSpec structure.

BasketStockSpec.DividendType

ans = 2x1 cell array
    {'cash'      }
    {'continuous'}

See Also
basketbyju | basketbyls | basketsensbyju | basketsensbyls |
basketstockspec | intenvset | stockspec

Topics
“Portfolio Creation” on page 1-8
“Hedging Functions” on page 4-4
“Instrument Constructors” on page 1-20
“Supported Equity Derivatives” on page 3-24

Introduced in R2009b
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bdtprice
Instrument prices from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = bdtprice(BDTTree,InstSet)
[Price,PriceTree] = bdtprice( ___ ,Options)

Description
[Price,PriceTree] = bdtprice(BDTTree,InstSet) computes arbitrage-free
prices for instruments using an interest-rate tree created with bdttree. All instruments
contained in a financial instrument variable, InstSet, are priced.

bdtprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor', 'RangeFloat',
'Swap'. See instadd to construct defined types.

[Price,PriceTree] = bdtprice( ___ ,Options) adds an optional input argument
for Options.

Examples

Price a Cap and Bond Instruments Contained in an Instrument Set

Load the BDT tree and instruments from the data file deriv.mat to price the cap and
bond instruments contained in the instrument set.

load deriv.mat; 
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'});

instdisp(BDTSubSet)

instdisp(BDTSubSet)
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name     Quantity
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1     Bond 0.1        01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond 100     
2     Bond 0.1        01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond  50     
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name    Quantity
3     Cap  0.15   01-Jan-2000    01-Jan-2004    1        NaN   NaN       15% Cap 30      

Price the bond and cap.

[Price, PriceTree] = bdtprice(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In checktree at 289
  In bdtprice at 85 

Price =

   95.5030
   93.9079
    1.4375

PriceTree = 

    FinObj: 'BDTPriceTree'
     PTree: {[3x1 double]  [3x2 double]  [3x3 double]  [3x4 double]  [3x4 double]}
    AITree: {[3x1 double]  [3x2 double]  [3x3 double]  [3x4 double]  [3x4 double]}
      tObs: [0 1 2 3 4]

You can use the treeviewer function to see the prices of these three instruments along
the price tree.
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Price Multi-Stepped Coupon Bonds

Price the following multi-stepped coupon bonds using the following data:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
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RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

% Display the instrument portfolio 
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build a BDTTree to price the stepped coupon bonds. Assume the volatility to be 10%

Sigma = 0.1; 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% Compute the price of the stepped coupon bonds
PBDT = bdtprice(BDTT, ISet)

PBDT = 4×1

  100.6763
  100.7368
  100.9266
  101.0115

Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

Price a portfolio of stepped callable bonds and stepped vanilla bonds using the following
data: The data for the interest rate term structure is as follows:
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Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

%Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio of 3 stepped callable bonds and three
% stepped vanilla bonds
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option 
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
                    
% Vanilla bonds 
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

% Display the instrument portfolio
instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build a BDTTree and price the instruments. Build the tree Assume the volatility to be
10%

Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
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BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

%The first three rows corresponds to the price of the stepped callable bonds and the
%last three rows corresponds to the price of the stepped vanilla bonds.
PBDT = bdtprice(BDTT, ISet)

PBDT = 6×1

  100.4799
  100.3228
  100.0840
  100.7368
  100.9266
  101.0115

Price a Portfolio with Range Notes and a Floating Rate Note

Compute the price of a portfolio with range notes and a floating rate note using the
following data: The data for the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

%  Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
  
% Create an instrument portfolio with two range notes and a floating rate
% note with the following data:
Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note:
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];
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% Second Range Note:
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

% Create InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
 

Build a BDTTree and price the instruments. Build the tree Assume the volatility to be
10%.

Sigma = 0.1;  
BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVS, RS, BDTTS);

% Price the portfolio 
Price = bdtprice(BDTT, InstSet)

Price = 3×1

  100.2841
   98.0757
  105.5147

Create a Float-Float Swap and Price with bdtprice

Use instswap to create a float-float swap and price the swap with bdtprice.
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RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]);
TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1));
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec);
bdtprice(BDTTree,IS)

ans = -4.3220

Price Multiple Swaps with bdtprice

Use instswap to create multiple swaps and price the swaps with bdtprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = bdtvolspec(today,datemnth(today,[10 60]),[.01 .02]);
TimeSpec = bdttimespec(today,cfdates(today,datemnth(today,60),1));
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec);
bdtprice(BDTTree,IS)

ans =

    4.3220
   -4.3220
   -0.2701

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

InstSet — Instrument variable
structure
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Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument at time 0
vector

Price for each instrument at time 0, returned as a NINST-by-1 vector. The prices are
computed by backward dynamic programming on the interest-rate tree. If an instrument
cannot be priced, a NaN is returned in that entry.

Related single-type pricing functions are:

• bondbybdt — Price a bond from a BDT tree.
• capbybdt — Price a cap from a BDT tree.
• cfbybdt — Price an arbitrary set of cash flows from a BDT tree.
• fixedbybdt — Price a fixed-rate note from a BDT tree.
• floatbybdt — Price a floating-rate note from a BDT tree.
• floorbybdt — Price a floor from a BDT tree.
• optbndbybdt — Price a bond option from a BDT tree.
• optfloatbybdt — Price a floating-rate note with an option from a BDT tree.
• optemfloatbybdt — Price a floating-rate note with an embedded option from a BDT

tree.
• optembndbybdt — Price a bond with embedded option by a BDT tree.
• rangefloatbybdt — Price range floating note using a BDT tree.
• swapbybdt — Price a swap from a BDT tree.
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• swaptionbybdt — Price a swaption from a BDT tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
bdtsens | bdttree | instadd | intenvprice | intenvsens

Topics
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bdtsens
Instrument prices and sensitivities from Black-Derman-Toy interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = bdtsens(BDTTree,InstSet)
[Delta,Gamma,Vega,Price] = bdtsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = bdtsens(BDTTree,InstSet) computes instrument
sensitivities and prices for instruments using an interest-rate tree created with the
bdttree function. All sensitivities are returned as dollar sensitivities. To find the per-
dollar sensitivities, divide by the respective instrument price.

bdtsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = bdtsens( ___ ,Options) adds an optional input
argument for Options.

Examples

Compute Instrument Sensitivities and Prices for Cap and Bond instruments

Load the tree and instruments from the deriv.mat data file.

load deriv.mat; 
BDTSubSet = instselect(BDTInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(BDTSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name     Quantity
1     Bond 0.1        01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond 100     
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2     Bond 0.1        01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  10% Bond  50     
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name    Quantity
3     Cap  0.15   01-Jan-2000    01-Jan-2004    1        NaN   NaN       15% Cap 30      
 

Compute Delta and Gamma for the cap and bond instruments contained in the instrument
set.

[Delta, Gamma] = bdtsens(BDTTree, BDTSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Delta = 3×1

 -232.6681
 -281.0517
   63.8102

Gamma = 3×1
103 ×

    0.8037
    1.1819
    1.8535

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
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Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in
interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate,
returned as a NINST-by-1 vector of deltas. Delta is computed by finite differences in calls
to bdttree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in
interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate,
returned as a NINST-by-1 vector of gammas. Gamma is computed by finite differences in
calls to bdttree.

Note Gamma is calculated based on yield shifts of 100 basis points.

Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as

a NINST-by-1 vector of vegas. Volatility is s t T,( )  of the interest rate. Vega is computed
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by finite differences in calls to bdttree. For information on the volatility process, see
bdtvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

See Also
bdtprice | bdttree | bdtvolspec | instadd

Topics
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bdttimespec
Specify time structure for Black-Derman-Toy interest-rate tree

Syntax
TimeSpec = bdttimespec(ValuationDate,Maturity)
TimeSpec = bdttimespec( ___ ,Compounding)

Description
TimeSpec = bdttimespec(ValuationDate,Maturity) sets the number of levels
and node times for a bdttree and determines the mapping between dates and time for
rate quoting.

TimeSpec = bdttimespec( ___ ,Compounding) adds the optional argument
Compounding.

Examples

Specify a Five-Period Tree with Annual Nodes

This example shows how to specify a five-period tree with annual nodes and use annual
compounding to report rates.

Compounding = 1;
ValuationDate = '01-01-2000';
Maturity = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];

TimeSpec = bdttimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'BDTTimeSpec'
    ValuationDate: 730486
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         Maturity: [5x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector

Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial
date numbers or date character vectors. Cash flows with these maturities fall on tree
nodes. Maturity should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when
annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized,
specified as a scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate,
and T is the time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a
number of days elapsed computed by basis.
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• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for bdttree
structure

Specification for the time layout for bdttree, returned as a structure. The state
observation dates are [ValuationDate; Maturity(1:end-1)]. Because a forward
rate is stored at the last observation, the tree can value cash flows out to Maturity(end).

See Also
bdtprice | bdttree | bdtvolspec | instadd

Topics
“Specifying the Time Structure (TimeSpec)” on page 2-85
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bdttree
Build Black-Derman-Toy interest-rate tree

Syntax
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec)

Description
BDTTree = bdttree(VolSpec,RateSpec,TimeSpec) creates a structure containing
time and interest-rate information on a recombining tree.

Examples

Create a BDTTree

Using the data provided, create a BDT volatility specification (using bdtvolspec), rate
specification (using intenvset), and tree time layout specification (using
bdttimespec). Then use these specifications to create a BDT tree with bdttree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ValuationDate;
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];

RateSpec = intenvset('Compounding', Compounding,...
             'ValuationDate', ValuationDate,...
             'StartDates', StartDate,...
             'EndDates', EndDates,...
             'Rates', Rates);
     
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
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BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Use treeviewer to observe the tree you have created.

treeviewer(BDTTree)
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Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from
bdtvolspec.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure
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Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from
bdttimespec. The TimeSpec defines the observation dates of the BDT tree and the
Compounding rule for date to time mapping and price-yield formulas.
Data Types: struct

Output Arguments
BDTTree — Time and interest-rate information of a recombining tree
structure

Time and interest-rate information of a recombining tree, returned as a structure.

See Also
bdtprice | bdttimespec | bdttree | bdtvolspec | instadd | intenvset

Topics
“Specifying the Interest-Rate Term Structure (RateSpec)” on page 2-84
“Specifying the Time Structure (TimeSpec)” on page 2-85
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bdtvolspec
Specify Black-Derman-Toy interest-rate volatility process

Syntax
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve)
VolSpec = bdtvolspec( ___ ,InterpMethod)

Description
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve) creates a structure
specifying the volatility for bdttree.

VolSpec = bdtvolspec( ___ ,InterpMethod) adds the optional argument
InterpMethod.

Examples

Create a BDT Volatility Specification

This example shows how to create a BDT volatility specification (VolSpec) using the
following data.

ValuationDate = '01-01-2000';
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005'];
Volatility = [.2; .19; .18; .17; .16];

BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

BDTVolSpec = struct with fields:
             FinObj: 'BDTVolSpec'
      ValuationDate: 730486
           VolDates: [5x1 double]
           VolCurve: [5x1 double]
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    VolInterpMethod: 'linear'

Input Arguments
ValuationDate — Observation date of the investment horizon
serial date number | character vector date

Observation date of the investment horizon, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

VolDates — Number of points of yield volatility end dates
serial date number | date character vector

Number of points of yield volatility end dates, specified as a NPOINTS-by-1 vector of serial
date numbers or date character vectors.
Data Types: double | char | cell

VolCurve — Yield volatility values
decimal

Yield volatility values, specified as a NPOINTS-by-1 vector of decimal values. The term
structure of VolCurve is the yield volatility represented by the value of the volatility of
the yield from time t = 0 to time t + i, where i is any point within the volatility curve.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector with values supported by interp1

(Optional) Interpolation method, specified as a character vector with values supported by
interp1.
Data Types: char
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Output Arguments
VolSpec — Specification for the volatility model for bdttree
structure

Structure specifying the volatility model for bdttree.

See Also
bdttree | interp1

Topics
“Specifying the Volatility Model (VolSpec)” on page 2-82
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bkprice
Instrument prices from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = bkprice(BKTree,InstSet)
[Price,PriceTree] = bkprice( ___ ,Options)

Description
[Price,PriceTree] = bkprice(BKTree,InstSet) computes arbitrage-free prices
for instruments using an interest-rate tree created with bktree. All instruments
contained in a financial instrument variable, InstSet, are priced.

bkprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd to construct defined types.

[Price,PriceTree] = bkprice( ___ ,Options) adds an optional input argument for
Options.

Examples

Price Cap and Bond Instruments in the Instrument Set

Load the BK tree and instruments from the data file deriv.mat. Price the cap and bond
instruments contained in the instrument set.

load deriv.mat; 
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(BKSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.03       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 20      
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2     Bond 0.03       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.04   01-Jan-2004    01-Jan-2008    1        0     100       4% Cap 10      
 

[Price, PriceTree] = bkprice(BKTree, BKSubSet)

Price = 3×1

   98.1096
   95.6734
    2.2706

PriceTree = struct with fields:
     FinObj: 'BKPriceTree'
      PTree: {1x5 cell}
     AITree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

You can use treeviewer to see the prices of these three instruments along the price
tree.
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Price Multi-Stepped Coupon Bonds

Price the following multi-stepped coupon bonds using the following data:

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the BKTree with the following data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Compute the price of the stepped coupon bonds.

PBK = bkprice(BKT, ISet)

11 Functions — Alphabetical List

11-214



PBK = 4×1

  100.6763
  100.7368
  100.9266
  101.0115

Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

Price a portfolio of stepped callable bonds and stepped vanilla bonds using the following
data:

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio of 3 stepped callable bonds and three
% stepped vanilla bonds
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; % Callable in one year

% Bonds with embedded option 
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
                    
% Vanilla bonds 
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);
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% Display the instrument portfolio
instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the BKTree with the following data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Compute the price, where the first three rows of the output corresponds to the price of
the stepped callable bonds and the last three rows corresponds to the price of the
stepped vanilla bonds.

PBK = bkprice(BKT, ISet)

PBK = 6×1

  100.6729
  100.6763
  100.6763
  100.7368
  100.9266
  101.0115
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Price a Portfolio of Range Notes and Floating-Rate Notes

Price a portfolio of range notes and floating-rate notes using the following data:

% The data for the interest rate term structure is as follows:
Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

%  Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create an instrument portfolio with two range notes and a floating rate
% note with the following data:
Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note:
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Second Range Note:
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

% Create InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
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Build the BKTree with the following data:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVS, RS, BKTS);

Price the portfolio.

Price = bkprice(BKT, InstSet)

Price = 3×1

  105.5147
  101.4805
  105.5147

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure
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(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument at time 0
vector

Price for each instrument at time 0, returned as a NINST-by-1 vector. The prices are
computed by backward dynamic programming on the interest-rate tree. If an instrument
cannot be priced, a NaN is returned in that entry.

Related single-type pricing functions are:

• bondbybk — Price a bond from a Black-Karasinski tree.
• capbybk — Price a cap from a Black-Karasinski tree.
• cfbybk — Price an arbitrary set of cash flows from a Black-Karasinski tree.
• fixedbybk — Price a fixed-rate note from a Black-Karasinski tree.
• floatbybk — Price a floating-rate note from a Black-Karasinski tree.
• floorbybk — Price a floor from a Black-Karasinski tree.
• optbndbybk — Price a bond option from a Black-Karasinski tree.
• optembndbybk — Price a bond with embedded option by a Black-Karasinski tree.
• optfloatbybk — Price a floating-rate note with an option from a Black-Karasinski

tree.
• optemfloatbybk — Price a floating-rate note with an embedded option from a Black-

Karasinski tree.
• rangefloatbybk — Price range floating note from a Black-Karasinski tree.
• swapbybk — Price a swap from a Black-Karasinski tree.
• swaptionbybk — Price a swaption from a Black-Karasinski tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:
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• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bdttree | bksens | instadd | intenvprice | intenvsens

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bksens
Instrument prices and sensitivities from Black-Karasinski interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = bktsens(BKTree,InstSet)
[Delta,Gamma,Vega,Price] = bksens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = bktsens(BKTree,InstSet) computes instrument
sensitivities and prices for instruments using an interest-rate tree created with the
bktree function. All sensitivities are returned as dollar sensitivities. To find the per-dollar
sensitivities, divide by the respective instrument price.

bksens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = bksens( ___ ,Options) adds an optional input
argument for Options.

Examples

Compute Instrument Sensitivities and Prices for Cap and Bond Instruments

Load the tree and instruments from the deriv.mat data file.

load deriv.mat; 
BKSubSet = instselect(BKInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(BKSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.03       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 20      
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2     Bond 0.03       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  3% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.04   01-Jan-2004    01-Jan-2008    1        0     100       4% Cap 10      
 

Compute Delta and Gamma for the cap and bond instruments contained in the instrument
set.

[Delta, Gamma] = bksens(BKTree, BKSubSet)

Delta = 3×1

 -285.7151
 -365.7048
  189.5319

Gamma = 3×1
103 ×

    0.8456
    1.4345
    6.9999

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct
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Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in
interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate,
returned as a NINST-by-1 vector of deltas. Delta is computed by finite differences in calls
to bktree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in
interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate,
returned as a NINST-by-1 vector of gammas. Gamma is computed by finite differences in
calls to bktree.

Note Gamma is calculated based on yield shifts of 100 basis points.

Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as

a NINST-by-1 vector of vegas. Volatility is s t T,( )  of the interest rate. Vega is computed
by finite differences in calls to bktree. For information on the volatility process, see
bkvolspec.
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Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

See Also
bkprice | bktree | bkvolspec | instadd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bktimespec
Specify time structure for Black-Karasinski tree

Syntax
TimeSpec = bktimespec(ValuationDate,Maturity)
TimeSpec = bktimespec( ___ ,Compounding)

Description
TimeSpec = bktimespec(ValuationDate,Maturity) sets the number of levels and
node times for a bktree and determines the mapping between dates and time for rate
quoting.

TimeSpec = bktimespec( ___ ,Compounding) adds the optional argument
Compounding.

Examples

Specify a Four-Period Tree with Annual Nodes

This example shows how to specify a four-period tree with annual nodes using annual
compounding to report rates.

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
Compounding = 1;
TimeSpec = bktimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'BKTimeSpec'
    ValuationDate: 731947
         Maturity: [4x1 double]
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      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector

Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial
date numbers or date character vectors. Cash flows with these maturities fall on tree
nodes. Maturity should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when
annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized,
specified as a scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate,
and T is the time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a
number of days elapsed computed by basis.

• If Compounding = −1:
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Disc = exp(-T*Z), where T is time in years.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for bktree
structure

Specification for the time layout for bktree, returned as a structure. The state
observation dates are [ValuationDate; Maturity(1:end-1)]. Because a forward
rate is stored at the last observation, the tree can value cash flows out to Maturity(end).

See Also
bksens | bktree | bkvolspec

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Specifying the Time Structure (TimeSpec)” on page 2-85
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bktree
Build Black-Karasinski interest-rate tree

Syntax
BKTree = bktree(VolSpec,RateSpec,TimeSpec)
BKTree = bktree( ___ ,Name,Value)

Description
BKTree = bktree(VolSpec,RateSpec,TimeSpec) creates a structure containing
time and interest-rate information on a recombining tree.

BKTree = bktree( ___ ,Name,Value) adds additional name-value pair arguments.

Examples

Create a BKTree

Using the data provided, create a BK volatility specification (using bkvolspec), rate
specification (using intenvset), and tree time layout specification (using bktimespec).
Then use these specifications to create a BK tree using bktree.

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];

BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...  
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AlphaDates, AlphaCurve);

RateSpec = intenvset('Compounding', Compounding,...
             'ValuationDate', ValuationDate,...
             'StartDates', ValuationDate,...
             'EndDates', VolDates,...
             'Rates', Rates);
 
BKTimeSpec = bktimespec(ValuationDate, VolDates, Compounding);

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKTree = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.9973 1.9973 2.9973]
        dObs: [731947 732312 732677 733042]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [3.9973]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0278]  [1.0361 1.0355 1.0349]  [1x5 double]  [1x7 double]}

Use treeviewer to observe the tree you have created.

treeviewer(BKTree)
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Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from
bdtvolspec.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure
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Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from
bdttimespec. The TimeSpec defines the observation dates of the BK tree and the
Compounding rule for date to time mapping and price-yield formulas.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: BKTree = bktree(BKVolSpec, RateSpec,
BKTimeSpec,'Method','HW1996')

Method — Hull-White method upon which the tree-node connectivity algorithm is
based
'HW2000' (default) | character vector with values 'HW2000' or 'HW1996'

Hull-White method upon which the tree-node connectivity algorithm is based, specified as
a character vector with a value of 'HW2000' or 'HW1996'.

bktree supports two tree-node connectivity algorithms. HW1996 is based on the original
paper published in the Journal of Derivatives, and HW2000 is the general version of the
algorithm, as specified in the paper published in August 2000.
Data Types: char

Output Arguments
BKTree — Time and interest-rate information of a recombining tree
structure
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Time and interest-rate information of a recombining tree, returned as a structure.

References
[1] Hull, J., and A. White. "Using Hull-White Interest Rate Trees." Journal of Derivatives.

1996.

[2] Hull, J., and A. White. "The General Hull-White Model and Super Calibration." August
2000.

See Also
bkprice | bksens | bktimespec | bkvolspec | intenvset

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bkvolspec
Specify Black-Karasinski interest-rate volatility process

Syntax
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,
AlphaCurve)
VolSpec = bdtvolspec( ___ ,InterpMethod)

Description
VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,
AlphaCurve) creates a structure specifying the volatility for bktree.

VolSpec = bdtvolspec( ___ ,InterpMethod) adds the optional argument
InterpMethod.

Examples

Create a Black-Karasinski Volatility Specification

This example shows how to create a Black-Karasinski volatility specification (VolSpec)
using the following data.

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve,...
AlphaDates, AlphaCurve)
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BKVolSpec = struct with fields:
             FinObj: 'BKVolSpec'
      ValuationDate: 731947
           VolDates: [4x1 double]
           VolCurve: [4x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 733408
    VolInterpMethod: 'linear'

Input Arguments
ValuationDate — Observation date of the investment horizon
serial date number | character vector date

Observation date of the investment horizon, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

VolDates — Number of points of yield volatility end dates
serial date number | date character vector

Number of points of yield volatility end dates, specified as a NPOINTS-by-1 vector of serial
date numbers or date character vectors.
Data Types: double | char | cell

VolCurve — Yield volatility values
decimal

Yield volatility values, specified as a NPOINTS-by-1 vector of decimal values. The term
structure of VolCurve is the yield volatility represented by the value of the volatility of
the yield from time t = 0 to time t + i, where i is any point within the volatility curve.
Data Types: double

AlphaDates — Mean reversion end dates
serial date number | date character vector

Mean reversion end dates, specified as a NPOINTS-by-1 vector of serial date numbers or
date character vectors.
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Data Types: double | char | cell

AlphaCurve — Positive mean reversion values
positive decimal

Positive mean reversion values, specified as a NPOINTS-by-1 vector of positive decimal
values.
Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector with values supported by interp1

(Optional) Interpolation method, specified as a character vector with values supported by
interp1.
Data Types: char

Output Arguments
VolSpec — Specification for the volatility model for bktree
structure

Structure specifying the volatility model for bktree.

See Also
bkprice | bktimespec | bktree | interp1

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Specifying the Volatility Model (VolSpec)” on page 2-82
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bondbybdt
Price bond from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = bondbybdt(BDTTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbybdt(BDTTree,CouponRate,Settle,Maturity)
prices bond from a Black-Derman-Toy interest-rate tree. bondbybdt computes prices of
vanilla bonds, stepped coupon bonds and amortizing bonds.

[Price,PriceTree] = bondbybdt( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Bond Using a BDT Tree

Price a 10% bond using a BDT interest-rate tree.

Load deriv.mat, which provides BDTTree. The BDTTree structure contains the time
and interest-rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Period = 1;
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Use bondbybdt to compute the price of the bond.

Price = bondbybdt(BDTTree, CouponRate, Settle, Maturity, Period)

Price = 95.5030

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;
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Build the BDT tree and assume the volatility to be 10% using the following market data:

Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec)

BDTT = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {1x4 cell}

Compute the price of the stepped coupon bonds.

PBDT= bondbybdt(BDTT, CouponRate, Settle,Maturity , Period)

PBDT = 4×1

  100.7246
  100.0945
  101.5900
  102.0820

Price Two Bonds with Amortization Schedules

Price two bonds with amortization schedules using the Face input argument to define the
schedule.

Define the interest-rate term structure.

Rates = 0.035;
ValuationDate = '1-Nov-2011';
StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;
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Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create the bond instrument. The bonds have a coupon rate of 4% and 3.85%, a period of
one year, and mature on 1-Nov-2017.

CouponRate = [0.04; 0.0385];
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

Build the BDT tree and assume the volatility to be 10%.

MatDates = {'1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2017'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.1;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing bonds.

Price = bondbybdt(BDTT, CouponRate, Settle, Maturity, 'Period',Period,...
'Face', Face)

Price = 2×1

  102.4791
  101.7786

Input Arguments
BDTTree — Interest-rate structure
structure

Interest-rate tree structure, created by bdttree
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Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every bond is set to the ValuationDate of the BDT tree. The bond
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
bondbybdt(BDTTree,CouponRate,Settle,Maturity,'Period',4,'Face',
10000)

Period — Coupons per year
2 per year (default) | vector
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Coupons per year, specified as the comma-separated pair consisting of 'Period' and an
NINST-by-1 vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

 bondbybdt

11-241



• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number
or date character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or
date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char
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StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector of nonnegative face values or an NINST-by-1 cell array of face values
or face value schedules. For the latter case, each element of the cell array is a NumDates-
by-2 cell array, where the first column is dates and the second column is its associated
face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
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BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

Definitions

Vanilla Bond
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment.

Stepped Coupon Bond
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond.

Bond with an Amortization Schedule
An amortized bond is treated as an asset, with the discount amount being amortized to
interest expense over the life of the bond.

See Also
bdtprice | bdttree | cfamounts | instbond
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Topics
“Computing Instrument Sensitivities” on page 2-108
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding the Interest-Rate Term Structure” on page 2-55
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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blackvolbyrebonato
Compute Black volatility for LIBOR Market Model using Rebonato formula

Syntax
outVol = blackvolbyrebonato(ZeroCurve,VolFunc,CorrMat,ExerciseDate,
Maturity)
outVol = blackvolbyrebonato( ___ ,Name,Value)

Description
outVol = blackvolbyrebonato(ZeroCurve,VolFunc,CorrMat,ExerciseDate,
Maturity) computes the Black volatility for a swaption using a LIBOR Market Model.

outVol = blackvolbyrebonato( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price Swaption for LIBOR Market Model Using the Rebonato Formula

Define the input maturity and tenor for a LIBOR Market Model (LMM) specified by the
cell array of volatility function handles, and a correlation matrix for the LMM.

Settle = datenum('11-Aug-2004');
  
% Zero Curve
CurveTimes = (1:10)';
CurveDates = daysadd(Settle,360*CurveTimes,1);
  
ZeroRates = [0.03 0.033 0.036 0.038 0.04 0.042 0.043 0.044 0.045 0.046]';
  
% Construct an IRCurve
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
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LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = length(ZeroRates);
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};
  
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
CorrMat = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
  
ExerciseDate = datenum('11-Aug-2009');
Maturity = daysadd(ExerciseDate,360*[3;4],1);
  
Vol = blackvolbyrebonato(irdc,VolFunc,CorrMat,ExerciseDate,Maturity,'Period',1)

Vol = 2×1

    0.2210
    0.2079

Input Arguments
ZeroCurve — Zero-curve for LiborMarketModel model
structure

Zero-curve for the LiborMarketModel, specified using IRDataCurve or RateSpec.
Data Types: struct

VolFunc — Function handle for volatility
cell array of function handles

Function handle for volatility, specified by a NumRates-by-1 cell array of function handles.
Each function handle must take time as an input and return a scalar volatility
Data Types: cell | function_handle

CorrMat — Correlation matrix
vector

Correlation matrix, specified by NumRates-by-NumRates.
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Data Types: single | double

ExerciseDate — Swaption exercise date
serial date number | vector of serial date numbers | date character vector

Swaption exercise dates, specified by a NumSwaptions-by-1 vector of serial date
numbers or date character vectors.
Data Types: single | double | char | cell

Maturity — Swap maturity date
serial date number | vector of serial date numbers | date character vector

Swap maturity dates, specified using a NumSwaptions-by-1 vector of serial date numbers
or date character vectors.
Data Types: single | double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Vol =
blackvolbyrebonato(irdc,VolFunc,CorrMat,ExerciseDate,Maturity,'Perio
d',1)

Period — Compounding frequency of curve and reset of swaptions
2 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Compounding frequency of curve and reset of swaptions, specified as the comma-
separated pair consisting of 'Period' and a positive integer for the values 1,2,4,6,12
in a NumSwaptions-by-1 vector.
Data Types: single | double
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Output Arguments
outVol — Black volatility for specified swaption
scalar | vector

Black volatility, returned as a vector for the specified swaptions.

Algorithms
The Rebonato approximation formula relates the Black volatility for a European swaption,
given a set of volatility functions and a correlation matrix
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References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer

Finance, 2006.

See Also
LiborMarketModel

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2
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Introduced in R2013a
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blackvolbysabr
Calculate implied Black volatility using SABR model

Syntax
outVol = blackvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,
ForwardValue,Strike)
outVol = blackvolbysabr( ___ ,Name,Value)

Description
outVol = blackvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,
ForwardValue,Strike) calculates the implied Black volatility using the SABR
stochastic volatility model.

outVol = blackvolbysabr( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Implied Black Volatility Using the SABR Model

Define the model parameters and option data.

ForwardRate = 0.0357;
Strike = 0.03;
Alpha = 0.036;
Beta = 0.5;
Rho = -0.25;
Nu = 0.35;
  
Settle = datenum('15-Sep-2013');
ExerciseDate = datenum('15-Sep-2015');

Compute the Black volatility using the SABR model.
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ComputedVols = blackvolbysabr(Alpha, Beta, Rho, Nu, Settle, ...
ExerciseDate, ForwardRate, Strike)

ComputedVols = 0.2122

Compute the Shifted Black Volatility Using the Shifted SABR Model

Define the model parameters and option data with a negative strike.

ForwardRate = 0.0002;
Strike = -0.001;  % -0.1% strike.
Alpha = 0.01;
Beta = 0.5;
Rho = -0.1;
Nu = 0.15;
Shift = 0.005;  % 0.5 percent shift

Settle = datenum('1-Mar-2016');
ExerciseDate = datenum('1-Mar-2017');

Compute the Shifted Black volatility using the Shifted SABR model.

ComputedVols = blackvolbysabr(Alpha, Beta, Rho, Nu, Settle, ...
ExerciseDate, ForwardRate, Strike, 'Shift', Shift)

ComputedVols = 0.1518

Input Arguments
Alpha — Current SABR volatility
scalar

Current SABR volatility, specified as a scalar.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar

SABR CEV exponent, specified as a scalar.
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Data Types: double

Rho — Correlation between forward value and volatility
scalar

Correlation between forward value and volatility, specified as a scalar.
Data Types: double

Nu — Volatility of volatility
scalar

Volatility of volatility, specified as a scalar.
Data Types: double

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as a scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ExerciseDate — Option exercise date
scalar for serial nonnegative date number | scalar for date character vector

Option exercise date, specified as a scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ForwardValue — Current forward value of underlying asset
scalar | vector

Current forward value of the underlying asset, specified as a scalar or vector of size
NumVols-by-1.
Data Types: double

Strike — Option strike price values
scalar | vector

Option strike price values, specified as a scalar value or a vector of size NumVols-by-1.
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Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: outVol =
blackvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,St
rike,'Basis',2,'Model','Obloj2008')

Basis — Day-count basis of instrument
0 (actual/actual) (default) | positive integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer of the set [1...13].

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Model — Version of SABR model
'Hagan2002' (default) | value 'Obloj2008'

Version of SABR model, specified as the comma-separated pair consisting of 'Model' and
one of the following values:

• 'Hagan2002' — Original version by Hagan et al. (2002)
• 'Obloj2008' — Version by Obloj (2008)

Data Types: char

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model),
specified as the comma-separated pair consisting of 'Shift' and a scalar positive
decimal value. Set this parameter to a positive shift in decimals to add a positive shift to
ForwardValue and Strike, which effectively sets a negative lower bound for
ForwardValue and Strike. For example, a Shift value of 0.01 is equal to a 1% shift.
Data Types: double

Output Arguments
outVol — Implied Black volatility computed by SABR model
scalar | vector

Implied Black volatility computed by SABR model, returned as a scalar or vector of size
NumVols-by-1.

Algorithms
The SABR stochastic volatility model treats the underlying forward F̂  and volatility â  as
separate random processes, which are related with correlation r :
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•
F̂  is the underlying forward (a variable).

•
F  is the current underlying forward (a constant).

•
â  is the SABR volatility (a variable).

• a  is the current SABR volatility (a constant).
• b  is the SABR constant elasticity of variance (CEV) exponent.
• u  is the volatility of volatility.
•

dW
1  is Brownian motion.

•
dW

2  is Brownian motion.
• r  is the correlation between forward value and volatility.

In contrast, Black's lognormal model assumes a constant volatility, s B .

dF FdW
B

ˆ ˆ
= s

Hagan et al. (2002) derived the following closed-form approximation of implied Black

lognormal volatility (s
B ) for the SABR model
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•
F  is the current forward value of the underlying.

• a  is the current SABR volatility.
•

K  is the strike value.
•

T  is the time to option maturity.

Obloj (2008) advocated the following closed-form approximation of implied Black

lognormal volatility for the SABR model (for b < 1 )
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These expressions can be simplified in special situations, such as the at-the-money

( F K=  ) and stochastic lognormal ( b  = 1) cases [1,2].
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References
[1] Hagan, P. S., D. Kumar, A.S. Lesniewski, and D.E. Woodward. “Managing Smile Risk.”
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See Also
optsensbysabr | swaptionbyblk | swaptionbynormal

Topics
“Calibrate the SABR Model” on page 2-36
“Price a Swaption Using the SABR Model” on page 2-42
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-27
“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2014a
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bondbybk
Price bond from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = bondbybk(BKTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbybk(BKTree,CouponRate,Settle,Maturity) prices
bond from a Black-Karasinski interest-rate tree. bondbybk computes prices of vanilla
bonds, stepped coupon bonds and amortizing bonds.

[Price,PriceTree] = bondbybk( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Bond Using a BK Tree

Price a 4% bond using a Black-Karasinski interest-rate tree.

Load deriv.mat, which provides BKTree. The BKTree structure contains the time and
interest-rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

Use bondbybk to compute the price of the bond.
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Price = bondbybk(BKTree, CouponRate, Settle, Maturity)

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price = 98.0300

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012';...
'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
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CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the BK tree using the following market data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

Compute the price of the stepped coupon bonds.

PBK= bondbybk(BKT, CouponRate, Settle,Maturity , Period)

PBK = 4×1

  100.7246
  100.0945
  101.5900
  102.0820

Price a Bond with an Amortization Schedule

Price a bond with an amortization schedule using the Face input argument to define the
schedule.

Define the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;

Create the RateSpec.
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RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.6853
            Rates: 0.0650
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the bond instrument. The bond has a coupon rate of 7%, a period of one year, and
matures on 1-Jan-2017.

CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Build the BK tree with the following market data:

VolDates = ['1-Jan-2012'; '1-Jan-2013';...
'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'];
VolCurve = 0.01;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing bond.

Price = bondbybk(BKT, CouponRate, Settle, Maturity, 'Period', Period,...
'Face', Face)

Price = 102.3155
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Compare the results with price of a vanilla bond.

PriceVanilla = bondbybk(BKT, CouponRate, Settle, Maturity, Period)

PriceVanilla = 102.4205

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every bond is set to the ValuationDate of the BK tree. The bond
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each bond.
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Data Types: char | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
bondbybk(BKTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number
or date character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char
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LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or
date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector of nonnegative face values or an NINST-by-1 cell array of face values
or face value schedules. For the latter case, each element of the cell array is a NumDates-
by-2 cell array, where the first column is dates and the second column is its associated
face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct
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AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
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Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

Definitions

Vanilla Bond
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.
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The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment.

Stepped Coupon Bond
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond.

Bond with an Amortization Schedule
An amortized bond is treated as an asset, with the discount amount being amortized to
interest expense over the life of the bond.

See Also
bkprice | bktree | cfamounts | hwprice | hwtree | instbond

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding the Interest-Rate Term Structure” on page 2-55
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bondbyhjm
Price bond from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = bondbyhjm(HJMTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbyhjm(HJMTree,CouponRate,Settle,Maturity)
prices bond from a Heath-Jarrow-Morton interest-rate tree. bondbyhjm computes prices
of vanilla bonds, stepped coupon bonds and amortizing bonds.

[Price,PriceTree] = bondbyhjm( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Bond Using an HJM Tree

Price a 4% bond using an HJM interest-rate tree.

Load deriv.mat, which provides HJMTree. The HJMTree structure contains the time
and interest-rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use bondbyhjm to compute the price of the bond.
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Price = bondbyhjm(HJMTree, CouponRate, Settle, Maturity)

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price = 97.5280

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Build the HJM tree using the following market data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec);

Compute the price of the stepped coupon bonds.

PHJM= bondbyhjm(HJMT, CouponRate, Settle,Maturity , Period)

PHJM = 4×1
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  100.7246
  100.0945
  101.5900
  102.0820

Price a Bond with an Amortization Schedule

Price a bond with an amortization schedule using the Face input argument to define the
schedule.

Define the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.6853
            Rates: 0.0650
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the bond instrument. The bond has a coupon rate of 7%, a period of one year, and
matures on 1-Jan-2017.

CouponRate = 0.07;
Settle ='1-Jan-2011';
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Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Build the HJM tree using the following market data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015';...
'Jan-1-2016'; 'Jan-1-2017'};
HJMTimeSpec = hjmtimespec(ValuationDate, MaTree);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing bond.

Price = bondbyhjm(HJMT, CouponRate, Settle, Maturity, 'Period',...
Period, 'Face' , Face)

Price = 102.3155

Compare the results with price of a vanilla bond.

PriceVanilla = bondbyhjm(HJMT, CouponRate, Settle, Maturity, Period)

PriceVanilla = 102.4205

Input Arguments
HJMTree — Interest-rate structure
structure

Interest-rate tree structure, created by hjmtree
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
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Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every bond is set to the ValuationDate of the HJM tree. The bond
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
bondbyhjm(HJMTree,CouponRate,Settle,Maturity,'Period',4,'Face',
10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13
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Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical
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IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number
or date character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or
date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
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Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector of nonnegative face values or an NINST-by-1 cell array of face values
or face value schedules. For the latter case, each element of the cell array is a NumDates-
by-2 cell array, where the first column is dates and the second column is its associated
face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.
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• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PBush contains the clean prices.
• PriceTree.AIBush contains the accrued interest.
• PriceTree.tObs contains the observation times.
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Definitions

Vanilla Bond
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment.

Stepped Coupon Bond
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond.

Bond with an Amortization Schedule
An amortized bond is treated as an asset, with the discount amount being amortized to
interest expense over the life of the bond.

See Also
cfamounts | hjmprice | hjmtree | instbond

Topics
“Computing Instrument Prices” on page 2-99
“Understanding the Interest-Rate Term Structure” on page 2-55
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bondbyhw
Price bond from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = bondbyhw(HWTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbyhw(HWTree,CouponRate,Settle,Maturity) prices
bond from a Hull-White interest-rate tree. bondbyhw computes prices of vanilla bonds,
stepped coupon bonds and amortizing bonds.

[Price,PriceTree] = bondbyhw( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Bond Using the HW Tree

Price a 4% bond using a Hull-White interest-rate tree.

Load deriv.mat, which provides HWTree. The HWTree structure contains the time and
interest-rate information needed to price the bond.

load deriv.mat;

Define the bond using the required arguments. Other arguments use defaults.

CouponRate = 0.04;
Settle = '01-Jan-2004';
Maturity = '31-Dec-2008';

Use bondbyhw to compute the price of the bond.
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Price = bondbyhw(HWTree, CouponRate, Settle, Maturity)

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Price = 98.0483

Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;
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Build the HW tree using the following market data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

Compute the price of the stepped coupon bonds.

PHW= bondbyhw(HWT, CouponRate, Settle,Maturity , Period)

PHW = 4×1

  100.7246
  100.0945
  101.5900
  102.0820

Price Two Bonds with Amortization Schedules

Price two bonds with amortization schedules using the Face input argument to define the
schedules.

Define the interest rate term structure.

Rates = 0.035;
ValuationDate = '1-Nov-2011';
StartDates = ValuationDate;
EndDates = '1-Nov-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
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Create the bond instrument. The bonds have a coupon rate of 4% and 3.85%, a period of
one year, and mature on 1-Nov-2017.

CouponRate = [0.04; 0.0385];
Settle ='1-Nov-2011';
Maturity = '1-Nov-2017';
Period = 1;

Define the amortizing schedule.

Face = {{'1-Nov-2015' 100;'1-Nov-2016' 85;'1-Nov-2017' 70};
{'1-Nov-2015' 100;'1-Nov-2016' 90;'1-Nov-2017' 80}};

Build the HW tree and assume the volatility to be 10%.

VolDates = ['1-Nov-2012'; '1-Nov-2013';'1-Nov-2014';'1-Nov-2015';'1-Nov-2016';'1-Nov-2017'];
VolCurve = 0.1;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing bonds.

Price = bondbyhw(HWT, CouponRate, Settle, Maturity, 'Period',Period,...
'Face', Face)

Price = 2×1

  102.4791
  101.7786

Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree.
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Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every bond is set to the ValuationDate of the HW tree. The bond
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
bondbyhw(HWTree,CouponRate,Settle,Maturity,'Period',4,'Face',10000)

Period — Coupons per year
2 per year (default) | vector
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Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.
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• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number
or date character vector.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or
date character vector.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char
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StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector of nonnegative face values or an NINST-by-1 cell array of face values
or face value schedules. For the latter case, each element of the cell array is a NumDates-
by-2 cell array, where the first column is dates and the second column is its associated
face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
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BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

Definitions

Vanilla Bond
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment.

Stepped Coupon Bond
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond.
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Bond with an Amortization Schedule
An amortized bond is treated as an asset, with the discount amount being amortized to
interest expense over the life of the bond.

See Also
bkprice | bktree | cfamounts | hwprice | hwtree | instbond

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding the Interest-Rate Term Structure” on page 2-55
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bondbycir
Price bond from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = bondbycir(CIRTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = bondbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = bondbycir(CIRTree,CouponRate,Settle,Maturity)
prices bond from a Cox-Ingersoll-Ross (CIR) interest-rate tree. bondbycir computes
prices of vanilla bonds, stepped coupon bonds, and amortizing bonds using a CIR++
model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = bondbycir( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Bond Using a CIR Interest-Rate Tree

Define the CouponRate for a bond.

CouponRate = 0.035;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 
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Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the bond.

[Price,PriceTree] = bondbycir(CIRT,CouponRate,Settle,Maturity) 

Price = 94.0880

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
       dObs: [736696 737061 737426 737791 738157]
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
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Input Arguments
CIRTree — Interest-rate structure
structure

Interest-rate tree structure, created by cirtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector | string array | datetime

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers,
date character vectors, string arrays, or datetime arrays.

The Settle date for every bond is set to the ValuationDate of the CIR tree. The bond
argument Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime

Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays representing the maturity date for each bond.
Data Types: char | double | string | datetime

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
bondbycir(CIRTree,CouponRate,Settle,Maturity,'Period',4,'Face',
10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and an
NINST-by-1 vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial date number, date character vector, string array, or
datetime array.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number, date
character vector, string array, or datetime array.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial date number, date character
vector, string array, or datetime array.
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In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: double | char | string | datetime

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector | string array |
datetime

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers, date character vectors, string arrays, or datetime
arrays.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double | string | datetime

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector of nonnegative face values or a NINST-by-1 cell array of face values or
face value schedules. For the latter case, each element of the cell array is a NumDates-
by-2 cell array, where the first column is dates and the second column is its associated
face value. The date indicates the last day that the face value is valid.
Data Types: cell | double

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors
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Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Nonbusiness days are effectively ignored. Cash flows that fall on
nonbusiness days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Expected bond prices at time 0
vector

Expected bond prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.
• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.

Definitions
Vanilla Bond
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment.

Stepped Coupon Bond
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond.

Bond with an Amortization Schedule
An amortized bond is treated as an asset, with the discount amount being amortized to
interest expense over the life of the bond.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

 bondbycir

11-299



[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | instbond |
oasbycir | optbndbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding the Interest-Rate Term Structure” on page 2-55
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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bondbyzero
Price bond from set of zero curves

Syntax
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero(RateSpec,
CouponRate,Settle,Maturity)
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero( ___ ,
Name,Value)

Description
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero(RateSpec,
CouponRate,Settle,Maturity) prices a bond from a set of zero curves. bondbyzero
computes prices of vanilla bonds, stepped coupon bonds and amortizing bonds.

[Price,DirtyPrice,CFlowAmounts,CFlowDates] = bondbyzero( ___ ,
Name,Value) adds additional name-value pair arguments.

Examples

Price a Vanilla Bond

Price a 4% bond using a zero curve.

Load deriv.mat, which provides ZeroRateSpec, the interest-rate term structure,
needed to price the bond.

load deriv.mat; 
CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Price = bondbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price = 97.5334
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Price a Stepped Coupon Bond

Price single stepped coupon bonds using market data.

Define data for the interest-rate term structure.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create the stepped bond instrument.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};
Period = 1;

Compute the price of the stepped coupon bonds.

PZero= bondbyzero(RS, CouponRate, Settle, Maturity ,Period)
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PZero = 4×1

  100.7246
  100.0945
  101.5900
  102.0820

Price a Bond with an Amortizing Schedule

Price a bond with an amortizing schedule using the Face input argument to define the
schedule.

Define data for the interest-rate term structure.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.6853
            Rates: 0.0650
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create and price the amortizing bond instrument. The bond has a coupon rate of 7%, a
period of one year, and matures on 1-Jan-2017.
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CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};
Price = bondbyzero(RateSpec, CouponRate, Settle, Maturity, 'Period',...
Period, 'Face', Face)

Price = 102.3155

Compare the results with price of a vanilla bond.

PriceVanilla = bondbyzero(RateSpec, CouponRate, Settle, Maturity,Period)

PriceVanilla = 102.4205

Price both the amortizing and vanilla bonds.

Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80};
         100};
PriceBonds = bondbyzero(RateSpec, CouponRate, Settle, Maturity, 'Period',...
               Period, 'Face', Face)

PriceBonds = 2×1

  102.3155
  102.4205

Price a Bond in a Holding Period

When a bond is first issued, it can be priced with bondbyzero on that day by setting the
Settle date to the issue date. Later on, if the bond needs to be traded someday between
the issue date and the maturity date, its new price can be computed by updating the
Settle date, as well as the RateSpec input.

Note that the bond's price is determined by its remaining cash flows and the zero-rate
term structure, which can both change as the bond matures. While bondbyzero
automatically updates the bond's remaining cash flows with respect to the new Settle
date, you must supply a new RateSpec input in order to reflect the new zero-rate term
structure for that new Settle date.
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Use the following Bond information.

IssueDate = datenum('20-May-2014');
CouponRate = 0.01;
Maturity = datenum('20-May-2019');

Determine the bond price on 20-May-2014.

Settle1 = datenum('20-May-2014');
ZeroDates1 = datemnth(Settle1,12*[1 2 3 5 7 10 20]');
ZeroRates1 = [0.23 0.63 1.01 1.60 2.01 2.27 2.79]'/100;
RateSpec1 = intenvset('StartDate',Settle1,'EndDates',ZeroDates1,'Rates',ZeroRates1);
[Price1, ~, CFlowAmounts1, CFlowDates1] = bondbyzero(RateSpec1, ...
    CouponRate, Settle1, Maturity, 'IssueDate', IssueDate);
Price1

Price1 = 97.1899

Determine the bond price on 10-Aug-2015.

Settle2 = datenum('10-Aug-2015');
ZeroDates2 = datemnth(Settle2,12*[1 2 3 5 7 10 20]');
ZeroRates2 = [0.40 0.73 1.09 1.62 1.98 2.24 2.58]'/100;
RateSpec2 = intenvset('StartDate',Settle2,'EndDates',ZeroDates2,'Rates',ZeroRates2);
[Price2, ~, CFlowAmounts2, CFlowDates2] = bondbyzero(RateSpec2, ...
    CouponRate, Settle2, Maturity, 'IssueDate', IssueDate);
Price2

Price2 = 98.9384

Price Three Bonds Using Two Different Curves

To price three bonds using two different curves, define the RateSpec:

StartDates = '01-April-2016';
EndDates = ['01-April-2017'; '01-April-2018';'01-April-2019';'01-April-2020'];
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0325;0.0423;0.0437;0.0465]];
RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
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             Disc: [4x2 double]
            Rates: [4x2 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 736421
    ValuationDate: 736421
            Basis: 0
     EndMonthRule: 1

Price three bonds with the same Maturity and different coupons.

Settle = '01-April-2016';
Maturity = '01-April-2020';
Price = bondbyzero(RateSpec,[0.025;0.028;0.035],Settle,Maturity)

Price = 3×2

   92.0766   92.4888
   93.1680   93.5823
   95.7145   96.1338

Price a Vanilla Bond Using the Optional Input Argument AdjustCashFlowsBasis

To adjust the cash flows according to the accrual amount, use the optional input argument
AdjustCashFlowsBasis when calling bondbyzero.

Use the following data to define the interest-rate term structure and to create a
RateSpec.

Rates = 0.065;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates=  '1-Jan-2017';
Compounding = 1;
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',StartDates,...
'EndDates', EndDates,'Rates',Rates,'Compounding',Compounding);
CouponRate = 0.07;
Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
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Period = 1;
Face = {{'1-Jan-2015' 100;'1-Jan-2016' 90;'1-Jan-2017' 80}};

Use cfamounts and cycle through the Basis of 0 to 13, using the optional argument
AdjustCashFlowsBasis to determine the cash flow amounts for accrued interest due at
settlement.

AdjustCashFlowsBasis = true;
CFlowAmounts =  cfamounts(CouponRate,Settle,Maturity,'Period',Period,'Basis',0:13,'AdjustCashFlowsBasis',AdjustCashFlowsBasis)

CFlowAmounts = 14×7

         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0972    7.1167    7.0972    7.0972    7.0972  107.1167
         0    7.0000    7.0192    7.0000    7.0000    7.0000  107.0192
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0000    7.0000    7.0000    7.0000    7.0000  107.0000
         0    7.0972    7.1167    7.0972    7.0972    7.0972  107.1167
      ⋮

Notice that the cash flow amounts have been adjusted according to Basis.

Price a vanilla bond using the input argument AdjustCashFlowsBasis.

PriceVanilla = bondbyzero(RateSpec,CouponRate,Settle,Maturity,'Period',Period,'Basis',0:13,'AdjustCashFlowsBasis',AdjustCashFlowsBasis)

PriceVanilla = 14×1

  102.4205
  102.4205
  102.9216
  102.4506
  102.4205
  102.4205
  102.4205
  102.4205
  102.4205
  102.9216
      ⋮
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Input Arguments
RateSpec — Interest-rate structure
structure

Interest-rate structure, specified using intenvset to create a RateSpec for an
annualized zero rate term structure.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

Settle must be earlier than Maturity.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each bond.
Data Types: char | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
bondbyzero(RateSpec,CouponRate,Settle,Maturity,'Period',4,'Face',
10000)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector. Values for Period are 1, 2, 3, 4, 6, and 12.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

IssueDate — Bond issue date
serial nonnegative date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial nonnegative date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial nonnegative date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial nonnegative date number
or date character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial nonnegative date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial nonnegative date number or
date character vector.
Data Types: double | char

StartDate — Forward starting date of payments
Settle date (default) | serial date number | date character vector
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Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-
by-1 scalar of nonnegative face values or an NINST-by-1 cell array, where each element is
a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and
the second column is the associated face value. The date indicates the last day that the
face value is valid.
Data Types: cell | double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
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business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

Output Arguments
Price — Fixed-rate note prices
matrix

Floating-rate note prices, returned as a (NINST) by number of curves (NUMCURVES)
matrix. Each column arises from one of the zero curves.

DirtyPrice — Dirty bond price
matrix

Dirty bond price (clean + accrued interest), returned as a NINST- by-NUMCURVES matrix.
Each column arises from one of the zero curves.
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CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, returned as a NINST- by-NUMCFS matrix of cash flows for each bond.

CFlowDates — Cash flow dates
matrix

Cash flow dates, returned as a NINST- by-NUMCFS matrix of payment dates for each bond.

Definitions

Vanilla Bond
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment.

Stepped Coupon Bond
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond.

Bond with an Amortization Schedule
An amortized bond is treated as an asset, with the discount amount being amortized to
interest expense over the life of the bond.

See Also
cfamounts | cfbyzero | fixedbyzero | floatbyzero | swapbyzero
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Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
“Understanding the Interest-Rate Term Structure” on page 2-55
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bushpath
Extract entries from node of bushy tree

Syntax
Values = bushpath(Tree,BranchList)

Arguments
Tree Bushy tree.
BranchList Number of paths (NUMPATHS) by path length (PATHLENGTH) matrix

containing the sequence of branchings.

Description
Values = bushpath(Tree,BranchList) extracts entries of a node of a bushy tree.
The node path is described by the sequence of branchings taken, starting at the root. The
top branch is number 1, the second-to-top is 2, and so on. Set the branch sequence to
zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved
entries of a bushy tree.

Examples
Create an HJM tree by loading the example file.

load deriv.mat; 

Then

FwdRates = bushpath(HJMTree.FwdTree, [1 2 1]) 
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returns the rates at the tree nodes located by taking the up branch, then the down
branch, and finally the up branch again.

FwdRates = 

    1.0356
    1.0364
    1.0526
    1.0463 

You can visualize this with the treeviewer function.

treeviewer(HJMTree)

See Also
bushshape | mkbush

Topics
“Graphical Representation of Trees” on page 2-158
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Introduced before R2006a

 bushpath

11-317



bushshape
Retrieve shape of bushy tree

Syntax
[NumLevels,NumChild,NumPos,NumStates,Trim] = bushshape(Tree)

Arguments
Tree Bushy tree.

Description
[NumLevels,NumChild,NumPos,NumStates,Trim] = bushshape(Tree) returns
information on a bushy tree's shape.

NumLevels is the number of time levels of the tree.

NumChild is a 1-by-number of levels (NUMLEVELS) vector with the number of branches
(children) of the nodes in each level.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in each
level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in each
level.

Trim is 1 if NumPos decreases by 1 when moving from one time level to the next.
Otherwise, it is 0.

Examples
Create an HJM tree by loading the example file.
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load deriv.mat; 

With treeviewer you can see the general shape of the HJM interest-rate tree.

With this tree

[NumLevels, NumChild, NumPos, NumStates, Trim] =... 
bushshape(HJMTree.FwdTree) 

returns

NumLevels  =   
     4

NumChild   =   
     2     2     2     0

NumPos     =   
     4     3     2     1

NumStates  =  
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     1     2     4     8

Trim =   
     1

You can recreate this tree using the mkbush function.

Tree = mkbush(NumLevels, NumChild(1), NumPos(1), Trim); 
Tree = mkbush(NumLevels, NumChild, NumPos);

See Also
bushpath | mkbush

Topics
“Graphical Representation of Trees” on page 2-158

Introduced before R2006a

11 Functions — Alphabetical List

11-320



capbybdt
Price cap instrument from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = capbybdt(BDTTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbybdt( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbybdt(BDTTree,Strike,Settle,Maturity) computes
the price of a cap instrument from a Black-Derman-Toy interest-rate tree. capbybdt
computes prices of vanilla caps and amortizing caps.

[Price,PriceTree] = capbybdt( ___ ,CapReset,Basis,Principal,Options)
adds optional arguments.

Examples

Price a 3% Cap Instrument Using a BDT Interest-Rate Tree

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the
time and interest-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbybdt to compute the price of the cap instrument.

Price = capbybdt(BDTTree, Strike, Settle, Maturity)

 capbybdt

11-321



Price = 28.4001

Price a 10% Cap Instrument Using a BDT Interest-Rate Tree

Set the required arguments for the three specifications required to create a BDT tree.

Compounding = 1; 
ValuationDate = '01-01-2000'; 
StartDate = ValuationDate; 
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']; 
Rates = [.1; .11; .12; .125; .13]; 
Volatility = [.2; .19; .18; .17; .16];

Create the specifications.

RateSpec = intenvset('Compounding', Compounding,... 
'ValuationDate', ValuationDate,... 
'StartDates', StartDate,... 
'EndDates', EndDates,... 
'Rates', Rates); 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); 
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Set the cap arguments. Remaining arguments will use defaults.

CapStrike = 0.10; 
Settlement = ValuationDate; 

11 Functions — Alphabetical List

11-322



Maturity = '01-01-2002'; 
CapReset = 1;

Use capbybdt to find the price of the cap instrument.

Price= capbybdt(BDTTree, CapStrike, Settlement, Maturity,...
CapReset)

Price = 1.7169

Compute the Price of an Amortizing Cap Using the BDT Model

Define the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the cap instrument.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.04;
CapReset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};
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Build the BDT Tree.

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility*ones(1,length(EndDates))');
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [734822 735188 735553 735918 736283]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Price the amortizing cap.

Basis = 0;
Price = capbybdt(BDTTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 1.4042

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double
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Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every cap is set to the ValuationDate of
the BDT tree. The cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:
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• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.

See Also
bdttree | capbynormal | cfbybdt | floorbybdt | swapbybdt

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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capbybk
Price cap instrument from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = capbybk(BKTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbybk( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbybk(BKTree,Strike,Settle,Maturity) computes the
price of a cap instrument from a Black-Karasinski interest-rate tree. capbybk computes
prices of vanilla caps and amortizing caps.

[Price,PriceTree] = capbybk( ___ ,CapReset,Basis,Principal,Options)
adds optional arguments.

Examples

Price a 3% Cap Instrument Using a Black-Karasinski Interest-Rate Tree

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the
time and interest-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use capbybk to compute the price of the cap instrument.

Price = capbybk(BKTree, Strike, Settle, Maturity)
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Price = 2.0965

Compute the Price of an Amortizing and Vanilla Caps Using the BK Model

Load deriv.mat to specify the BKTree and then define the cap instrument.

load deriv.mat; 
Settle = '01-Jan-2004';
Maturity = '01-Jan-2008';
Strike = 0.05;
CapReset = 1;
Principal ={{'01-Jan-2005' 100;'01-Jan-2006' 60;'01-Jan-2007' 30;'01-Jan-2008' 30};...
            100};

Price the amortizing and vanilla caps.

Basis = 1;
Price = capbybk(BKTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 2×1

    0.2226
    0.7422

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double
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Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every cap is set to the ValuationDate of
the BK tree. The cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:
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• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bktree | capbynormal | cfbybk | floorbybk | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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capbyblk
Price caps using Black option pricing model

Syntax
[CapPrice,Caplets] = capbyblk(RateSpec,Strike,Settle,Maturity,
Volatility)
[CapPrice,Caplets] = capbyblk( ___ ,Name,Value)

Description
[CapPrice,Caplets] = capbyblk(RateSpec,Strike,Settle,Maturity,
Volatility) price caps using the Black option pricing model. capbyblk computes
prices of vanilla caps and amortizing caps.

[CapPrice,Caplets] = capbyblk( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Price a Cap Using the Black Option Pricing Model

Consider an investor who gets into a contract that caps the interest rate on a $100,000
loan at 8% quarterly compounded for 3 months, starting on January 1, 2009. Assuming
that on January 1, 2008 the zero rate is 6.9394% continuously compounded and the
volatility is 20%, use this data to compute the cap price. First, calculate the RateSpec:

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1; 
Basis = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, ...
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'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8554
            Rates: 0.0694
         EndTimes: 2.2500
       StartTimes: 0
         EndDates: 734229
       StartDates: 733408
    ValuationDate: 733408
            Basis: 1
     EndMonthRule: 1

Compute the price of the cap.

Settle = 'Jan-01-2009'; % cap starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
CapRate = 0.08;
CapReset = 4;
Principal=100000;

CapPrice = capbyblk(RateSpec,  CapRate, Settle, Maturity, Volatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

CapPrice = 51.6125

Price a Cap Using a Different Curve to Generate the Future Forward Rates

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109  .0162 .0216 .0262 .0309 .0348]';

Create an associated RateSpec for the OIS and Libor curves.
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OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);

Define the Cap instruments.

Maturity = {'15-Mar-2018';'15-Mar-2020'};
Strike = [0.04;0.05];
BlackVol = 0.2;

Price the cap instruments using the term structure OISCurve both for discounting the
cash flows and generating future forward rates.

[Price, Caplets] = capbyblk(OISCurve, Strike, Settle, Maturity, BlackVol)

Price = 2×1

    0.7472
    0.9890

Caplets = 2×7

         0    0.0000    0.0033    0.2996    0.4443       NaN       NaN
         0    0.0000    0.0003    0.1134    0.2112    0.2292    0.4349

Price the cap instruments using the term structure LiborCurve to generate future
forward rates. The term structure OISCurve is used for discounting the cash flows.

[PriceLC, CapletsLC] = capbyblk(OISCurve, Strike, Settle, Maturity, BlackVol,'ProjectionCurve',LiborCurve)

PriceLC = 2×1

    1.3293
    1.6329

CapletsLC = 2×7

         0    0.0000    0.0337    0.4250    0.8706       NaN       NaN
         0    0.0000    0.0052    0.1767    0.4849    0.3663    0.5998
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Compute the Price of Two Amortizing Caps Using the Black Model

Define the RateSpec.

Rates = [0.0358; 0.0421; 0.0473; 0.0527; 0.0543];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
             'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the cap instruments.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = [0.03;0.035];
Reset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Price the amortizing caps.

Volatility = 0.10;  
Price = capbyblk (RateSpec, Strike, Settle, Maturity, Volatility,...
'Reset', Reset,'Principal', Principal)

Price = 2×1

    3.0339
    2.0141
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Price a Cap Using the Shifted Black Model

Create the RateSpec.

ValuationDate = 'Mar-01-2016';
EndDates = {'Mar-01-2017';'Mar-01-2018';'Mar-01-2019';'Mar-01-2020';'Mar-01-2021'};
Rates = [-0.21; -0.12; 0.01; 0.10; 0.20]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736390
    ValuationDate: 736390
            Basis: 1
     EndMonthRule: 1

Price the cap with a negative strike using the Shifted Black model.

Settle = 'Jun-01-2016'; % Cap starts in 3 months.
Maturity = 'Sep-01-2016';
ShiftedBlackVolatility = 0.31;
CapRate = -0.003;  % -0.3 percent strike.
CapReset = 4;
Principal = 100000;
Shift = 0.01; % 1 percent shift.

CapPrice = capbyblk(RateSpec,CapRate,Settle,Maturity,ShiftedBlackVolatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal',Principal,...
'Basis',Basis,'Shift',Shift)

CapPrice = 26.0733
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector

Settlement date for the cap, specified as a serial date number or a date character vector.
Data Types: double | char

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a serial date number or date character vector.
Data Types: double | char

Volatility — Volatilities values
numeric

Volatilities values, specified as a NINST-by-1 vector of numeric values.

The Volatility input is not intended for volatility surfaces or cubes. If you specify a
matrix for the Volatility input, capbyblk internally converts it into a vector.
capbyblk assumes that the volatilities specified in the Volatility input are flat
volatilities, which are applied equally to each of the caplets.
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Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [CapPrice,Caplets] =
capbyblk(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',CapReset
,'Principal',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as a NINST-by-1 vector or a NINST-by-1 cell array.
When Principal is a NINST-by-1 cell array, each element is a NumDates-by-2 cell array,
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

ProjectionCurve — Rate curve used in generating future forward rates
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash
flows and projecting future forward rates (default) | structure

The rate curve to be used in generating the future forward rates. This structure must be
created using intenvset. Use this optional input if the forward curve is different from
the discount curve.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified using a scalar or NINST-by-1
vector of rate shifts in positive decimals. Set this parameter to a positive rate shift in
decimals to add a positive shift to the forward rate and strike, which effectively sets a
negative lower bound for the forward rate. For example, a Shift of 0.01 is equal to a 1%
shift.
Data Types: double
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Output Arguments
CapPrice — Expected price of cap
vector

Expected price of the cap, returned as a NINST-by-1 vector.

Caplets — Caplets
array

Caplets, returned as a NINST-by-NCF array of caplets, padded with NaNs.

Definitions
Shifted Black
The Shifted Black model is essentially the same as the Black’s model, except that it
models the movements of (F + Shift) as the underlying asset, instead of F (which is the
forward rate in the case of caplets).

This model allows negative rates, with a fixed negative lower bound defined by the
amount of shift; that is, the zero lower bound of Black’s model has been shifted.

Algorithms
Black Model
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Where F is the forward value and K is the strike.

Shifted Black Model
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Where F+Shift is the forward value and K+Shift is the strike for the shifted version.

See Also
capbynormal | floorbyblk | intenvset

Topics
“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2009a
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capbycir
Price cap instrument from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = capbycir(CIRTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = capbycir(CIRTree,Strike,Settle,Maturity) computes
the price of a cap instrument from a Cox-Ingersoll-Ross (CIR) interest-rate tree.
capbycir computes prices of vanilla caps and amortizing caps using a CIR++ model
with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = capbycir( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Cap Using a CIR Interest-Rate Tree

Define the Strike for a cap.

Strike = 0.03;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 
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Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 3% cap.

[Price,PriceTree] = capbycir(CIRT,Strike,Settle,Maturity) 

Price = 7.9081

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure
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Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays. The Settle date for every cap is set
to the ValuationDate of the CIR tree. The cap argument Settle is ignored.
Data Types: double | char | cell | string | datetime

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | string | datetime

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
capbycir(CIRTree,CouponRate,Settle,Maturity,'Basis',3)

CapReset — Reset frequency payment per year
1 (default) | numeric
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Reset frequency payment per year, specified as the comma-separated pair consisting of
'CapReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate,
specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of
integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 of notional principal amounts or a NINST-by-1 cell array.
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For the NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first
column is dates and the second column is associated principal amount. The date indicates
the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:

• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.
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[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | fixedbycir | floatbycir | floorbycir | instcap |
oasbycir | optbndbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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capbyhjm
Price cap instrument from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = capbyhjm(HJMTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbyhjm( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbyhjm(HJMTree,Strike,Settle,Maturity) computes
the price of a cap instrument from a Heath-Jarrow-Morton interest-rate tree. capbyhjm
computes prices of vanilla caps and amortizing caps.

[Price,PriceTree] = capbyhjm( ___ ,CapReset,Basis,Principal,Options)
adds optional arguments.

Examples

Price a 3% Cap Instrument Using an HJM Forward-Rate Tree

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the
time and forward-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use capbyhjm to compute the price of the cap instrument.

Price = capbyhjm(HJMTree, Strike, Settle, Maturity)
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Price = 6.2831

Compute the Price of an Amortizing Cap Using the HJM Model

Load deriv.mat to specify the HJMTree and then define the cap instrument.

load deriv.mat; 
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Strike = 0.045;
CapReset = 1;
Principal ={{'01-Jan-2001' 100;'01-Jan-2002' 80;'01-Jan-2003' 70;'01-Jan-2004' 30}};

Price the amortizing cap.

Basis = 1;
Price = capbyhjm(HJMTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 1.4588

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors
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Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every cap is set to the ValuationDate of
the HJM tree. The cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)

 capbyhjm

11-351



• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector

Tree structure with values of the cap at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:

• PriceTree.tObs contains the observation times.
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• PriceTree.PBush contains the clean prices.

See Also
capbynormal | cfbyhjm | floorbyhjm | hjmtree | swapbyhjm

Topics
“Computing Instrument Prices” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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capbyhw
Price cap instrument from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = capbyhw(HWTree,Strike,Settle,Maturity)
[Price,PriceTree] = capbyhw( ___ ,CapReset,Basis,Principal,Options)

Description
[Price,PriceTree] = capbyhw(HWTree,Strike,Settle,Maturity) computes the
price of a cap instrument from a Hull-White interest-rate tree. capbyhw computes prices
of vanilla caps and amortizing caps.

[Price,PriceTree] = capbyhw( ___ ,CapReset,Basis,Principal,Options)
adds optional arguments.

Examples

Price a 3% Cap Instrument Using a Hull-White Interest-Rate Tree

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the
time and interest-rate information needed to price the cap instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use capbyhw to compute the price of the cap instrument.

Price = capbyhw(HWTree, Strike, Settle, Maturity)
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Price = 2.3090

Compute the Price of an Amortizing and Vanilla Caps Using the HW Model

Define the RateSpec.

Rates = [0.035; 0.042; 0.047; 0.052; 0.054];
ValuationDate = '01-April-2014';
StartDates = ValuationDate;
EndDates = {'01-April-2019'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: 737516
       StartDates: 735690
    ValuationDate: 735690
            Basis: 0
     EndMonthRule: 1

Define the cap instruments.

Settle ='01-April-2014';
Maturity = '01-April-2018';
Strike = 0.055;
CapReset = 1;
Principal ={{'01-April-2015' 100;'01-April-2016' 60;'01-April-2017' 40;'01-April-2018' 20};
            100};

Build the HW Tree.

VolDates = ['01-April-2015';'01-April-2016';'01-April-2017';'01-April-2018'];
VolCurve = 0.05;
AlphaDates = '01-April-2018';
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AlphaCurve = 0.10;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
                      AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [735690 736055 736421 736786]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0350]  [1.1300 1.0363 0.9503]  [1x5 double]  [1x7 double]}

Price the amortizing and vanilla caps.

Basis = 0;
Price  = capbyhw(HWTree, Strike, Settle, Maturity, CapReset, Basis, Principal)

Price = 2×1

    1.6754
    4.6149

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

11 Functions — Alphabetical List

11-356



Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | cell array of date character vectors

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every cap is set to the ValuationDate of
the HW tree. The cap argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for cap
serial date number | date character vector | cell array of date character vectors

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers or date
character vectors.
Data Types: double | char | cell

CapReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of cap at time 0
vector

Expected price of the cap at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of cap at each node
vector
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Tree structure with values of the cap at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:

• PriceTree.PTree contains cap prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
capbynormal | cfbyhw | floorbyhw | hwtree | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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capbylg2f
Price cap using Linear Gaussian two-factor model

Syntax
CapPrice = capbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,Maturity)
CapPrice = capbylg2f( ___ ,Name,Value)

Description
CapPrice = capbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,Maturity)
returns cap price for a two-factor additive Gaussian interest-rate model.

CapPrice = capbylg2f( ___ ,Name,Value) adds optional name-value pair
arguments.

Note Use the optional name-value pair argument, Notional, to pass a schedule to
compute the price for an amortizing cap.

Examples

Price a Cap Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to price the cap.

Settle = datenum('15-Dec-2007');
  
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);
  
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
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a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
  
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
  
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
  
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity)

Price = 11×1

    0.0316
    0.3225
    0.7761
    1.3240
    1.9394
    3.1247
    4.8451
    7.3752
    9.8582
   11.4673
      ⋮

Price an Amortizing Cap Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, rho, and Notional parameters for the
amortizing cap.

Settle = datenum('15-Dec-2007');
% Define ZeroCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

% Define a, b, sigma, eta, and rho
a = .07;
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b = .5;
sigma = .01;
eta = .006;
rho = -.7;

% Define the amortizing caps
CapMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
Notional = {{'15-Dec-2010' 100;'15-Dec-2014' 70;'15-Dec-2022' 40;'15-Dec-2037' 10}};

% Price the amortizing caps
Price = capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity, 'Notional', Notional)

Price = 11×1

    0.0316
    0.3225
    0.7761
    1.1313
    1.5362
    2.3213
    2.8297
    3.6878
    3.7297
    3.8906
      ⋮

Input Arguments
ZeroCurve — Zero-curve for Linear Gaussian two-factor model
structure

Zero-curve for the Linear Gaussian two-factor model, specified using IRDataCurve or
RateSpec.
Data Types: struct

a — Mean reversion for first factor for Linear Gaussian two-factor model
scalar numeric

Mean reversion for first factor for the Linear Gaussian two-factor model, specified as a
scalar numeric.
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Data Types: single | double

b — Mean reversion for second factor for Linear Gaussian two-factor model
scalar numeric

Mean reversion for second factor for the Linear Gaussian two-factor model, specified as a
scalar numeric.
Data Types: single | double

sigma — Volatility for first factor for Linear Gaussian two-factor model
scalar numeric

Volatility for first factor for the Linear Gaussian two-factor model, specified as a scalar
numeric.
Data Types: single | double

eta — Volatility for second factor for Linear Gaussian two-factor model
scalar numeric

Volatility for second factor for the Linear Gaussian two-factor model, specified as a scalar
numeric.
Data Types: single | double

rho — Scalar correlation of the factors
scalar numeric

Scalar correlation of the factors, specified as a scalar numeric.
Data Types: single | double

Strike — Cap strike price
nonnegative integer | vector of nonnegative integers

Cap strike price, specified as a nonnegative integer using a NumCaps-by-1 vector.
Data Types: single | double

Maturity — Cap maturity date
serial date number | vector of serial date numbers | date character vector

Cap maturity date, specified using a NumCaps-by-1 vector of serial date numbers or date
character vectors.
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Data Types: single | double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
capbylg2f(irdc,a,b,sigma,eta,rho,Strike,CapMaturity,'Reset',
1,'Notional',100)

Reset — Frequency of cap payments per year
2 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of cap payments per year, specified as the comma-separated pair consisting of
'Reset' and a positive integers for the values [1,2,4,6,12] in a NumCaps-by-1 vector.
Data Types: single | double

Notional — Notional value of cap
100 (default) | nonnegative integer | vector of nonnegative integers

Notional value of cap, specified as the comma-separated pair consisting of 'Notional'
and a NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each
element is a NumDates-by-2 cell array where the first column is dates and the second
column is the associated principal amount. The date indicates the last day that the
principal value is valid.
Data Types: single | double

Output Arguments
CapPrice — Cap price
scalar | vector

Expected prices of cap, returned as a scalar or an NumCaps-by-1 vector.
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Algorithms
The following defines the two-factor additive Gaussian interest rate model, given the
ZeroCurve, a, b, sigma, eta, and rho parameters:

r t x t y t t( ) ( ) ( ) ( )= + +f

dx t a x t dt dW t x( ) ( )( ) ( ( ), ( )= - + =s 1 0 0

dy t b y t dt dW t y( ) ( )( ) ( ( ), ( )= - + =h 2 0 0

where dW t dW t dt1 2( ) ( ) = r  is a two-dimensional Brownian motion with correlation ρ and ϕ
is a function chosen to match the initial zero curve.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer

Finance, 2006.

See Also
LinearGaussian2F | floorbylg2f | swaptionbylg2f

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”

Introduced in R2013a
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capbynormal
Price caps using Normal or Bachelier pricing model

Syntax
[CapPrice,Caplets] = capbynormal(RateSpec,Strike,Settle,Maturity,
Volatility)
[CapPrice,Caplets] = capbynormal( ___ ,Name,Value)

Description
[CapPrice,Caplets] = capbynormal(RateSpec,Strike,Settle,Maturity,
Volatility) prices caps using the Normal (Bachelier) pricing model for negative rates.
capbynormal computes prices of vanilla caps and amortizing caps.

[CapPrice,Caplets] = capbynormal( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Price a Cap Using Normal Model for Negative Rates

Consider an investor who gets into a contract that caps the interest rate on a $100,000
loan at –.08% quarterly compounded for 3 months, starting on January 1, 2009. Assuming
that on January 1, 2008 the zero rate is .069394% continuously compounded and the
volatility is 20%, use this data to compute the cap price. First, calculate the RateSpec,
and then use capbynormal to compute the CapPrice.

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.0069394;
Compounding = -1;
Basis = 1;
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RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Settle = 'Jan-01-2009'; % cap starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
CapRate = -0.008;
CapReset = 4;
Principal=100000;

CapPrice = capbynormal(RateSpec,  CapRate, Settle, Maturity, Volatility,...
'Reset',CapReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

CapPrice = 2.1682e+03

Price a Cap Using capbynormal and Compare to capbyblk

Define the RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the cap instrument and price with capbyblk.
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ExerciseDate = datenum('20-Jan-2026');

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,ExerciseDate)

ParSwapRate = 0.0216

Strike = .01;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price = capbyblk(RateSpec,Strike,Settle,ExerciseDate,BlackVol)

Price = 11.8693

Price the cap instrument using capbynormal.

Price_Normal = capbynormal(RateSpec,Strike,Settle,ExerciseDate,NormalVol)

Price_Normal = 12.5495

Price the cap instrument using capbynormal for a negative strike.

 Price_Normal = capbynormal(RateSpec,-.005,Settle,ExerciseDate,NormalVol)

Price_Normal = 24.4816

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
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Data Types: double

Settle — Settlement date for cap
serial date number | date character vector | datetime object | string object

Settlement date for the cap, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Maturity — Maturity date for cap
serial date number | date character vector | datetime object | string object

Maturity date for the cap, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Volatility — Normal volatilities values
numeric

Normal volatilities values, specified as a NINST-by-1 vector of numeric values.

For more information on the Normal model, see “Work with Negative Interest Rates” on
page 2-22.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [CapPrice,Caplets] =
capbynormal(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',CapRe
set,'Principal',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as the comma-separated pair consisting of
'Reset' and a NINST-by-1 vector.
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Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 of notional principal amounts, or a NINST-by-1 cell
array. Each element in the NINST-by-1 cell array is a NumDates-by-2 cell array, where the
first column is dates, and the second column is the associated principal amount. The date
indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of instrument representing the basis used when annualizing the input
forward rate, specified as the comma-separated pair consisting of 'Basis'and a NINST-
by-1 vector of integers. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

ValuationDate — Observation date of investment horizon
if ValuationDate is not specified, then Settle is used (default) | serial date number |
date character vector | datetime object | string object

Observation date of the investment horizon, specified as the comma-separated pair
consisting of 'ValuationDate' and a serial date number, date character vector,
datetime object, or string array.
Data Types: double | char | datetime | string

ProjectionCurve — Rate curve used in generating future cash flows
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash
flows and projecting future cash flows (default) | structure

The rate curve to be used in projecting the future cash flows, specified as the comma-
separated pair consisting of 'ProjectionCurve' and rate curve structure. This
structure must be created using intenvset. Use this optional input if the forward curve
is different from the discount curve.
Data Types: struct

Output Arguments
CapPrice — Expected price of cap
vector

Expected price of the cap, returned as a NINST-by-1 vector.

Caplets — Caplets
array

Caplets, returned as a NINST-by-NCF array of caplets, padded with NaNs.

See Also
capbyblk | floorbynormal | intenvset | swaptionbynormal

Topics
“Calibrating Caplets Using the Normal (Bachelier) Model”
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“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2017a
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capvolstrip
Strip caplet volatilities from flat cap volatilities

Syntax
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip(ZeroCurve,
CapSettle,CapMaturity,CapVolatility)
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip( ___ ,
Name,Value)

Description
[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip(ZeroCurve,
CapSettle,CapMaturity,CapVolatility) strips caplet volatilities from the flat cap
volatilities by using the bootstrapping method. The cap volatilities are interpolated on
each caplet payment date before stripping the caplet volatilities.

[CapletVols,CapletPaymentDates,CapStrikes] = capvolstrip( ___ ,
Name,Value) adds optional name-value pair arguments. The cap volatilities are
interpolated on each caplet payment date before stripping the caplet volatilities.

Examples

Stripping Caplet Volatilities from At-The-Money (ATM) Caps

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('23-Jun-2015');
ZeroRates = [0.01 0.09 0.30 0.70 1.07 1.71]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
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           Settle: 736138 (23-Jun-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the ATM cap volatility data.

CapSettle = datenum('25-Jun-2015');
CapMaturity = datenum({'27-Jun-2016';'26-Jun-2017';'25-Jun-2018'; ...
    '25-Jun-2019';'25-Jun-2020'});
CapVolatility = [0.29;0.38;0.42;0.40;0.38];

Strip caplet volatilities from ATM caps.

[CapletVols, CapletPaymentDates, ATMCapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle, CapMaturity, CapVolatility);

PaymentDates = cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, ATMCapStrikes)

ans=9×3 table
    PaymentDates     CapletVols    ATMCapStrikes
    _____________    __________    _____________

    '27-Jun-2016'        0.29        0.0052014  
    '27-Dec-2016'     0.34657        0.0071594  
    '26-Jun-2017'     0.41404        0.0091175  
    '26-Dec-2017'     0.42114         0.010914  
    '25-Jun-2018'     0.45297         0.012698  
    '26-Dec-2018'     0.37257         0.014222  
    '25-Jun-2019'     0.36184         0.015731  
    '26-Dec-2019'      0.3498         0.017262  
    '25-Jun-2020'     0.33668         0.018774  

Stripping Caplet Volatilities from Caps with the Same Strikes

Compute the zero curve for discounting and projecting forward rates.
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ValuationDate = datenum('17-Feb-2015');
ZeroRates = [0.02 0.07 0.25 0.70 1.10 1.62]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736012 (17-Feb-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the cap volatility data.

CapSettle = datenum('19-Feb-2015');
CapMaturity = datenum({'19-Feb-2016';'21-Feb-2017';'20-Feb-2018'; ...
    '19-Feb-2019';'19-Feb-2020'});
CapVolatility = [0.44;0.45;0.44;0.41;0.39];
CapStrike = 0.013;

Strip caplet volatilities from caps with the same strike.

[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle, CapMaturity, CapVolatility, 'Strike', CapStrike);

PaymentDates = cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, CapStrikes)

ans=9×3 table
    PaymentDates     CapletVols    CapStrikes
    _____________    __________    __________

    '19-Feb-2016'        0.44        0.013   
    '19-Aug-2016'     0.44495        0.013   
    '21-Feb-2017'     0.45256        0.013   
    '21-Aug-2017'     0.43835        0.013   
    '20-Feb-2018'     0.42887        0.013   
    '20-Aug-2018'     0.38157        0.013   
    '19-Feb-2019'     0.35237        0.013   
    '19-Aug-2019'      0.3525        0.013   
    '19-Feb-2020'     0.33136        0.013   
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Stripping Caplet Volatilities Using Manually Specified Caplet Dates

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('06-Mar-2015');
ZeroRates = [0.01 0.08 0.27 0.73 1.16 1.70]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736029 (06-Mar-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the cap volatility data.

CapSettle = datenum('06-Mar-2015');
CapMaturity = datenum({'07-Mar-2016';'06-Mar-2017';'06-Mar-2018'; ...
    '06-Mar-2019';'06-Mar-2020'});
CapVolatility = [0.43;0.44;0.44;0.43;0.41];
CapStrike = 0.011;

Specify quarterly and semiannual dates.

CapletDates = [cfdates(CapSettle, '06-Mar-2016', 4) ...
     cfdates('06-Mar-2016', '06-Mar-2020', 2)]';
CapletDates(~isbusday(CapletDates)) =  ...
    busdate(CapletDates(~isbusday(CapletDates)), 'modifiedfollow');

Strip caplet volatilities using specified CapletDates.

[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ...
    CapSettle, CapMaturity, CapVolatility, 'Strike', CapStrike, ...
    'CapletDates', CapletDates);

PaymentDates = cellstr(datestr(CapletPaymentDates));
format;
table(PaymentDates, CapletVols, CapStrikes)
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ans=11×3 table
    PaymentDates     CapletVols    CapStrikes
    _____________    __________    __________

    '08-Sep-2015'        0.43        0.011   
    '07-Dec-2015'     0.42999        0.011   
    '07-Mar-2016'        0.43        0.011   
    '06-Sep-2016'     0.43538        0.011   
    '06-Mar-2017'     0.44396        0.011   
    '06-Sep-2017'     0.43999        0.011   
    '06-Mar-2018'     0.44001        0.011   
    '06-Sep-2018'     0.41934        0.011   
    '06-Mar-2019'     0.40985        0.011   
    '06-Sep-2019'     0.36818        0.011   
    '06-Mar-2020'     0.34657        0.011   

Stripping Caplet Volatilities from Caps Using the Shifted Black Model

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('1-Mar-2016');
ZeroRates = [-0.38 -0.25 -0.21 -0.12 0.01 0.2]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736390 (01-Mar-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the cap volatility (Shifted Black) data.

CapSettle = datenum('1-Mar-2016');
CapMaturity = datenum({'1-Mar-2017';'1-Mar-2018';'1-Mar-2019'; ...
    '2-Mar-2020';'1-Mar-2021'});
CapVolatility = [0.35;0.40;0.37;0.34;0.32]; % Shifted Black volatilities
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Shift = 0.01; % 1 percent shift.
CapStrike = -0.001; % -0.1 percent strike.

Strip caplet volatilities from caps using the Shifted Black Model.

[CapletVols, CapletPaymentDates, CapStrikes] = capvolstrip(ZeroCurve, ...
CapSettle,CapMaturity,CapVolatility,'Strike',CapStrike,'Shift',Shift);

PaymentDates = string(datestr(CapletPaymentDates));
format;
table(PaymentDates,CapletVols,CapStrikes)

ans=9×3 table
    PaymentDates     CapletVols    CapStrikes
    _____________    __________    __________

    "01-Mar-2017"        0.35        -0.001  
    "01-Sep-2017"     0.39129        -0.001  
    "01-Mar-2018"      0.4335        -0.001  
    "04-Sep-2018"     0.35284        -0.001  
    "01-Mar-2019"      0.3255        -0.001  
    "03-Sep-2019"      0.3011        -0.001  
    "02-Mar-2020"     0.27266        -0.001  
    "01-Sep-2020"     0.27698        -0.001  
    "01-Mar-2021"     0.25697        -0.001  

Input Arguments
ZeroCurve — Zero rate curve
RateSpec or IRDataCurve object

Zero rate curve, specified using a RateSpec or IRDataCurve object containing the zero
rate curve for discounting according to its day count convention. ZeroCurve is also used
for computing the underlying forward rates if the optional argument ProjectionCurve
is not specified. Its observation date specifies the valuation date. For more information on
creating a RateSpec, see intenvset. For more information on creating an
IRDataCurve object, see IRDataCurve.
Data Types: struct
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CapSettle — Common cap settle date
serial date numbers | date character vectors

Common cap settle date, specified using serial date numbers or date character vectors.
The CapSettle date cannot be earlier than the ZeroCurve valuation date.
Data Types: double | char

CapMaturity — Cap maturity dates
serial date numbers | date character vectors

Cap maturity dates, specified using serial date numbers or date character vectors as a
NCap-by-1 vector.
Data Types: double | char

CapVolatility — Flat cap volatilities
positive decimals

Flat cap volatilities, specified using positive decimals as a NCap-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [CapletVols,CapletPaymentDates,CapStrikes] =
capvolstrip(ZeroCurve,CapSettle,CapMaturity,CapVolatility,'Strike',.
2)

Strike — Cap strike rate
If not specified, the default is to assume that all caps are at-the-money (ATM) and the
ATM strike will be computed for each cap maturing on each caplet payment date.
(default) | decimal

Cap strike rate, specified as the comma-separated pair consisting of 'Strike' and a
decimal value. Use Strike to specify a single strike that is equally applied to all caps.
Data Types: double
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CapletDates — Caplet reset and payment dates
if not specified, the default is to automatically generate periodic caplet dates (default) |
serial date numbers | date character vectors

Caplet reset and payment dates, specified as the comma-separated pair consisting of
'CapletDates' and serial date numbers or date character vectors using a
NCapletDates-by-1 vector.

Use CapletDates to manually specify all caplet reset and payment dates. For example,
some date intervals may be quarterly, while others may be semiannual. All dates must be
later than CapSettle and cannot be later than the last CapMaturity date. Dates are
adjusted according to the BusDayConvention and Holidays inputs.

If CapletDates is not specified, the default is to automatically generate periodic caplet
dates after CapSettle based on the last CapMaturity date as the reference date, using
the following optional inputs: Reset, EndMonthRule, BusDayConvention, and
Holidays.
Data Types: double | char

Reset — Frequency of periodic payments per year within a cap
2 (default) | positive integer with values 1,2, 3, 4, 6, or 12

Frequency of periodic payments per year within a cap, specified as the comma-separated
pair consisting of 'Reset' and a positive integer with values 1,2, 3, 4, 6, or 12.

Note The input for Reset is ignored if CapletDates is specified.

Data Types: double

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating caplet dates, specified as the comma-separated pair
consisting of 'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.
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Data Types: logical

BusDayConvention — Business day conventions
modifiedfollow (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusDayConvention' and a character vector or N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using an NHolidays-by-1 vector.
Data Types: double

ProjectionCurve — Rate curve for computing underlying forward rates
if not specified, the default is to use the ZeroCurve input for computing the underlying
forward rates (default) | RateSpec or IRDatCurve object

Rate curve for computing underlying forward rates, specified as the comma-separated
pair consisting of 'ProjectionCurve' and a RateSpec or IRDatCurve object. For
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more information on creating a RateSpec, see intenvset and for more information on
creating an IRDataCurve object, see IRDataCurve.
Data Types: struct

MaturityInterpMethod — Method used when interpolating the cap volatilities
on each caplet maturity date before stripping the caplet volatilities
linear (default) | character vector with values: linear, nearest, next, previous,
spline, pchip

Method used when interpolating the cap volatilities on each caplet maturity date before
stripping the caplet volatilities, specified as the comma-separated pair consisting of
'MaturityInterpMethod' and a character vector with values: linear, nearest,
next, previous, spline, or pchip. The definitions of the methods are:

• linear — Linear interpolation. The interpolated value at a query point is based on
linear interpolation of the values at neighboring grid points in each respective
dimension. This is the default interpolation method.

• nearest — Nearest neighbor interpolation. The interpolated value at a query point is
the value at the nearest sample grid point.

• next — Next neighbor interpolation. The interpolated value at a query point is the
value at the next sample grid point.

• previous — Previous neighbor interpolation. The interpolated value at a query point
is the value at the previous sample grid point.

• spline — Spline interpolation using not-a-knot end conditions. The interpolated value
at a query point is based on a cubic interpolation of the values at neighboring grid
points in each respective dimension.

• pchip — Shape-preserving piecewise cubic interpolation. The interpolated value at a
query point is based on a shape-preserving piecewise cubic interpolation of the values
at neighboring grid points.

For more information on interpolation methods, see interp1.

Note Constant extrapolation is used for volatilities falling outside the range of user-
supplied data.

Data Types: char
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Limit — Upper bound of implied volatility search interval
10 (or 1000% per annum) (default) | positive scalar decimal

Upper bound of implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a positive scalar decimal.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-5 (default) | positive numeric scalar

Implied volatility search termination tolerance, specified as the comma-separated pair
consisting of 'Tolerance' and a positive numeric scalar.
Data Types: double

OmitFirstCaplet — Flag indicating whether to omit the first caplet payment in
the caps
true always omit the first caplet (default) | logical

Flag indicating whether to omit the first caplet payment in the caps, specified as the
comma-separated pair consisting of 'OmitFirstCaplet' and a scalar logical. For
example, the first caplet payment is omitted in spot-starting caps, while it is included in
forward-starting caps. Setting this logical to false means to always include the first
caplet.

In general, “spot lag” is the delay between the fixing date and the effective date for
LIBOR-like indices. It also determines whether a cap is spot-starting or forward-starting
(Corb, 2012). Caps are considered to be spot-starting if they settle within “spot lag”
business days after the valuation date. Those that settle later are considered to be
forward-starting. The first caplet is omitted if caps are spot-starting, while it is included if
they are forward-starting (Tuckman, 2012).
Data Types: logical

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model),
specified as the comma-separated pair consisting of 'Shift' and a scalar positive
decimal value. Set this parameter to a positive shift in decimals to add a positive shift to
the forward rate and strike, which effectively sets a negative lower bound for the forward
rate and strike. For example, a Shift value of 0.01 is equal to a 1% shift.
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Data Types: double

Output Arguments
CapletVols — Stripped caplet volatilities
vector in decimals

Stripped caplet volatilities, returned as a NCapletVols-by-1 vector in decimals.

Note capvolstrip may output NaNs for some caplet volatilities. This could be the case
if no volatility matches the caplet price implied by the user-supplied cap data.

CapletPaymentDates — Payment dates
vector in date numbers

Payment dates (in date numbers), returned as a NCapletVols-by-1 vector corresponding
to CapletVols.

CapStrikes — Cap strikes
decimals

Cap strikes, returned as a NCapletVols-by-1 vector of strikes in decimals for caps
maturing on corresponding CapletPaymentDates. CapStrikes are the same as the
strikes of the corresponding caplets that have been stripped.

Limitations
When bootstrapping the caplet volatilities from ATM caps, the caplet volatilities stripped
from the shorter maturity caps are reused in the longer maturity caps without adjusting
for the difference in strike. capvolstrip follows the simplified approach described in
Gatarek, 2006.
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Definitions

ATM
A cap or floor is at-the-money (ATM) if its strike is equal to the forward swap rate.

This is the fixed rate of a swap that makes the present value of the floating leg equal to
that of the fixed leg. In comparison, a caplet or floorlet is ATM if its strike is equal to the
forward rate (not the forward swap rate). In general (except over a single period), the
forward rate is not necessarily equal to the forward swap rate. So, to be precise, the
individual caplets in an ATM cap have slightly different moneyness and are actually only
approximately ATM (Alexander, 2003). In addition, note that swap rate changes with swap
maturity. Similarly, the ATM cap strike also changes with cap maturity, so the ATM cap
strikes need to be computed for each cap maturity before stripping the caplet volatilities.
As a result, when stripping the caplet volatilities from the ATM caps with increasing
maturities, the ATM strikes of the consecutive caps are different.

References
[1] Alexander, C. “Common Correlation and Calibrating the Lognormal Forward Rate

Model.” Wilmott Magazine, 2003.

[2] Corb, H. “Interest Rate Swaps and Other Derivatives.” Columbia Business School
Publishing, 2012.

[3] Gatarek, D.P., Bachert, and R. Maksymiuk. The LIBOR Market Model in Practice.
Wiley, 2006.

[4] Tuckman, B., Serrat, A. Fixed Income Securities: Tools for Today’s Markets. Wiley
Finance, 2012.

See Also
capbyblk | capbynormal | floorvolstrip | intenvset | interp1

Topics
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-27
“Work with Negative Interest Rates” on page 2-22
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External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2016a
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cashbybls
Determine price of cash-or-nothing digital options using Black-Scholes model

Syntax
Price =
cashbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payoff)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors with values of

'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
Payoff NINST-by-1 vector of payoff values or the amount to be paid at

expiration.

Description
Price =
cashbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payoff)
computes cash-or-nothing option prices using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.
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Examples

Compute Cash-or-Nothing Option Prices Using the Black-Scholes Option Pricing
Model

Consider a European call and put cash-or-nothing options on a futures contract with and
exercise strike price of $90, a fixed payoff of $10 that expires on October 1, 2008. Assume
that on January 1, 2008, the contract trades at $110, and has a volatility of 25% per
annum and the risk-free rate is 4.5% per annum. Using this data, calculate the price of
the call and put cash-or-nothing options on the futures contract. First, create the
RateSpec:

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;  
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9668
            Rates: 0.0450
         EndTimes: 0.7500
       StartTimes: 0
         EndDates: 733682
       StartDates: 733408
    ValuationDate: 733408
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2500
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the call and put options.

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

Calculate the prices.

Pcon = cashbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike, Payoff)

Pcon = 2×1

    7.6716
    1.9965

See Also
assetbybls | cashsensbybls | gapbybls | supersharebybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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cashsensbybls
Determine price or sensitivities of cash-or-nothing digital options using Black-Scholes
model

Syntax
PriceSens =
cashsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payo
ff)
PriceSens =
cashsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payo
ff,OutSpec)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors with values of

'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
Payoff NINST-by-1 vector of payoff values or the amount to be paid at

expiration.

11 Functions — Alphabetical List

11-390



OutSpec (Optional) All optional inputs are specified as matching
parameter name-value pairs. The parameter name is specified
as a character vector, followed by the corresponding parameter
value. You can specify parameter name-value pairs in any order.
Names are case-insensitive and partial matches are allowed
provided no ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of character vectors
indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lambda';
'Rho'} specifies that the output should be Price, Lambda,
and Rho, in that order.

To invoke from a function: [Price, Lambda, Rho] =
cashsensbybls(..., 'OutSpec', {'Price',
'Lambda', 'Rho'})

OutSpec = {'All'} specifies that the output should be
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in
that order. This is the same as specifying OutSpec as
OutSpec = {'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description
PriceSens =
cashsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payo
ff) computes cash-or-nothing option prices using the Black-Scholes option pricing
model.

PriceSens =
cashsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Payo
ff,OutSpec) includes an OutSpec argument defined as parameter/value pairs, and
computes cash-or-nothing option prices or sensitivities using the Black-Scholes option
pricing model.
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PriceSens is a NINST-by-1 vector of expected option prices or sensitivities.

Examples

Compute Cash-or-Nothing Option Prices and Sensitivities Using the Black-
Scholes Option Pricing Model

Consider a European call and put cash-or-nothing options on a futures contract with an
exercise price of $90, and a fixed payoff of $10 that expires on October 1, 2008. Assume
that on January 1, 2008 the contract trades at $110, and has a volatility of 25% per
annum and the risk-free rate is 4.5% per annum. Using this data, calculate the price and
sensitivity of the call and put cash-or-nothing options on the futures contract. First, create
the RateSpec:

Settle = 'Jan-1-2008';
Maturity = 'Oct-1-2008';
Rates = 0.045;
Compounding = -1;  
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9668
            Rates: 0.0450
         EndTimes: 0.7500
       StartTimes: 0
         EndDates: 733682
       StartDates: 733408
    ValuationDate: 733408
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 110;
Sigma = .25;
DivType = 'Continuous';
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DivAmount = Rates;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmount)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2500
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the call and put options.

OptSpec = {'call'; 'put'};
Strike = 90;
Payoff = 10;

Compute the gamma, theta, and price.

OutSpec = { 'gamma';'theta';'price'};
[Gamma, Theta, Price] = cashsensbybls(RateSpec, StockSpec,...
Settle, Maturity, OptSpec, Strike, Payoff, 'OutSpec', OutSpec)

Gamma = 2×1

   -0.0050
    0.0050

Theta = 2×1

   -2.2489
    1.8139

Price = 2×1

    7.6716
    1.9965
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See Also
cashbybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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cbondbycrr
Price convertible bonds from CRR binomial tree

Syntax
Price = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,
ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbycrr( ___ ,Name,Value)

Description
Price = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds from a CRR binomial tree using the Tsiveriotis and Fernandes
method.

[Price,PriceTree] = cbondbycrr(CRRTree,CouponRate,Settle,Maturity,
ConvRatio) prices convertible bonds from a CRR binomial tree using the Tsiveriotis and
Fernandes method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbycrr( ___ ,Name,Value)
prices convertible bonds from a CRR binomial tree using a credit spread or incorporating
the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use
the optional name-value pair input argument Spread. To incorporate default risk into the
algorithm, specify the optional name-value pair input arguments DefaultProbability
and RecoveryRate.

Examples

Price Convertible Bond Using a CRR Tree

Price a convertible bond using the following data for the interest-rate term structure:
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StartDates =  'Jan-1-2014'; 
EndDates = 'Jan-1-2015'; 
Rates = 0.1; 
Basis = 1;

Create the RateSpec and StockSpec.

Sigma = 0.3;
Price = 50;

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,'EndDates',EndDates,...
'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.1000
         EndTimes: 1
       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

StockSpec = stockspec(Sigma,Price)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create the CRR tree for the equity.

Settle = '1-Jan-2014';
Maturity = '1-Oct-2014';
NumSteps = 3; 
TimeSpec = crrtimespec(Settle,Maturity,NumSteps);
CRRT = crrtree(StockSpec,RateSpec,TimeSpec)
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CRRT = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2491 0.4982 0.7473]
         dObs: [735600 735691 735782 735873]
        STree: {1x4 cell}
      UpProbs: [0.5465 0.5465 0.5465]

Define and price the convertible bond.

CouponRate = 0;
Period = 1;
ConvRatio = 2;
CallExDates = '1-Oct-2014';
CallStrike = 115;
AmericanCall = 1;
Spread = 0.05;

[Price,PriceTree,EqtTree,DbtTree] = cbondbycrr(CRRT,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',AmericanCall)

Price = 104.9490

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x4 cell}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

EqtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x4 cell}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {[28.4278]  [0 65.0790]  [0 43.6821 96.3327]  [1x4 double]}
      tObs: [0 0.2491 0.4982 0.7473]
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      dObs: [735600 735691 735782 735873]

Price a Convertible Bond Using a CRR Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2016'; 
Rates = 0.025; 
Basis = 1; 
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',...
StartDates,'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0250
         EndTimes: 2
       StartTimes: 0
         EndDates: 736330
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create the StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
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    ExDividendDates: []

Create the CRR tree for the equity.

Settle = '1-Jan-2014';
Maturity = '1-Oct-2014';
NumSteps = 3;
TimeSpec = crrtimespec(Settle,Maturity,NumSteps);
CRRT = crrtree(StockSpec,RateSpec,TimeSpec)

CRRT = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.2491 0.4982 0.7473]
         dObs: [735600 735691 735782 735873]
        STree: {1x4 cell}
      UpProbs: [0.4782 0.4782 0.4782]

Define and price the convertible bond using the optional DefaultProbability and
RecoveryRate arguments.

CouponRate = 0;
Period = 1;
ConvRatio = 2;
CallExDates = '1-Oct-2014';
CallStrike = 115;
AmericanCall = 1;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTree,DbtTree] = cbondbycrr(CRRT,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',AmericanCall,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 220

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x4 cell}
      tObs: [0 0.2491 0.4982 0.7473]
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      dObs: [735600 735691 735782 735873]

EqtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x4 cell}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {[0]  [0 0]  [0 0 0]  [0 0 0 0]}
      tObs: [0 0.2491 0.4982 0.7473]
      dObs: [735600 735691 735782 735873]

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial date number or date
character vector.
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Note The Settle date for every convertible bond is set to the ValuationDate of the
CRR stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial date number or date
character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number

Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative
number.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbycrr(CRRT,CouponRate,Settle, Maturity,
ConvRatio,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',Cal
lStrike,'AmericanCall',1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair
consisting of 'Spread' and a NINST-by-1 vector.

Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method),
use the optional input argument Spread. To incorporate default risk into the algorithm,
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specify the optional input arguments DefaultProbability and RecoveryRate. Do not
use Spread with DefaultProbability and RecoveryRate.

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number or date
character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial date number or date
character vector.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-
by-1 vector of nonnegative face values or a NINST-by-1 cell array, where each element is
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a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and
the second column is the associated face value. The date indicates the last day that the
face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of call strike price values,

where each row is the schedule for one call option. If a call option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each
option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each
row is the schedule for one option. For a European option, there is only one
CallExDate on the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the call option can be exercised on any tree date
between or including the pair of dates on that row. If CallExDates is NINST-by-1, the
option can be exercised between the ValuationDate of the CRR stock tree and the
single listed CallExDate.

Data Types: char | cell | double
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AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive
integers[0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall'
and a NINST-by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or
Bermuda option.

• For an American option — AmericanCall is 1 for each American option. The
AmericanCall argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers

Put strike values for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values where

each row is the schedule for one option. If a put option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates where each row
is the schedule for one option. For a European option, there is only one PutExDate on
the option expiry date.
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• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the put option can be exercised on any tree date
between or including the pair of dates on that row. If PutExDates is NINST-by-1, the
put option can be exercised between the ValuationDate of the CRR stock tree and
the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of
positive integers [0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and
a NINST-by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or
Bermuda option.

• For an American option — AmericanPut is 1 for each American option. The
AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and
a NINST-by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If
ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including
the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of
the CRR stock tree and the single listed ConvDates.
Data Types: char | single | double

DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal

Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.
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Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and
a NINST-by-1 nonnegative decimal.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree
structure.

EquityTree — Structure with vector of convertible bond equity component at
each node
tree structure
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Structure with a vector of convertible bond equity component at each node, returned as a
tree structure.

DebtTree — Structure with vector of convertible bond debt component at each
node
tree structure

Structure with a vector of convertible bond debt component at each node, returned as a
tree structure.

Definitions

Callable Convertible
A convertible bond that is callable by the issuer. The issuer of the bond forces conversion,
removing the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This
option enables the issuer to control the price of the convertible bond and, if necessary,
refinance the debt with a new cheaper one.

Puttable Convertible
A convertible bond with a put feature allows the bondholder to sell back the bond at a
premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to
maturity.

Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in
the form of a price vector and a price tree. These functions implement the risk in the form
of either a credit spread or incorporating the risk of bond default. To incorporate the risk
in the form of credit spread (Tsiveriotis-Fernandes method), use the optional name-value
pair argument Spread. To incorporate default risk into the algorithm, specify the optional
name-value pair arguments DefaultProbability and RecoveryRate.
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See Also
cbondbyeqp | crrsens | crrtree | eqpprice | eqpsens | instadd | instcbond |
instdisp | intenvset | stockspec

Topics
“Convertible Bond” on page 2-3

Introduced in R2015a
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cbondbyeqp
Price convertible bonds from EQP binomial tree

Syntax
Price = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,
ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbyeqp( ___ ,Name,Value)

Description
Price = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds from an EQP binomial tree using the Tsiveriotis and Fernandes
method.

[Price,PriceTree] = cbondbyeqp(EQPTree,CouponRate,Settle,Maturity,
ConvRatio) prices convertible bonds from an EQP binomial tree using the Tsiveriotis
and Fernandes method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbyeqp( ___ ,Name,Value)
prices convertible bonds from an EQP binomial tree using a credit spread or
incorporating the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use
the optional name-value pair input argument Spread. To incorporate default risk into the
algorithm, specify the optional name-value pair input arguments DefaultProbability
and RecoveryRate.

Examples

Price Convertible Bond Using an EQP Tree

Create the interest-rate term structure RateSpec.
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StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2016'; 
Rates = 0.025; 
Basis = 1; 
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,'EndDates',EndDates,...
'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0250
         EndTimes: 2
       StartTimes: 0
         EndDates: 736330
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create the StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Create the EQP tree for the equity.

NumSteps = 6;
TimeSpec = eqptimespec(StartDates,EndDates,NumSteps);
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)

EQPTree = struct with fields:
       FinObj: 'BinStockTree'
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       Method: 'EQP'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
         dObs: [735600 735721 735843 735965 736086 736208 736330]
        STree: {1x7 cell}
      UpProbs: [0.5000 0.5000 0.5000 0.5000 0.5000 0.5000]

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2015
with a strike price of 125.

Settle = 'Jan-1-2014'; 
Maturity = 'Jan-1-2016'; 
CouponRate = 0.03;
CallStrike = 125; 
Period = 1;
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];
ConvRatio = 1.5;

Price the convertible bond.

Spread = 0.045;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyeqp(EQPTree,CouponRate,Settle,...
Maturity,ConvRatio,'Period',Period,'Spread',Spread,'CallExDates',...
CallExDates,'CallStrike',CallStrike,'AmericanCall',1)

Price = 165

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

EqtTre = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]
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DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

Price a Convertible Bond Using an EQP Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2016'; 
Rates = 0.025; 
Basis = 1; 
RateSpec = intenvset('ValuationDate',StartDates,'StartDates',...
StartDates,'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0250
         EndTimes: 2
       StartTimes: 0
         EndDates: 736330
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create the StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma,AssetPrice,'continuous',Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
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              Sigma: 0.2200
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Create the EQP tree for the equity.

NumSteps = 6;
TimeSpec = eqptimespec(StartDates,EndDates,NumSteps);
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)

EQPTree = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'EQP'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
         dObs: [735600 735721 735843 735965 736086 736208 736330]
        STree: {1x7 cell}
      UpProbs: [0.5000 0.5000 0.5000 0.5000 0.5000 0.5000]

Define and price the convertible bond using the optional DefaultProbability and
RecoveryRate arguments.

Settle = 'Jan-1-2014';
Maturity = 'Jan-1-2016';
CouponRate = 0.03;
CallStrike = 125;
Period = 1;
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];
ConvRatio = 1.5;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyeqp(EQPTree,CouponRate,Settle,...
Maturity,ConvRatio,'Period',Period,'CallExDates',...
CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 165
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PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

EqtTre = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

DbtTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x7 cell}
      tObs: [0 0.3333 0.6667 1 1.3333 1.6667 2]
      dObs: [735600 735721 735843 735965 736086 736208 736330]

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

11 Functions — Alphabetical List

11-414



Settlement date, specified as an NINST-by-1 scalar using a serial date number or date
character vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the
EQP stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial date number or date
character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number

Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative
number.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbyeqp(EQPT,CouponRate,Settle, Maturity,
ConvRatio,'Spread',Spread,'CallExDates',CallExDates,
'CallStrike',CallStrike,'AmericanCall',1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair
consisting of 'Spread' and a NINST-by-1 vector.
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Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method),
use the optional input argument Spread. To incorporate default risk into the algorithm,
specify the optional input arguments DefaultProbability and RecoveryRate. Do not
use Spread with DefaultProbability and RecoveryRate.

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number or date
character vector.
Data Types: char | double

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial date number or date
character vector.
Data Types: double | char

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values
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Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-
by-1 vector of nonnegative face values or an NINST-by-1 cell array where each element is
a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and
the second column is the associated face value. The date indicates the last day that the
face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of strike price values, where

each row is the schedule for one call option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each call
option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each
row is the schedule for one call option. For a European option, there is only one
CallExDate on the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the call option can be exercised on any tree date
between or including the pair of dates on that row. If CallExDates is NINST-by-1, the
call option can be exercised between the ValuationDate of the EQP stock tree and
the single listed CallExDate.

 cbondbyeqp

11-417



Data Types: double | char | cell

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive
integers[0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall'
and a NINST-by-1 vector with positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or
Bermuda option.

• For an American option — AmericanCall is 1 for each American option. The
AmericanCall argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers

Put strike values for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers
• For a Bermuda put option — NINST-by-NSTRIKES matrix of put strike price values,

where each row is the schedule for one put option. If a put option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each put
option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.
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• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each
row is the schedule for one put option. For a European option, there is only one
PutExDate on the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the put option can be exercised on any tree date
between or including the pair of dates on that row. If PutExDates is NINST-by-1, the
put option can be exercised between the ValuationDate of the EQP stock tree and
the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of
positive integers [0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and
a NINST-by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or
Bermuda option.

• For an American option — AmericanPut is 1 for each American option. The
AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and
a NINST-by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If
ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including
the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of
the EQP stock tree and the single listed ConvDates.
Data Types: char | single | double

DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal
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Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and
a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree
structure.
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EquityTree — Structure with vector of convertible bond equity component at
each node
tree structure

Structure with a vector of convertible bond equity component at each node, returned as a
tree structure.

DebtTree — Structure with vector of convertible bond debt component at each
node
tree structure

Structure with a vector of convertible bond debt component at each node, returned as a
tree structure.

Definitions

Callable Convertible
A convertible bond that is callable by the issuer. The issuer of the bond forces conversion,
removing the advantage that conversion is at the discretion of the bondholder.

Upon call, the bondholder can either convert the bond or redeem at the call price. This
option enables the issuer to control the price of the convertible bond and, if necessary,
refinance the debt with a new cheaper one.

Puttable Convertible
A convertible bond with a put feature allows the bondholder to sell back the bond at a
premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to
maturity.

Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in
the form of a price vector and a price tree. These functions implement the risk in the form
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of either a credit spread or incorporating the risk of bond default. To incorporate the risk
in the form of credit spread (Tsiveriotis-Fernandes method), use the optional name-value
pair argument Spread. To incorporate default risk into the algorithm, specify the optional
name-value pair arguments DefaultProbability and RecoveryRate.

References
[1] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.”

Journal of Fixed Income. Vol. 8, 1998, pp. 95–102.

[2] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000,
pp. 646–649.

See Also
cbondbycrr | crrsens | eqpprice | eqpsens | eqptree | instadd | instcbond |
instdisp | intenvset | stockspec

Topics
“Convertible Bond” on page 2-3

Introduced in R2015a
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cbondbyitt
Price convertible bonds from ITT trinomial tree

Syntax
Price = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,
ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbyitt( ___ ,Name,Value)

Description
Price = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds from an ITT trinomial tree using the Tsiveriotis and Fernandes
method.

[Price,PriceTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,
ConvRatio) prices convertible bonds from an ITT trinomial tree using the Tsiveriotis and
Fernandes method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbyitt( ___ ,Name,Value)
prices convertible bonds from an ITT trinomial tree using a credit spread or incorporating
the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use
the optional name-value pair input argument Spread. To incorporate default risk into the
algorithm, specify the optional name-value pair input arguments DefaultProbability
and RecoveryRate.

Examples

Price a Convertible Bond Using an ITT Tree

Price a convertible bond using the following data for an ITTTree from deriv.mat:
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load deriv.mat

Use cbondbyitt to price a convertible bond using an ITT trinomial tree.

CouponRate = 0.05;
Settle = 'Jan-1-2006'; 
Maturity = 'Jan-1-2008'; 
Period = 1;
CallStrike = 65; 
CallExDates = 'Jan-1-2007';
ConvRatio = 1;
Spread = 0.015;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1)

Price = 58.9170

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

Price a Convertible Bond Using an ITT Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Price a convertible bond using the following data for an ITTTree from deriv.mat.
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load deriv.mat

Use cbondbyitt to price a convertible bond using an ITT trinomial tree with the optional
DefaultProbability and RecoveryRate arguments.

CouponRate = 0.05;
Settle = 'Jan-1-2006';
Maturity = 'Jan-1-2008';
Period = 1;
CallStrike = 65;
CallExDates = 'Jan-1-2007';
ConvRatio = 1;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTre,DbtTree] = cbondbyitt(ITTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 50.6487

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]
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Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date
number or date character vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the
standard trinomial (STT) stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
scalar for serial nonnegative date number | scalar for date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number
or date character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number
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Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative
number.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbyitt(ITTTree,CouponRate,Settle, Maturity,
ConvRatio,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',Cal
lStrike,'AmericanCall',1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair
consisting of 'Spread' and a NINST-by-1 vector.

Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method),
use the optional input argument Spread. To incorporate default risk into the algorithm,
specify the optional input arguments DefaultProbability and RecoveryRate. Do not
use Spread with DefaultProbability and RecoveryRate.

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector
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Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using a serial date number or date
character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using a serial date number or date
character vector.
Data Types: double | char

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-
by-1 vector of nonnegative face values or a NINST-by-1 cell array, where each element is
a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and
the second column is the associated face value. The date indicates the last day that the
face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers.
• For a Bermuda call option — NINST-by-NSTRIKES matrix of call strike price values,

where each row is the schedule for one call option. If a call option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
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• For an American call option — NINST-by-1 vector of strike price values for each
option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each
row is the schedule for one option. For a European option, there is only one
CallExDate on the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the call option can be exercised on any tree date
between or including the pair of dates on that row. If CallExDates is NINST-by-1, the
option can be exercised between the ValuationDate of the ITT stock tree and the
single listed CallExDate.

Data Types: double | char | cell

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | positive integer [0,1] | vector of
positive integers [0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall'
and a NINST-by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or
Bermuda option.

• For an American option — AmericanCall is 1 for each American option. The
AmericanCall argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers

 cbondbyitt

11-429



Put strike values for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers.
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values where

each row is the schedule for one option. If a put option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates where each row
is the schedule for one option. For a European option, there is only one PutExDate on
the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the put option can be exercised on any tree date
between or including the pair of dates on that row. If PutExDates is NINST-by-1, the
put option can be exercised between the ValuationDate of the ITT stock tree and
the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of
positive integers [0,1]

Put option type, specified as the comma-separated pair consisting of 'PutExDates' and
a NINST-by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or
Bermuda option.
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• For an American option — AmericanPut is 1 for each American option. The
AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and
a NINST-by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If
ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including
the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of
the ITT stock tree and the single listed ConvDates.
Data Types: char | single | double

DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal

Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and
a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
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spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree
structure.

EquityTree — Structure with vector of convertible bond equity component at
each node
tree structure

Structure with a vector of convertible bond equity components at each node, returned as
a tree structure.

DebtTree — Structure with vector of convertible bond debt component at each
node
tree structure

Structure with a vector of convertible bond debt components at each node, returned as a
tree structure.

Definitions
Callable Convertible
A convertible bond that is callable by the issuer. The issuer of the bond forces conversion,
removing the advantage that conversion is at the discretion of the bondholder.
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Upon call, the bondholder can either convert the bond or redeem at the call price. This
option enables the issuer to control the price of the convertible bond and, if necessary,
refinance the debt with a new cheaper bond.

Puttable Convertible
A convertible bond with a put feature allows the bondholder to sell back the bond at a
premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to
maturity.

Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in
the form of a price vector and a price tree. These functions implement the risk in the form
of either a credit spread or incorporating the risk of bond default. To incorporate the risk
in the form of credit spread (Tsiveriotis-Fernandes method), use the optional name-value
pair argument Spread. To incorporate default risk into the algorithm, specify the optional
name-value pair arguments DefaultProbability and RecoveryRate.

References
[1] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.”

Journal of Fixed Income. Vol 8, 1998, pp. 95–102.

[2] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000,
pp. 646–649.

See Also
cbondbystt | instadd | instcbond | instdisp | intenvset | ittprice | ittsens |
itttree | stockspec

Topics
“Convertible Bond” on page 2-3
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Introduced in R2015b
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cbondbystt
Price convertible bonds from standard trinomial tree

Syntax
Price = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio)
[Price,PriceTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,
ConvRatio)
[Price,PriceTree,EquityTree,DebtTree] = cbondbystt( ___ ,Name,Value)

Description
Price = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio)
prices convertible bonds using a standard trinomial (STT) tree using the Tsiveriotis and
Fernandes method.

[Price,PriceTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,
ConvRatio) prices convertible bonds using a standard trinomial (STT) tree using the
Tsiveriotis and Fernandes method.

[Price,PriceTree,EquityTree,DebtTree] = cbondbystt( ___ ,Name,Value)
prices convertible bonds from a standard trinomial (STT) tree using a credit spread or
incorporating the risk of bond default.

To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method), use
the optional name-value pair input argument Spread. To incorporate default risk into the
algorithm, specify the optional name-value pair input arguments DefaultProbability
and RecoveryRate.

Examples

Price a Convertible Bond Using a STTTree

Create a RateSpec.
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StartDates = 'Jan-1-2015'; 
EndDates = 'Jan-1-2020'; 
Rates = 0.025; 
Basis = 1; 

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8825
            Rates: 0.0250
         EndTimes: 5
       StartTimes: 0
         EndDates: 737791
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 80; 
Sigma = 0.12; 
StockSpec = stockspec(Sigma,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 80
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create a STTTree.

TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
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     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x21 double]
         dObs: [1x21 double]
        STree: {1x21 cell}
        Probs: {1x20 cell}

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2016
with a strike price of 95.

CouponRate = 0.03;
Settle = 'Jan-1-2015'; 
Maturity = 'April-1-2018'; 
Period = 1;
CallStrike = 95; 
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
Spread = 0.025;

Price the convertible bond using the standard trinomial tree model.

[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1)

Price = 90.2511

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
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      dObs: [1x21 double]

Spread Effect Analysis for a Convertible Bond Using a STTTree

This example demonstrates the spread effect analysis of a 4% coupon convertible bond,
callable at 110 at end of the second year, maturing in five years, with spreads of 0, 50,
100, and 150 BP.

Define the RateSpec.

StartDates = '1-Apr-2015';
EndDates = '1-Apr-2020';
Rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('StartDates',StartDates,'EndDates',EndDates,'Rates',Rates,...
'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.7788
            Rates: 0.0500
         EndTimes: 5
       StartTimes: 0
         EndDates: 737882
       StartDates: 736055
    ValuationDate: 736055
            Basis: 1
     EndMonthRule: 1

Define the convertible bond data.

Settle = '1-Apr-2015';
Maturity = '1-Apr-2020';
CouponRate = 0.04;
CallStrike = 110;
CallExDates = [datenum('1-Apr-2017') datenum(Maturity)];
ConvRatio = 1;
AmericanCall = 1;
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Sigma = 0.3;
Spreads = 0:0.005:0.015;
Prices = 40:10:140;
convprice = zeros(length(Prices),length(Spreads));

Define the TimeSpec for the Standard Trinomial Tree, create an STTTree using 
stttree, and price the convertible bond using cbondbystt.

NumSteps = 200;
TimeSpec = stttimespec(StartDates, EndDates, NumSteps);

for PriceIdx = 1:length(Prices)
    StockSpec = stockspec(Sigma, Prices(PriceIdx));
    STTT = stttree(StockSpec, RateSpec, TimeSpec);
    convprice(PriceIdx,:) = cbondbystt(STTT,  CouponRate, Settle, Maturity, ConvRatio,...
    'Spread', Spreads(:),'CallExDates', CallExDates, 'CallStrike', CallStrike,...
    'AmericanCall', AmericanCall);
end

Plot the spread effect analysis for the convertible bond.

stock = repmat(Prices',1,length(Spreads));
plot(stock,convprice);
legend({'+0 bp'; '+50 bp'; '+100 bp'; '+150 bp'});
title ('Effect of Spread using Trinomial tree - 200 steps')
xlabel('Stock Price');
ylabel('Convertible Bond Price');
text(50, 150, ['Coupon 4% semiannual,', sprintf('\n'), ...
    '110 Call after 2 years,' sprintf('\n'), ...
    'maturing in 5 years.'],'fontweight','Bold')
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Price a Convertible Bond Using an STT Tree and Incorporate Default Risk Using
DefaultProbability and RecoveryRate

Create the interest-rate term structure RateSpec.

StartDates = 'Jan-1-2015';
EndDates = 'Jan-1-2020';
Rates = 0.025;
Basis = 1;

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8825
            Rates: 0.0250
         EndTimes: 5
       StartTimes: 0
         EndDates: 737791
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create the StockSpec.

AssetPrice = 80;
Sigma = 0.12;
StockSpec = stockspec(Sigma,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 80
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create the STT tree for the equity.

TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x21 double]
         dObs: [1x21 double]
        STree: {1x21 cell}
        Probs: {1x20 cell}
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Define and price the convertible bond using the optional DefaultProbability and
RecoveryRate arguments.

CouponRate = 0.03;
Settle = 'Jan-1-2015';
Maturity = 'April-1-2018';
Period = 1;
CallStrike = 95;
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
DefaultProbability = .30;
RecoveryRate = .82;

[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1,...
'DefaultProbability',DefaultProbability,'RecoveryRate',RecoveryRate)

Price = 80

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]
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Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date
number or date character vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the
standard trinomial (STT) stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
scalar for serial nonnegative date number | scalar for date character vector

Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number
or date character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative number
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Number of shares convertible to one bond, specified as an NINST-by-1 with a nonnegative
number.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,EquityTree,DebtTree] =
cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,'Spread',Spr
ead,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall'
,1)

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair
consisting of 'Spread' and a NINST-by-1 vector.

Note To incorporate the risk in the form of credit spread (Tsiveriotis-Fernandes method),
use the optional input argument Spread. To incorporate default risk into the algorithm,
specify the optional input arguments DefaultProbability and RecoveryRate. Do not
use Spread with DefaultProbability and RecoveryRate.

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

IssueDate — Bond issue date
serial date number | date character vector
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Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 scalar using a serial date number or date
character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 using a serial date number or date character
vector.
Data Types: double | char

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-
by-1 vector of nonnegative face values or a NINST-by-1 cell array, where each element is
a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and
the second column is the associated face value. The date indicates the last day that the
face value is valid.
Data Types: cell | double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Call strike price for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of call strike price values,

where each row is the schedule for one call option. If a call option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with NaNs.
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• For an American call option — NINST-by-1 vector of strike price values for each
option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each
row is the schedule for one option. For a European option, there is only one
CallExDate on the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the call option can be exercised on any tree date
between or including the pair of dates on that row. If CallExDates is NINST-by-1, the
option can be exercised between the ValuationDate of the STT stock tree and the
single listed CallExDate.

Data Types: double | char | cell

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | positive integer [0,1] | vector of
positive integers [0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall'
and a NINST-by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or
Bermuda option.

• For an American option — AmericanCall is 1 for each American option. The
AmericanCall argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
positive integer | vector of positive integers
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Put strike values for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers.
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values where

each row is the schedule for one option. If a put option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date nonnegative number | vector of serial date numbers | date character vector |
cell array of date character vectors

Put exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates where each row
is the schedule for one option. For a European option, there is only one PutExDate on
the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the put option can be exercised on any tree date
between or including the pair of dates on that row. If PutExDates is NINST-by-1, the
put option can be exercised between the ValuationDate of the STT stock tree and
the single listed PutExDate.

Data Types: double | char | cell

AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | positive integer [0,1] | vector of
positive integers [0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and
a NINST-by-1 vector of positive integer flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or
Bermuda option.
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• For an American option — AmericanPut is 1 for each American option. The
AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | serial date number | date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and
a NINST-by-1 or NINST-by-2 matrix of serial date numbers or date character vectors. If
ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including
the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of
the standard trinomial (STT) stock tree and the single listed ConvDates.
Data Types: single | double | char

DefaultProbability — Annual probability of default rate
0 (default) | nonnegative decimal

Annual probability of default rate, specified as the comma-separated pair consisting of
'DefaultProbability' and a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

RecoveryRate — Recovery rate
1 (default) | nonnegative decimal

Recovery rate, specified as the comma-separated pair consisting of 'RecoveryRate' and
a NINST-by-1 nonnegative decimal value.

Note To incorporate default risk into the algorithm, specify the optional input arguments
DefaultProbability and RecoveryRate. To incorporate the risk in the form of credit
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spread (Tsiveriotis-Fernandes method), use the optional input argument Spread. Do not
use DefaultProbability and RecoveryRate with Spread.

Data Types: single | double

Output Arguments
Price — Expected price at time 0
array

Expected price at time 0, returned as an NINST-by-1 array.

PriceTree — Structure with vector of convertible bond prices at each node
tree structure

Structure with a vector of convertible bond prices at each node, returned as a tree
structure.

EquityTree — Structure with vector of convertible bond equity component at
each node
tree structure

Structure with a vector of convertible bond equity components at each node, returned as
a tree structure.

DebtTree — Structure with vector of convertible bond debt component at each
node
tree structure

Structure with a vector of convertible bond debt components at each node, returned as a
tree structure.

Definitions
Callable Convertible
A convertible bond that is callable by the issuer. The issuer of the bond forces conversion,
removing the advantage that conversion is at the discretion of the bondholder.
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Upon call, the bondholder can either convert the bond or redeem at the call price. This
option enables the issuer to control the price of the convertible bond and, if necessary,
refinance the debt with a new cheaper bond.

Puttable Convertible
A convertible bond with a put feature allows the bondholder to sell back the bond at a
premium on a specific date.

This option protects the holder against rising interest rates by reducing the year to
maturity.

Algorithms
cbondbycrr, cbondbyeqp, cbondbyitt, and cbondbysttreturn price information in
the form of a price vector and a price tree. These functions implement the risk in the form
of either a credit spread or incorporating the risk of bond default. To incorporate the risk
in the form of credit spread (Tsiveriotis-Fernandes method), use the optional name-value
pair argument Spread. To incorporate default risk into the algorithm, specify the optional
name-value pair arguments DefaultProbability and RecoveryRate.

References
[1] Tsiveriotis, K., and C. Fernandes. “Valuing Convertible Bonds with Credit Risk.”

Journal of Fixed Income. Vol 8, 1998, pp. 95–102.

[2] Hull, J. Options, Futures and Other Derivatives. Fourth Edition. Prentice Hall, 2000,
pp. 646–649.

See Also
cbondbycrr | cbondbyeqp | instadd | instcbond | instdisp | intenvset |
stockspec | sttprice | sttsens | stttree

Topics
“Convertible Bond” on page 2-3
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Introduced in R2015b
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cfbybdt
Price cash flows from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = cfbybdt(BDTTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbybdt( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbybdt(BDTTree,CFlowAmounts,CFlowDates,Settle)
prices cash flows from a Black-Derman-Toy interest-rate tree.

[Price,PriceTree] = cfbybdt( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the
four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the
time and interest-rate information needed to price the instruments.

load deriv.mat;

The valuation date (settle date) specified in BDTTree is January 1, 2000 (date number
730486).

BDTTree.RateSpec.ValuationDate

ans = 730486

Provide values for the other required arguments.
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CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947; 
              730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbybdt(BDTTree, CFlowAmounts, ... 
CFlowDates, BDTTree.RateSpec.ValuationDate)

Price = 2×1

   74.0112
   74.3671

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the treeviewer
function.

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number
of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.
Data Types: double
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CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial
date number of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or a date character vectors.
The Settle date for every cash flow is set to the ValuationDate of the BDT tree. The
cash flow argument, Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

See Also
bdtprice | bdttree | cfamounts | instcf

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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cfbybk
Price cash flows from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = cfbybk(BKTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbybk( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbybk(BKTree,CFlowAmounts,CFlowDates,Settle)
prices cash flows from a Black-Karasinski interest-rate tree.

[Price,PriceTree] = cfbybk( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the
four-year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the
time and interest-rate information needed to price the instruments.

load deriv.mat; 

The valuation date (settle date) specified in BKTree is January 1, 2004 (date number
731947).

BKTree.RateSpec.ValuationDate

ans =

      731947

11 Functions — Alphabetical List

11-456



Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408,733774; 
              732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbybk(BKTree, CFlowAmounts, CFlowDates,... 
BKTree.RateSpec.ValuationDate)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In cfbytrintree (line 88)
  In cfbybk (line 75) 

Price =

   93.3600
   81.6218

PriceTree = 

  struct with fields:

     FinObj: 'BKPriceTree'
      PTree: {[2×1 double]  [2×3 double]  [2×5 double]  [2×5 double]  [2×5 double]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}

You can visualize the prices of the two cash flow instruments with the treeviewer
function.

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct
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CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number
of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial
date number of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or a date character vectors.
The Settle date for every cash flow is set to the ValuationDate of the BK tree. The
cash flow argument, Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)

11 Functions — Alphabetical List

11-458



• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.
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• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bkprice | bktree | cfamounts | instcf

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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cfbycir
Price cash flows from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = cfbycir(CIRTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbycir( ___ ,Basis)

Description
[Price,PriceTree] = cfbycir(CIRTree,CFlowAmounts,CFlowDates,Settle)
prices cash flows from a Cox-Ingersoll-Ross (CIR) interest-rate tree using a CIR++ model
with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = cfbycir( ___ ,Basis) adds an optional argument for Basis.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the
four-year period from January 1, 2017 to June 1, 2020.

Load the file deriv.mat, which provides CIRTree. The CIRTree structure contains the
time and interest-rate information required to price the instruments.

load deriv.mat;

The valuation date (settle date) specified in the CIRTree is January 1, 2017 (serial date
number 736696).

CIRTree.RateSpec.ValuationDate 

ans = 736696
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Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [736847,NaN,737061,737212; 
              737426,737577,737791,737943];

Compute the prices of the two cash flow instruments.

warning('off')
[Price,PriceTree] = cfbycir(CIRTree, CFlowAmounts, CFlowDates,... 
CIRTree.RateSpec.ValuationDate)

Price = 2×1

  109.6845
   98.7246

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a number of instruments (NINST) by maximum number of
cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow values
for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end of the
row is padded with NaNs.
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Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial
date number of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector | string array | datetime

Settlement date, specified as a vector of serial date numbers, date character vectors,
string arrays, or datetime arrays. The Settle date for every cash flow is set to the
ValuationDate of the CIR tree. The cash flow argument Settle is ignored.
Data Types: double | char | string | datetime

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis on page Glossary-0 .
Data Types: double

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.
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[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir | instcf
| oasbycir | optbndbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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cfbyhjm
Price cash flows from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = cfbyhjm(HJMTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbyhjm( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbyhjm(HJMTree,CFlowAmounts,CFlowDates,Settle)
prices cash flows from a Heath-Jarrow-Morton interest-rate tree.

[Price,PriceTree] = cfbyhjm( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the
four-year period from January 1, 2000 to January 1, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the
time and interest-rate information needed to price the instruments.

load deriv.mat;

The valuation date (settle date) specified in HJMTree is January 1, 2000 (date number
730486).

HJMTree.RateSpec.ValuationDate

ans = 730486

Provide values for the other required arguments.
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CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [730852, NaN, 731582, 731947; 
              730852, 731217, 731582, 731947];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbyhjm(HJMTree, CFlowAmounts,... 
CFlowDates, HJMTree.RateSpec.ValuationDate)

Price = 2×1

   96.7805
   97.2188

PriceTree = struct with fields:
    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3 4]
     PBush: {1x5 cell}

You can visualize the prices of the two cash flow instruments with the treeviewer
function.

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number
of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.
Data Types: double
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CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial
date number of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or a date character vectors.
The Settle date for every cash flow is set to the ValuationDate of the HJM tree. The
cash flow argument, Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

11 Functions — Alphabetical List

11-468



Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and observation times for each node. Within PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.PBush contains the clean prices.

See Also
cfamounts | hjmprice | hjmtree | instcf

Topics
“Computing Instrument Prices” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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cfbyhw
Price cash flows from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = cfbyhw(HWTree,CFlowAmounts,CFlowDates,Settle)
[Price,PriceTree] = cfbyhw( ___ ,Basis,Options)

Description
[Price,PriceTree] = cfbyhw(HWTree,CFlowAmounts,CFlowDates,Settle)
prices cash flows from a Hull-White interest-rate tree.

[Price,PriceTree] = cfbyhw( ___ ,Basis,Options) adds optional arguments.

Examples

Price a Portfolio Containing Two Cash Flow Instruments

Price a portfolio containing two cash flow instruments paying interest annually over the
four-year period from January 1, 2005 to January 1, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the
time and interest-rate information needed to price the instruments.

load deriv.mat; 

The valuation date (settle date) specified in HWTree is January 1, 2004 (date number
731947).

HWTree.RateSpec.ValuationDate

ans =

      731947
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Provide values for the other required arguments.

CFlowAmounts =[5 NaN 5.5 105; 5 0 6 105];
CFlowDates = [732678, NaN, 733408, 733774; 
              732678, 733034, 733408, 734774];

Use this information to compute the prices of the two cash flow instruments.

[Price, PriceTree] = cfbyhw(HWTree, CFlowAmounts, CFlowDates,... 
HWTree.RateSpec.ValuationDate)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In cfbytrintree (line 88)
  In cfbyhw (line 75) 

Price =

   93.3789
   81.7651

PriceTree = 

  struct with fields:

     FinObj: 'HWPriceTree'
      PTree: {[2×1 double]  [2×3 double]  [2×5 double]  [2×5 double]  [2×5 double]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}

You can visualize the prices of the two cash flow instruments with the treeviewer
function.

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct
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CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number
of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial
date number of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a vector of serial date numbers or a date character vectors.
The Settle date for every cash flow is set to the ValuationDate of the HW tree. The
cash flow argument, Settle, is ignored.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected prices at time 0
vector

Expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and observation times for each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.
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• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
cfamounts | hwprice | hwtree | instcf

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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cfbyzero
Price cash flows from set of zero curves

Syntax
Price = cfbyzero(RateSpec,CFlowAmounts,CFlowDates,Settle)
Price = cfbyzero( ___ ,Basis)

Description
Price = cfbyzero(RateSpec,CFlowAmounts,CFlowDates,Settle) prices cash
flows from a set of zero curves.

Price = cfbyzero( ___ ,Basis) adds an optional argument.

Examples

Compute the Price and Sensitivity From the Interest-Rate Term Structure

This example shows how to price a portfolio containing two cash flow instruments paying
interest annually over the four-year period from January 1, 2000 to January 1, 2004. Load
the file deriv.mat, which provides ZeroRateSpec. The ZeroRateSpec structure
contains the interest-rate information needed to price the instruments.

load deriv.mat 
CFlowAmounts =[5 NaN 5.5 105;5 0 6 105];
CFlowDates = [730852, NaN, 731582,731947; 
              730852, 731217, 731582, 731947];
Settle = 730486;
Price = cfbyzero(ZeroRateSpec, CFlowAmounts, CFlowDates, Settle)

Price = 2×1

   96.7804
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   97.2187

Input Arguments
RateSpec — Annualized zero rate term structure
structure

Annualized zero rate term structure, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, specified as a Number of instruments (NINST) by maximum number
of cash flows (MOSTCFS) matrix of cash flow amounts. Each row is a list of cash flow
values for one instrument. If an instrument has fewer than MOSTCFS cash flows, the end
of the row is padded with NaNs.
Data Types: double

CFlowDates — Cash flow dates
matrix

Cash flow dates, specified as NINST-by-MOSTCFS matrix. Each entry contains the serial
date number of the corresponding cash flow in CFlowAmounts.
Data Types: double

Settle — Settlement date on which cash flows are priced
serial date number | date character vector

Settlement date on which the cash flows are priced, specified using a scalar or NINST-
by-1 vector of serial date numbers or date character vectors of the same value which
represent the settlement date for each cash flow. Settle must be earlier than Maturity.
Data Types: double | char

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13
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(Optional) Day-count basis of the instrument, specified as a vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Output Arguments
Price — Cash flow prices
matrix

Cash flow prices, returned as a NINST-by-NUMCURVES matrix where each column arises
from one of the zero curves.

See Also
bondbyzero | fixedbyzero | floatbyzero | swapbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
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“Understanding the Interest-Rate Term Structure” on page 2-55
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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chooserbybls
Price European simple chooser options using Black-Scholes model

Syntax
Price = chooserbybls(RateSpec, StockSpec, Settle,Maturity, Strike)

Arguments
RateSpec The annualized continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
Strike NINST-by-1 vector of strike price values.
ChooseDate NINST-by-1 vector of chooser dates.

Description
Price = chooserbybls(RateSpec, StockSpec, Settle,Maturity, Strike)
computes the price for European simple chooser options using the Black-Scholes model.

Price is a NINST-by-1 vector of expected prices.

Note Only dividends of type continuous can be considered for choosers.

Examples
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Price European Simple Chooser Options Using the Black-Scholes Model

Consider a European chooser option with an exercise price of $60 on June 1, 2007. The
option expires on December 2, 2007. Assume the underlying stock provides a continuous
dividend yield of 5% per annum, is trading at $50, and has a volatility of 20% per annum.
The annualized continuously compounded risk-free rate is 10% per annum. Assume that
the choice must be made on August 31, 2007. Using this data:

AssetPrice = 50;
Strike = 60;
Settlement = 'Jun-1-2007';
Maturity = 'Dec-2-2007'; 
ChooseDate = 'Aug-31-2007';
RiskFreeRate = 0.1;
Sigma = 0.20;
Yield = 0.05

Yield = 0.0500

Define the RateSpec and StockSpec.

RateSpec = intenvset('Compounding', -1, 'Rates', RiskFreeRate, 'StartDates',...
Settlement, 'EndDates', Maturity);
StockSpec = stockspec(Sigma, AssetPrice,'continuous',Yield);

Price the chooser option.

Price  = chooserbybls(RateSpec, StockSpec, Settlement, Maturity,...
Strike, ChooseDate)

Price = 8.9308

References
Rubinstein, Mark. “Options for the Undecided.” Risk. Vol. 4, 1991.

See Also
blsprice | intenvset
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Topics
“Pricing Using the Black-Scholes Model” on page 3-152
“Chooser Option” on page 3-28
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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cirprice
Instrument prices from Cox-Ingersoll-Ross interest-rate model

Syntax
Price = cirprice(CIRTree,InstSet)
[Price,PriceTree] = cirprice(CIRTree,InstSet)

Description
Price = cirprice(CIRTree,InstSet) computes prices for instruments using a Cox-
Ingersoll-Ross (CIR) interest rate tree created with cirtree. The CIR tree uses a CIR++
model with the Nawalka-Beliaeva (NB) approach.

cirprice handles the following instrument type values: 'Bond',
'CashFlow','OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap','Swaption',
'RangeFloat', 'OptFloat', 'OptEmFloat'.

[Price,PriceTree] = cirprice(CIRTree,InstSet) returns the optional output for
PriceTree.

Examples

Price Bonds Using a CIR Interest-Rate Tree

Define two bond instruments.

CouponRate= [0.035;0.04];
Settle= 'Jan-1-2017'; 
Maturity = 'Jan-1-2019'; 
Period = 1; 
InstSet = instbond(CouponRate, Settle, Maturity, Period)

InstSet = struct with fields:
        FinObj: 'Instruments'
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    IndexTable: [1x1 struct]
          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
     FieldData: {{11x1 cell}}

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
 

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2019'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.5000 1 1.5000]
        dObs: [736696 736878 737061 737243]
     FwdTree: {[1.0173]  [1.0276 1.0175 1.0097]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
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       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the bonds.

Price = cirprice(CIRT,InstSet) 

Price = 2×1

   98.6793
   99.6228

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector. The prices
are computed by backward dynamic programming on the interest-rate tree. If an
instrument cannot be priced, a NaN is returned in that entry.
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PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | cirsens | fixedbycir | floatbycir |
floorbycir | oasbycir | optbndbycir | optembndbycir | optemfloatbycir |
optfloatbycir | rangefloatbycir | swapbycir | swaptionbycir

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2
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Introduced in R2018a
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cirsens
Instrument sensitivities and prices from Cox-Ingersoll-Ross interest-rate model

Syntax
[Delta,Gamma,Vega,Price] = cirsens(CIRTree,InstSet)

Description
[Delta,Gamma,Vega,Price] = cirsens(CIRTree,InstSet) computes dollar
sensitivities and prices for instruments using a Cox-Ingersoll-Ross (CIR) interest rate tree
created with cirtree. The CIR tree uses a CIR++ model with the Nawalka-Beliaeva (NB)
approach.

Note All sensitivities are returned as dollar sensitivities. To find the per-dollar
sensitivities, divide by the respective instrument price.

cirsens handles the following instrument type values: 'Bond',
'CashFlow','OptBond', 'Fixed', 'Float', 'Cap', 'Floor', 'Swap','Swaption',
'RangeFloat', 'OptFloat', 'OptEmFloat'.

Examples

Compute Instrument Sensitivities Using a CIR Interest-Rate Tree

Define and set up two bond instruments. Compute Delta and Gamma for the bond
instruments contained in the instrument set.

CouponRate= [0.035;0.04];
Settle= 'Jan-1-2017'; 
Maturity = 'Jan-1-2019'; 
Period = 1; 
InstSet = instbond(CouponRate, Settle, Maturity, Period)

 cirsens

11-487



InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
     FieldData: {{11x1 cell}}

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Jan-2017    01-Jan-2019    1      0     1            NaN       NaN             NaN            NaN       100 
 

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2019'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.5000 1 1.5000]
        dObs: [736696 736878 737061 737243]
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     FwdTree: {[1.0173]  [1.0276 1.0175 1.0097]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Calculate the Delta and Gamma sensitivities for the two bonds.

[Delta, Gamma] = cirsens(CIRT,InstSet) 

Delta = 2×1

 -186.1885
 -187.5390

Gamma = 2×1

  532.8675
  536.3132

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct
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Output Arguments
Delta — Rate of change of instruments prices with respect to changes in
interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate,
returned as a NINST-by-1 vector of deltas. Delta is computed by finite differences in calls
to cirtree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in
interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate,
returned as a NINST-by-1 vector of gammas. Gamma is computed by finite differences in
calls to cirtree.

Note Gamma is calculated based on yield shifts of 100 basis points.

Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as
a NINST-by-1 vector of vegas. Volatility is Sigma (t,T) of the interest rate. Vega is
computed by finite differences in calls to cirtree. For information on the volatility
process, see cirvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector
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Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | cirprice | fixedbycir | floatbycir |
floorbycir | oasbycir | optbndbycir | optembndbycir | optemfloatbycir |
optfloatbycir | rangefloatbycir | swapbycir | swaptionbycir

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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classfin
Create financial structure or return financial structure class name

Syntax
Obj = classfin(ClassName)
Obj = classfin(Struct, ClassName)
ClassName = classfin(Obj)

Arguments
ClassName Character vector containing the name of a financial structure class.
Struct MATLAB structure to be converted into a financial structure.
Obj Name of a financial structure.

Description
Obj = classfin(ClassName) and Obj = classfin(Struct, ClassName) create a
financial structure of class ClassName.

ClassName = classfin(Obj) returns a character vector containing a financial
structure's class name.

Examples

Create a Financial Structure

This example shows how to create a financial structure HJMTimeSpec and complete its
fields. (Typically, the function hjmtimespec is used to create HJMTimeSpec structures).

TimeSpec = classfin('HJMTimeSpec'); 
TimeSpec.ValuationDate = datenum('Dec-10-1999'); 
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TimeSpec.Maturity = datenum('Dec-10-2002'); 
TimeSpec.Compounding = 2; 
TimeSpec.Basis = 0; 
TimeSpec.EndMonthRule = 1;
TimeSpec

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 730464
         Maturity: 731560
      Compounding: 2
            Basis: 0
     EndMonthRule: 1

Convert an Existing MATLAB Structure into a Financial Structure

This example shows how to convert an existing MATLAB structure into a financial
structure.

TSpec.ValuationDate = datenum('Dec-10-1999'); 
TSpec.Maturity = datenum('Dec-10-2002'); 
TSpec.Compounding = 2; 
TSpec.Basis = 0; 
TSpec.EndMonthRule = 0; 
TimeSpec = classfin(TSpec, 'HJMTimeSpec')

TimeSpec = struct with fields:
    ValuationDate: 730464
         Maturity: 731560
      Compounding: 2
            Basis: 0
     EndMonthRule: 0
           FinObj: 'HJMTimeSpec'

Return a Character Vector Containing a Financial Structure's Class Name

This example shows how to obtain a character vector containing a financial structure's
class name.
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load deriv.mat 
ClassName = classfin(HJMTree)

ClassName = 
'HJMFwdTree'

See Also
isafin

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20
“Hedging” on page 4-2

Introduced before R2006a
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cirtimespec
Specify time structure for Cox-Ingersoll-Ross tree

Syntax
TimeSpec = cirtimespec(ValuationDate,Maturity,NumPeriods)
TimeSpec = cirtimespec( ___ ,Name,Value)

Description
TimeSpec = cirtimespec(ValuationDate,Maturity,NumPeriods) creates a time
spec for a Cox-Ingersoll-Ross (CIR) tree.

TimeSpec = cirtimespec( ___ ,Name,Value) adds additional name-value pair
arguments.

Examples

Set the Number of Levels and Node Times for a CIR Tree

Set the number of levels and node times for an CIR tree by specifying a four-period tree
with time steps of 1 year.

ValuationDate = 'Jan-1-2017'; 
Maturity = '01-Jan-2021'; 
NumPeriods = 4

NumPeriods = 4

CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods)

CIRTimeSpec = struct with fields:
           FinObj: 'CIRTimeSpec'
    ValuationDate: 736696
         Maturity: 738157
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       NumPeriods: 4
      Compounding: 1
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [736696 737061 737426 737791 738157]

Input Arguments
ValuationDate — Date marking the pricing date and first observation tree
serial date number | date character vector

Date marking the pricing date and first observation in the tree, specified as a scalar using
a serial date number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of tree
serial date number | date character vector

Date marking the depth of the tree, specified as a scalar using a serial date number or
date character vector.
Data Types: double | char

NumPeriods — Determines how many time steps are in tree
nonnegative integer

Determines how many time steps are in tree, specified as a scalar using a nonnegative
integer value.
Data Types: double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: TimeSpec =
cirtimespec(Valuationdate,Maturity,NumPeriods,'Basis',3)

Compounding — Frequency at which the rates are compounded when annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, or 12

Frequency at which the rates are compounded when annualized, specified as the comma-
separated pair consisting of 'Compounding' and a scalar value:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a
scalar value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a scalar.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments
TimeSpec — Time layout for CIR tree
structure

Time layout for the CIRTree, returned as a structure.

See Also
cirtree

Introduced in R2018a
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cirvolspec
Specify Cox-Ingersoll-Ross interest-rate volatility process

Syntax
VolSpec = cirvolspec(Sigma,Alpha,Theta)

Description
VolSpec = cirvolspec(Sigma,Alpha,Theta) creates a Cox-Ingersoll-Ross (CIR)
VolSpec.

Examples

Create a Structure Specifying the Volatility for cirtree

Create a Cox-Ingersoll-Ross volatility specification (CIRVolSpec) using the following
data.

Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
CIRVolSpec = cirvolspec(Sigma,Alpha,Theta)

CIRVolSpec = struct with fields:
    FinObj: 'CIRVolSpec'
     Sigma: 0.1000
     Alpha: 0.0300
     Theta: 0.0200
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Input Arguments
Sigma — Volatility
numeric

Volatility, specified as a scalar using a numeric value.
Data Types: double

Alpha — Mean reversion speed
numeric

Mean reversion speed, specified as a scalar using a numeric value.
Data Types: double

Theta — Mean reversion level or long-term mean of short rate
numeric

Mean reversion level or long-term mean of the short rate, specified as a scalar using a
numeric value.
Data Types: double

Output Arguments
VolSpec — Volatility model for CIR tree
structure

Volatility model for the CIRTree, returned as a structure.

See Also
cirtree

Introduced in R2018a
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cirtree
Build a Cox-Ingersoll-Ross interest-rate tree

Syntax
CIRTree = cirvolspec(VolSpec,RateSpec,TimeSpec)

Description
CIRTree = cirvolspec(VolSpec,RateSpec,TimeSpec) builds a Cox-Ingersoll-Ross
(CIR) interest-rate tree. The CIR tree uses a CIR++ model with the Nawalka-Beliaeva
(NB) approach.

Examples

Create a CIR Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, NumPeriods); 
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CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from
cirvolspec.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see
intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from
cirtimespec.
Data Types: struct
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Output Arguments
CIRTree — Time and interest-rate information of a recombining tree
structure

Time and interest-rate information of a recombining tree, returned as a structure.

See Also
cirtimespec | cirvolspec

Introduced in R2018a
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compoundbycrr
Price compound option from Cox-Ross-Rubinstein binomial tree

Syntax
[Price,PriceTree] = compoundbycrr(CRRTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbycrr( ___ ,CAmericanOpt)

Description
[Price,PriceTree] = compoundbycrr(CRRTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
prices compound options from a Cox-Ross-Rubinstein binomial tree.

[Price,PriceTree] = compoundbycrr( ___ ,CAmericanOpt) adds an optional
argument for CAmericanOpt.

Examples

Price a Compound Option Using a CRR Binomial Tree

This example shows how to price a compound option using a CRR binomial tree by
loading the file deriv.mat, which provides CRRTree. The CRRTree structure contains
the stock specification and time information needed to price the option.

load deriv.mat

UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
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CStrike = 5;
CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';

Price = compoundbycrr(CRRTree, UOptSpec, UStrike, USettle, ... 
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ... 
CExerciseDates)

Price = 2.8482

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1
vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a
serial date number or character vector.
Data Types: double | char
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UExerciseDates — Underlying option exercise date
serial date number | date character vector

Underlying option exercise date, specified as a serial date number or date character
vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a
European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date
boundaries. The option can be exercised on any tree date. If only one non-NaN date is
listed, or if ExerciseDates is 1-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or
a cell array of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with
a nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one
option.
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Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial
date number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character
vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each
row is the schedule for one option. For a European option, there is only one
ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date
boundaries. For each instrument, the option can be exercised on any tree date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

CAmericanOpt — Compound option type
0 European (default) | scalar with values 0 or 1

(Optional) Compound option type, specified as NINST-by-1 positive integer scalar flags
with values:

• 0 — European
• 1 — American

If CAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

 compoundbycrr

11-507



Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of compound option prices at each node
tree structure

Structure with a vector of compound option prices at each node, returned as a tree
structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

References
[1] Rubinstein, Mark. “Double Trouble.” Risk. Vol. 5, 1991, p. 73.

See Also
crrtree | instcompound

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Compound Option” on page 3-29
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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compoundbyeqp
Price compound option from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = compoundbyeqp(EQPTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbyeqp( ___ ,CAmericanOpt)

Description
[Price,PriceTree] = compoundbyeqp(EQPTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
prices compound options from a Equal Probabilities binomial tree.

[Price,PriceTree] = compoundbyeqp( ___ ,CAmericanOpt) adds an optional
argument for CAmericanOpt.

Examples

Price a Compound Option Using an EQP Equity Tree

This example shows how to price a compound option using a EQP equity tree by loading
the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock
specification and time information needed to price the option.

load deriv.mat
UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2003';
UExerciseDates = '01-Jan-2006';
UAmericanOpt = 1;
COptSpec = 'Put';
CStrike = 5;
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CSettle = '01-Jan-2003';
CExerciseDates = '01-Jan-2005';

Price = compoundbyeqp(EQPTree, UOptSpec, UStrike, USettle, ... 
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ... 
CExerciseDates)

Price = 3.3931

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1
vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a
serial date number or character vector.
Data Types: double | char

UExerciseDates — Underlying option exercise date
serial date number | date character vector
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Underlying option exercise date, specified as a serial date number or date character
vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a
European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date
boundaries. The option can be exercised on any tree date. If only one non-NaN date is
listed, or if ExerciseDates is 1-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or
a cell array of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with
a nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one
option.
Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector
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Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial
date number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character
vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each
row is the schedule for one option. For a European option, there is only one
ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date
boundaries. For each instrument, the option can be exercised on any tree date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

CAmericanOpt — Compound option type
0 European (default) | scalar with values 0 or 1

(Optional) Compound option type, specified as NINST-by-1 positive integer scalar flags
with values:

• 0 — European
• 1 — American

If CAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.
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PriceTree — Structure with vector of compound option prices at each node
tree structure

Structure with a vector of compound option prices at each node, returned as a tree
structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

References
[1] Rubinstein, Mark. “Double Trouble.” Risk. Vol. 5, 1991, p. 73.

See Also
eqptree | instcompound

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Compound Option” on page 3-29
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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compoundbyitt
Price compound option from implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = compoundbyitt(ITTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbyitt( ___ ,CAmericanOpt)

Description
[Price,PriceTree] = compoundbyitt(ITTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
prices compound options from a Equal Probabilities binomial tree.

[Price,PriceTree] = compoundbyitt( ___ ,CAmericanOpt) adds an optional
argument for CAmericanOpt.

Examples

Price a Compound Option Using an ITT Tree

This example shows how to price a compound option using a ITT tree by loading the file
deriv.mat, which provides ITTTree. The ITTTree structure contains the stock
specification and time information needed to price the option.

load deriv.mat

UOptSpec = 'Call';
UStrike = 99;
USettle = '01-Jan-2006';
UExerciseDates = '01-Jan-2010';
UAmericanOpt = 1;
COptSpec = 'Put';

11 Functions — Alphabetical List

11-514



CStrike = 5;
CSettle = '01-Jan-2006';
CExerciseDates = '01-Jan-2010';

Price = compoundbyitt(ITTTree, UOptSpec, UStrike, USettle, ... 
UExerciseDates, UAmericanOpt, COptSpec, CStrike, CSettle, ... 
CExerciseDates)

Price = 2.7271

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1
vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector

Underlying option settlement date or trade date, specified as a 1-by-1 vector using a
serial date number or character vector.
Data Types: double | char
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UExerciseDates — Underlying option exercise date
serial date number | date character vector

Underlying option exercise date, specified as a serial date number or date character
vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a
European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date
boundaries. The option can be exercised on any tree date. If only one non-NaN date is
listed, or if ExerciseDates is 1-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or
a cell array of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers

Compound option strike price values for a European and American option, specified with
a nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one
option.
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Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial
date number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character
vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each
row is the schedule for one option. For a European option, there is only one
ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date
boundaries. For each instrument, the option can be exercised on any tree date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

CAmericanOpt — Compound option type
0 European (default) | scalar with values 0 or 1

(Optional) Compound option type, specified as NINST-by-1 positive integer scalar flags
with values:

• 0 — European
• 1 — American

If CAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: double
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Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of compound option prices at each node
tree structure

Structure with a vector of compound option prices at each node, returned as a tree
structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

References
[1] Rubinstein, Mark. “Double Trouble.” Risk. Vol. 5, 1991, p. 73.

See Also
instcompound | itttree

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Compound Option” on page 3-29
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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compoundbystt
Price compound options using standard trinomial tree

Syntax
[Price,PriceTree] = compoundbystt(STTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
[Price,PriceTree] = compoundbystt( ___ ,Name,Value)

Description
[Price,PriceTree] = compoundbystt(STTTree,UOptSpec,UStrike,USettle,
UExerciseDates,UAmericanOpt,COptSpec,CStrike,CSettle,CExerciseDates)
prices compound options using a standard trinomial (STT) tree.

[Price,PriceTree] = compoundbystt( ___ ,Name,Value) adds an optional name-
value pair argument for CAmericanOpt.

Examples

Price a Compound Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the compound option and compute the price.
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USettle = '1/1/09';
UExerciseDates = '1/1/12';
UOptSpec =  'call';
UStrike = 95;
UAmericanOpt = 1;
CSettle = '1/1/09';
CExerciseDates = '1/1/11';
COptSpec = 'put';
CStrike = 5;
CAmericanOpt = 1;

Price= compoundbystt(STTTree, UOptSpec, UStrike, USettle, UExerciseDates,...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates, CAmericanOpt)

Price = 1.7090

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for standard trinomial tree, specified by using stttree.
Data Types: struct

UOptSpec — Definition of underlying option
character vector with value 'call' or 'put'

Definition of underlying option, specified as 'call' or 'put' using a character vector.
Data Types: char

UStrike — Underlying option strike price value
nonnegative integer

Underlying option strike price value, specified with a nonnegative integer using a 1-by-1
vector.
Data Types: double

USettle — Underlying option settlement date or trade date
serial date number | date character vector
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Underlying option settlement date or trade date, specified as a 1-by-1 vector using a
serial date number or character vector.
Data Types: double | char

UExerciseDates — Underlying option exercise date
serial date number | date character vector

Underlying option exercise date, specified as a serial date number or date character
vector:

• For a European option, use a1-by-1 vector of the underlying exercise date. For a
European option, there is only one ExerciseDates on the option expiry date.

• For an American option, use a 1-by-2 vector of the underlying exercise date
boundaries. The option can be exercised on any tree date. If only one non-NaN date is
listed, or if ExerciseDates is 1-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

UAmericanOpt — Underlying option type
0 European (default) | scalar with values 0 or 1

Underlying option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

If UAmericanOpt is a NaN or is unspecified, the option is a European option.
Data Types: single | double

COptSpec — Definition of compound option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of compound option, specified as 'call' or 'put' using a character vector or
a cell array of character vectors with values 'call' or 'put'.
Data Types: char | cell

CStrike — Compound option strike price values
nonnegative integers
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Compound option strike price values for a European and American option, specified with
a nonnegative integer using a NINST-by-1 matrix. Each row is the schedule for one
option.
Data Types: double

CSettle — Compound option settlement date or trade date
serial date number | date character vector

Compound option settlement date or trade date, specified as a 1-by-1 vector using a serial
date number or date character vector.
Data Types: double | char

CExerciseDates — Compound option exercise dates
serial date number | date character vector

Compound option exercise dates, specified as serial date numbers or date character
vectors:

• For a European option, use aNINST-by-1 matrix of the compound exercise dates. Each
row is the schedule for one option. For a European option, there is only one
ExerciseDates on the option expiry date.

• For an American option, use a NINST-by-2 vector of the compound exercise date
boundaries. For each instrument, the option can be exercised on any tree date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between
ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
compoundbystt(STTTree,UOptSpec,UStrike,USettle,UExerciseDates,UAmeri
canOpt,COptSpec,CStrike,CSettle,CExerciseDates,'CAmericanOpt',1)
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CAmericanOpt — Compound option type
0 European (default) | scalar with values [0,1]

Compound option type, specified as the comma-separated pair consisting of
'CAmericanOpt' and a NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for compound options at time 0
vector

Expected prices for compound options at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure with vector of compound option prices at each node
tree structure

Structure with a vector of compound option prices at each node, returned as a tree
structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

See Also
instcompound | sttprice | sttsens | stttimespec | stttree

Topics
“Compound Option” on page 3-29
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“Supported Equity Derivatives” on page 3-24

Introduced in R2015b
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crrprice
Instrument prices from Cox-Ross-Rubinstein tree

Syntax
[Price,PriceTree] = crrprice(CRRTree,InstSet)
[Price,PriceTree] = crrprice( ___ ,Options)

Description
[Price,PriceTree] = crrprice(CRRTree,InstSet) computes stock option prices
using a CRR binomial tree created with crrtree. All instruments contained in a financial
instrument variable, InstSet, are priced.

crrprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond',
'Lookback', 'OptStock'. See instadd to construct defined types.

[Price,PriceTree] = crrprice( ___ ,Options) adds an optional input argument
for Options.

Examples

Price Barrier and Lookback Options in the Instrument Set

Load the CRR tree and instruments from the data file deriv.mat. Price the barrier and
lookback options contained in the instrument set.

load deriv.mat; 
CRRSubSet = instselect(CRRInstSet,'Type', ... 
{'Barrier', 'Lookback'}); 

instdisp(CRRSubSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
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Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
2     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
3     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 

Price the barrier and lookback options.

[Price, PriceTree] = crrprice(CRRTree,CRRSubSet)

Price = 3×1

   12.1272
    7.6015
   11.7772

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [731582 731947 732313 732678 733043]

You can use treeviewer to see the prices of these three instruments along the price
tree.
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Input Arguments
CRRTree — Stock price tree structure
structure
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Stock price tree structure, specified by using crrtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the stock tree. If an instrument cannot be priced, a
NaN is returned in that entry.

Related single-type pricing functions are:

• asianbycrr: Price an Asian option from a CRR tree.
• barrierbycrr: Price a barrier option from a CRR tree.
• cbondbycrr: Price convertible bonds from a CRR tree.
• compoundbycrr: Price a compound option from a CRR tree.
• lookbackbycrr: Price a lookback option from a CRR tree.
• optstockbycrr: Price an American, Bermuda, or European option from a CRR tree.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

See Also
cbondbycrr | crrsens | crrtree | instadd | instcbond

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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crrsens
Instrument prices and sensitivities from Cox-Ross-Rubinstein tree

Syntax
[Delta,Gamma,Vega,Price] = crrsens(CRRTree,InstSet)
[Delta,Gamma,Vega,Price] = crrsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = crrsens(CRRTree,InstSet) computes instrument
sensitivities and prices for instruments using a binomial tree created with the crrtree
function. All sensitivities are returned as dollar sensitivities. To find the per-dollar
sensitivities, divide by the respective instrument price.

crrsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond',
'Lookback', 'OptStock'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = crrsens( ___ ,Options) adds an optional input
argument for Options.

Examples

Compute Sensitivities for Barrier and Lookback Instruments Using a crrtree

Load the CRR tree and instruments from the data file deriv.mat. Compute the Delta
and Gamma sensitivities of the barrier and lookback options contained in the instrument
set.

load deriv.mat; 
CRRSubSet = instselect(CRRInstSet,'Type', ... 
{'Barrier', 'Lookback'}); 

instdisp(CRRSubSet)
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Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
2     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
3     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 

Obtain the Delta and Gamma for the barrier and lookback options contained in the
instrument set.

[Delta, Gamma] = crrsens(CRRTree, CRRSubSet)

Delta = 3×1

    0.6885
    0.6049
    0.8187

Gamma = 3×1

    0.0310
   -0.0000
         0

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
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Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the
stock price
vector

Rate of change of instruments prices with respect to changes in the stock price, returned
as a NINST-by-1 vector of deltas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are
computed by finite differences in calls to crrprice. For the rest of the options
('OptStock', 'Barrier', 'CBond', and 'Compound'), Delta and Gamma are
computed from the CRRTree and the corresponding option price tree.

Gamma — Rate of change of instruments deltas with respect to changes in stock
price
vector

Rate of change of instruments deltas with respect to changes in the stock price, returned
as a NINST-by-1 vector of gammas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are
computed by finite differences in calls to crrprice. For the rest of the options
('OptStock', 'Barrier', 'CBond', and 'Compound'), Delta and Gamma are
computed from the CRRTree and the corresponding option price tree.

Vega — Rate of change of instruments prices with respect to changes in volatility
of the stock
vector
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Rate of change of instruments prices with respect to changes in the volatility of the stock,
returned as a NINST-by-1 vector of vegas. Vega is computed by finite differences in calls
to crrtree.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the stock tree. If an instrument cannot be priced, a
NaN is returned in that entry.

References
[1] Chriss, Neil. Black-Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, pp

308-312.

See Also
cbondbycrr | crrprice | crrtree | instcbond

Topics
“Computing Prices Using CRR” on page 3-129
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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crrtimespec
Specify time structure for Cox-Ross-Rubinstein tree

Syntax
TimeSpec = crrtimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = crrtimespec(ValuationDate,Maturity,NumPeriods) sets the
number of levels and node times for a CRR binomial tree (crrtree).

Examples

Set the Number of Levels and Node Times for a CRR Binomial Tree

This example shows how to specify a four-period CRR tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = crrtimespec(ValuationDate, Maturity, 4)

TimeSpec = struct with fields:
           FinObj: 'BinTimeSpec'
    ValuationDate: 731398
         Maturity: 732859
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [731398 731763 732128 732493 732859]
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Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the crrtree, specified as a scalar date using a serial
date number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the CRR stock tree
serial date number | date character vector

Date marking the depth of the crrtree binomial tree, specified as scalar serial date
number or date character vector.
Data Types: double | char

NumPeriods — Number of time steps in the CRR stock tree
integer

Number of time steps in the crrtree binomial tree, specified as scalar integer value.
Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for crrtree
structure

Specification for the time layout for crrtree, returned as a structure.

See Also
crrtree | stockspec

Topics
“Building Equity Binary Trees” on page 3-3
“Examining Equity Trees” on page 3-18
“Understanding Equity Trees” on page 3-2

11 Functions — Alphabetical List

11-536



“Differences Between CRR and EQP Tree Structures” on page 3-22
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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crrtree
Build Cox-Ross-Rubinstein stock tree

Syntax
CRRTree = crrtree(StockSpec,RateSpec,TimeSpec)

Description
CRRTree = crrtree(StockSpec,RateSpec,TimeSpec) builds a Cox-Ross-Rubinstein
stock tree.

Examples

Create a CRR Tree

Using the data provided, create a stock specification (StockSpec), rate specification
(RateSpec), and tree time layout specification (TimeSpec). Then use these specifications
to create a CRR tree with crrtree.

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003';
'01-Oct-2003'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ...
DividendAmounts, ExDividendDates);

RateSpec = intenvset('Rates', 0.05, 'StartDates',...
'01-Jan-2003', 'EndDates', '31-Dec-2003');

ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
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TimeSpec = crrtimespec(ValuationDate, Maturity, 4);

CRRTree = crrtree(StockSpec, RateSpec, TimeSpec)

Warning: RateSpec was not created with continuous compounding. Compounding will
be set to continuous while leaving discount factors unaltered. This will result
in the recalculation of the interest rates. 

CRRTree = 

  struct with fields:

       FinObj: 'BinStockTree'
       Method: 'CRR'
    StockSpec: [1×1 struct]
     TimeSpec: [1×1 struct]
     RateSpec: [1×1 struct]
         tObs: [0 0.2493 0.4986 0.7479 0.9972]
         dObs: [731582 731673 731764 731855 731946]
        STree: {1×5 cell}
      UpProbs: [0.5370 0.5370 0.5370 0.5370]

Use treeviewer to observe the tree you have created.

Input Arguments
StockSpec — Stock specification
structure

Stock specification, specified by the StockSpec obtained from stockspec. See
stockspec for information on creating a stock specification.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see
intenvset.
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Note The standard CRR tree assumes a constant interest rate, but RateSpec allows you
to specify an interest-rate curve with varying rates. If you specify variable interest rates,
the resulting tree is not a standard CRR tree.

Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified by the TimeSpec obtained from crrtimespec.
The TimeSpec defines the observation dates of the CRR binomial tree. See crrtimespec
for information on the tree structure.
Data Types: struct

Output Arguments
CRRTree — CRR binomial tree
structure

CRR binomial tree, returned as a structure specifying the time layout for the tree.

See Also
crrtimespec | intenvset | stockspec

Topics
“Building Equity Binary Trees” on page 3-3
“Examining Equity Trees” on page 3-18
“Understanding Equity Trees” on page 3-2
“Differences Between CRR and EQP Tree Structures” on page 3-22
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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cvtree
Convert inverse-discount tree to interest-rate tree

Syntax
RateTree = cvtree(Tree)

Arguments
Tree Heath-Jarrow-Morton, Black-Derman-Toy, Hull-White, Black-Karasinski, or

Cox-Ingersoll-Ross tree structure using inverse-discount notation for
forward rates.

Description
RateTree = cvtree(Tree) converts a tree structure using inverse-discount notation to
a tree structure using rate notation for forward rates.

Examples
Convert a Hull-White tree using inverse-discount notation to a Hull-White tree displaying
interest-rate notation.
load deriv.mat;

HWTree

HWTree = 

      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
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        dObs: [731947 732313 732678 733043]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
     FwdTree: {1x4 cell}

HWTree.FwdTree{1}

ans =
    1.0279

HWTree.FwdTree{2}

ans =
    1.0528    1.0356    1.0186

Use treeviewer to display the path of interest rates expressed in inverse-discount
notation.

treeviewer(HWTree)

Use cvtree to convert the inverse-discount notation to interest-rate notation.
RTree = cvtree(HWTree)
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RTree = 

      FinObj: 'HWRateTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [731947 732313 732678 733043]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
    RateTree: {1x4 cell}

RTree.RateTree{1}

ans =
    0.0275

RTree.RateTree{2}

ans =
    0.0514    0.0349    0.0185

Now use treeviewer to display the converted tree, showing the path of interest rates
expressed as forward rates.
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See Also
disc2rate | rate2disc

Topics
“Graphical Representation of Trees” on page 2-158

Introduced before R2006a
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date2time
Time and frequency from dates

Syntax
[Times,F] = date2time(Settle,Dates,Compounding,Basis,EndMonthRule)

Arguments
Settle Settlement date. A vector of serial date numbers or date

character vectors.
Dates Vector of dates corresponding to the compounding value.
Compounding (Optional) Scalar value representing the rate at which the input

zero rates were compounded when annualized. This argument
determines the formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12 (Default = 2.)

Disc = (1 + Z/F)^(-T), where F is the compounding
frequency, Z is the zero rate, and T is the time in periodic units;
for example, T = F is one year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number of days in
the basis year and T is a number of days elapsed computed by
basis.

Compounding = −1

Disc = exp(-T*Z), where T is time in years.
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Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only

when Maturity is an end-of-month date for a month having 30
or fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the month. 1
= set rule on (default), meaning that a bond's coupon payment
date is always the last actual day of the month.

Description
[Times,F] = date2time(Settle,Dates,Compounding,Basis,EndMonthRule)
computes time factors appropriate to compounded rate quotes beyond the settlement
date.

Times is a vector of time factors.

F is a scalar of related compounding frequencies.
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Note To obtain accurate results from this function, the Basis and Dates arguments
must be consistent. If the Dates argument contains months that have 31 days, Basis
must be one of the values that allow months to contain more than 30 days; for example,
Basis = 0, 3, or 7.

date2time is the inverse of time2date.

See Also
cftimes | disc2rate | rate2disc | time2date

Topics
“Modeling the Interest-Rate Term Structure” on page 2-67
“Interest-Rate Term Conversions” on page 2-62
“Interest Rates Versus Discount Factors” on page 2-55
“Graphical Representation of Trees” on page 2-158
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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datedisp
Display date entries

Syntax
datedisp(NumMat,DateForm)
CharMat = datedisp(NumMat,DateForm)

Arguments
NumMat Numeric matrix to display.
DateForm (Optional) Date format. See datestr for available and default

format flags.

Description
datedisp(NumMat,DateForm) displays the matrix with the serial dates formatted as
date character vectors, using a matrix with mixed numeric entries and serial date number
entries. Integers between datenum('01-Jan-1900') and datenum('01-Jan-2200')
are assumed to be serial date numbers, while all other values are treated as numeric
entries.

CharMat is a character array representing NumMat. If no output variable is assigned, the
function prints the array to the display (CharMat = datedisp(NumMat,DateForm)).

Examples
NumMat = [ 730730, 0.03, 1200, 730100;
           730731, 0.05, 1000, NaN]

NumMat =

   1.0e+05 *
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    7.3073    0.0000    0.0120    7.3010
    7.3073    0.0000    0.0100       NaN

datedisp(NumMat)

   01-Sep-2000   0.03   1200   11-Dec-1998   
    02-Sep-2000   0.05   1000      NaN        

Tips
This function is identical to the datedisp function in Financial Toolbox software.

See Also
datenum | datestr

Topics
“Modeling the Interest-Rate Term Structure” on page 2-67
“Interest-Rate Term Conversions” on page 2-62
“Interest Rates Versus Discount Factors” on page 2-55
“Graphical Representation of Trees” on page 2-158
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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derivget
Get derivatives pricing options

Syntax
Value = derivget(Options,'Parameter')

Arguments
Options Existing options specification structure, probably created from

previous call to derivset.
Parameter Must be 'Diagnostics', 'Warnings', 'ConstRate', or

'BarrierMethod'. It is sufficient to type only the leading
characters that uniquely identify the parameter. Case is ignored for
parameter names.

Description
Value = derivget(Options,'Parameter') extracts the value of the named
parameter from the derivative options structure Options. Parameter values can be
'off' or 'on', except for 'BarrierMethod', which can be 'unenhanced' or
'interp'. Specifying 'unenhanced' uses no correction calculation. Specifying
'interp' uses an enhanced valuation interpolating between nodes on barrier
boundaries.

Examples
Example 1. Create an Options structure with the value of Diagnostics set to 'on'.

Options = derivset('Diagnostics','on')

Use derivget to extract the value of Diagnostics from the Options structure.
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Value = derivget(Options, 'Diagnostics')

Value =

on

Example 2. Use derivget to extract the value of ConstRate.

Value   = derivget(Options, 'ConstRate')

Value =

on

Because the value of 'ConstRate' was not previously set with derivset, the answer
represents the default setting for 'ConstRate'.

Example 3. Find the value of 'BarrierMethod' in this structure.

derivget(Options ,'BarrierMethod')

ans =

unenhanced

See Also
barrierbycrr | barrierbyeqp | derivset

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2

Introduced before R2006a
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derivset
Set or modify derivatives pricing options

Syntax
Options = derivset(Options,'Parameter1',Value1, ...
'Parameter4',Value4)
Options = derivset(OldOptions,NewOptions)
Options = derivset
derivset

Arguments
Options (Optional) Existing options specification structure, probably created

from a previous call to derivset.
Parametern The parameter must be 'Diagnostics', 'Warnings',

'ConstRate', or 'BarrierMethod'. Parameters can be entered in
any order.

Valuen (BDT, BK, HJM, or HW pricing only) The parameter values for the
following three options can be 'on' or 'off':

• 'Diagnostics' 'on' generates diagnostic information. The
default is 'Diagnostics' 'off'.

• 'Warnings' 'on' (default) displays a warning message when
executing a pricing function.

• 'ConstRate' 'on' (default) assumes a constant rate between
tree nodes.

For pricing barrier options, the 'BarrierMethod' pricing option
can be 'unenhanced' (default) or 'interp'. Specifying
'unenhanced' uses no correction calculation. Specifying 'interp'
uses an enhanced valuation interpolating between nodes on barrier
boundaries.
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OldOptions Existing options specification structure.
NewOptions New options specification structure.

Description
Options = derivset(Options,'Parameter1',Value1, ...
'Parameter4',Value4) creates a derivatives pricing options structure Options in
which the named parameters have the specified values. Any unspecified value is set to the
default value for that parameter when Options is passed to the pricing function. It is
sufficient to type only the leading characters that uniquely identify the parameter name.
Case is also ignored for parameter names.

If the optional input argument Options is specified, derivset modifies an existing
pricing options structure by changing the named parameters to the specified values.

Note  For parameter values, correct case and the complete character vector values are
required; if an invalid character vector value is provided, the default is used.

Options = derivset(OldOptions,NewOptions) combines an existing options
structure OldOptions with a new options structure NewOptions. Any parameters in
NewOptions with nonempty values overwrite the corresponding old parameters in
OldOptions.

Options = derivset creates an options structure Options whose fields are set to the
default values.

derivset with no input or output arguments displays all parameter names and
information about their possible values.

Examples
Options = derivset('Diagnostics','on')

enables the display of additional diagnostic information that appears when executing
pricing functions.

Options = derivset(Options, 'ConstRate', 'off')
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changes the ConstRate parameter in the existing Options structure so that the
assumption of constant rates between tree nodes no longer applies.

With no input or output arguments, derivset displays all parameter names and
information about their possible values.

derivset          

            Diagnostics: [ on   | {off} ]
               Warnings: [ {on} | off   ]
              ConstRate: [ {on} | off   ]
          BarrierMethod: [ {unenhanced} | interp   ]

See Also
barrierbycrr | barrierbyeqp | derivget

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2

Introduced before R2006a
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disc2rate
Interest rates from cash flow discounting factors

Syntax
Usage 1: Interval points are input as times in periodic units.

Rates = disc2rate(Compounding,Disc,EndTimes)

Rates = disc2rate(Compounding,Disc,EndTimes,StartTimes)

Usage 2: ValuationDate is passed and interval points are input as dates.

[Rates,EndTimes,StartTimes] = disc2rate(Compounding,Disc,EndDates,StartDates,ValuationDate)

[Rates,EndTimes,StartTimes] = disc2rate(Compounding,Disc,EndDates,StartDates,ValuationDate,Basis,EndMonthRule)
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Arguments
Compounding Scalar value representing the rate at which the input zero rates

were compounded when annualized. This argument determines
the formula for the discount factors (Disc):

• Compounding = 0 for simple interest

• Disc = 1/(1 + Z * T), where T is time in years and
simple interest assumes annual times F = 1.

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding
frequency, Z is the zero rate, and T is the time in periodic
units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of
days in the basis year and T is a number of days elapsed
computed by basis.

• Compounding = −1

• Disc = exp(-T*Z), where T is time in years.
Disc Number of points (NPOINTS) by number of curves (NCURVES)

matrix of discounts. Disc are unit bond prices over investment
intervals from StartTimes, when the cash flow is valued, to
EndTimes, when the cash flow is received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units ending
the interval to discount over.

Note When ValuationDate is not passed, the EndTimes and
StartTimes arguments are interpreted as times.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in periodic
units starting the interval to discount over. Default = 0.
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EndDates NPOINTS-by-1 vector or scalar of serial maturity dates ending
the interval to discount over.

Note When ValuationDate is passed, EndDates and
StartDates arguments are interpreted as dates. The date
ValuationDate is used as the zero point for computing the
times.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates
starting the interval to discount over. Default =
ValuationDate. StartDates must be earlier than
EndDates.

ValuationDate Scalar value in serial date number form representing the
observation date of the investment horizons entered in
StartDates and EndDates. Required in Usage 2. Omitted or
passed as an empty matrix to invoke Usage 1.

Basis (Optional) Day-count basis of the instrument when using Usage
2. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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EndMonthRule (Optional) End-of-month rule when using Usage 2. A vector.
This rule applies only when Maturity is an end-of-month date
for a month having 30 or fewer days. 0 = ignore rule, meaning
that a bond's coupon payment date is always the same
numerical day of the month. 1 = set rule on (default), meaning
that a bond's coupon payment date is always the last actual day
of the month.

Description
Usage 1: Rates = disc2rate(Compounding,Disc,EndTimes) or Rates =
disc2rate(Compounding, Disc,EndTimes,StartTimes) where interval points are
input as times in periodic units.

Usage 2: [Rates,EndTimes,StartTimes] =
disc2rate(Compounding,Disc,EndDates,StartDates, ValuationDate) or
[Rates,EndTimes,StartTimes] =
disc2rate(Compounding,Disc,EndDates,StartDates,ValuationDate,Basis,
EndMonthRule) where ValuationDate is passed and interval points are input as dates.

disc2rate computes the yields over a series of NPOINTS time intervals given the cash
flow discounts over those intervals. NCURVES different rate curves can be translated at
once if they have the same time structure. The time intervals can represent a zero or a
forward curve.

Rates is an NPOINTS-by-NCURVES column vector of yields in decimal form over the
NPOINTS time intervals.

Specify the investment intervals with either input times (Usage 1) or input dates (Usage
2). Entering ValuationDate invokes the date interpretation; omitting ValuationDate
invokes the default time interpretations.

For Usage 1:

• StartTimes is an NPOINTS-by-1 column vector of times starting the interval to
discount over, measured in periodic units.

• EndTimes is an NPOINTS-by-1 column vector of times ending the interval to discount
over, measured in periodic units.

For Usage 2:
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• StartDates is an NPOINTS-by-1 column vector of serial dates starting the interval to
discount over, measured in days.

• EndDates is an NPOINTS-by-1 column vector of serial date ending the interval to
discount over, measured in days.

If Compounding = 365 (daily), StartTimes and EndTimes are measured in days for
Usage 2. Otherwise, for Usage 1, the arguments contain values, T, computed from SIA
semiannual time factors, Tsemi, by the formula T = Tsemi/2 * F, where F is the
compounding frequency.

See Also
rate2disc | ratetimes

Topics
“Modeling the Interest-Rate Term Structure” on page 2-67
“Interest-Rate Term Conversions” on page 2-62
“Interest Rates Versus Discount Factors” on page 2-55
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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eqpprice
Instrument prices from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = eqpprice(EQPTree,InstSet)
[Price,PriceTree] = eqpprice( ___ ,Options)

Description
[Price,PriceTree] = eqpprice(EQPTree,InstSet) computes stock option prices
using an EQP binomial tree created with eqptree. All instruments contained in a
financial instrument variable, InstSet, are priced.

eqpprice handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond',
'Lookback', 'OptStock'. See instadd to construct defined types.

[Price,PriceTree] = eqpprice( ___ ,Options) adds an optional input argument
for Options.

Examples

Price the Put Options Contained in the Instrument Set

Load the EQP tree and instruments from the data file deriv.mat. Price the put options
contained in the instrument set.

load deriv.mat; 
EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')

EQPSubSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
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          Type: {5x1 cell}
     FieldName: {5x1 cell}
    FieldClass: {5x1 cell}
     FieldData: {5x1 cell}

instdisp(EQPSubSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
2     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
3     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
 

Price the put options.

[Price, PriceTree] = eqpprice(EQPTree, EQPSubSet)

Price = 3×1

    2.6375
    4.7444
    3.9178

PriceTree = struct with fields:
    FinObj: 'BinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [731582 731947 732313 732678 733043]

You can use treeviewer to see the prices of these three instruments along the price
tree.
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Input Arguments
EQPTree — Stock price tree structure
structure

Stock price tree structure, specified by using eqptree.
Data Types: struct
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InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the stock tree. If an instrument cannot be priced, a
NaN is returned in that entry.

Related single-type pricing functions are:

• asianbyeqp: Price an Asian option from an EQP tree.
• barrierbyeqp: Price a barrier option from an EQP tree.
• cbondbyeqp: Price convertible bonds from an EQP tree.
• compoundbyeqp: Price a compound option from an EQP tree.
• lookbackbyeqp: Price a lookback option from an EQP tree.
• optstockbyeqp: Price an American, Bermuda, or European option from an EQP tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:
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• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

See Also
cbondbyeqp | eqpsens | eqptimespec | eqptree | instadd | instcbond

Topics
“Computing Prices Using EQP” on page 3-131
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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eqpsens
Instrument prices and sensitivities from Equal Probabilities binomial tree

Syntax
[Delta,Gamma,Vega,Price] = eqpsens(EQPTree,InstSet)
[Delta,Gamma,Vega,Price] = eqpsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = eqpsens(EQPTree,InstSet) computes instrument
sensitivities and prices for instruments using a binomial tree created with the eqptree
function. All sensitivities are returned as dollar sensitivities. To find the per-dollar
sensitivities, divide by the respective instrument price.

eqpsens handles instrument types: 'Asian', 'Barrier', 'Compound', 'CBond',
'Lookback', and 'OptStock'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = eqpsens( ___ ,Options) adds an optional input
argument for Options.

Examples

Compute Sensitivities for Instruments Using an eqptree

Load the EQP tree and instruments from the data file deriv.mat. Compute the Delta
and Gamma sensitivities of the put options contained in the instrument set.

load deriv.mat; 

EQPSubSet = instselect(EQPInstSet, 'FieldName', 'OptSpec', ...
'Data', 'put')

EQPSubSet = struct with fields:
        FinObj: 'Instruments'
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    IndexTable: [1x1 struct]
          Type: {5x1 cell}
     FieldName: {5x1 cell}
    FieldClass: {5x1 cell}
     FieldData: {5x1 cell}

instdisp(EQPSubSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock put     105    01-Jan-2003    01-Jan-2006    0           Put1   5      
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
2     Asian put     110    01-Jan-2003    01-Jan-2006    0           arithmetic NaN      NaN     Asian1 4       
3     Asian put     110    01-Jan-2003    01-Jan-2007    0           arithmetic NaN      NaN     Asian2 6       
 

Obtain the Delta and Gamma for the put options contained in the instrument set.

[Delta, Gamma] = eqpsens(EQPTree, EQPSubSet)

Delta = 3×1

   -0.2336
   -0.5443
   -0.4516

Gamma = 3×1

    0.0218
    0.0000
    0.0000

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
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Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the
stock price
vector

Rate of change of instruments prices with respect to changes in the stock price, returned
as a NINST-by-1 vector of deltas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are
computed by finite differences in calls to eqpprice. For the rest of the options
('OptStock', 'Barrier', 'CBond', and 'Compound'), Delta and Gamma are
computed from the EQPTree and the corresponding option price tree.

Gamma — Rate of change of instruments deltas with respect to changes in stock
price
vector

Rate of change of instruments deltas with respect to changes in the stock price, returned
as a NINST-by-1 vector of gammas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are
computed by finite differences in calls to eqpprice. For the rest of the options
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('OptStock', 'Barrier', 'CBond', and 'Compound'), Delta and Gamma are
computed from the EQPTree and the corresponding option price tree.

Vega — Rate of change of instruments prices with respect to changes in volatility
of the stock
vector

Rate of change of instruments prices with respect to changes in the volatility of the stock,
returned as a NINST-by-1 vector of vegas. Vega is computed by finite differences in calls
to eqptree.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the stock tree. If an instrument cannot be priced, a
NaN is returned in that entry.

References
[1] Chriss, Neil. Black-Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, pp

308-312.

See Also
cbondbyeqp | eqpprice | eqptree | instcbond

Topics
“Computing Prices Using EQP” on page 3-131
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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eqptimespec
Specify time structure for Equal Probabilities binomial tree

Syntax
TimeSpec = eqptimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = eqptimespec(ValuationDate,Maturity,NumPeriods) sets the
number of levels and node times for an equal probabilities tree (eqptree).

Examples

Set the Number of Levels and Node Times for an EQP Tree

This example shows how to set the number of levels and node times for an EQP tree by
specifying a four-period tree with time steps of 1 year.

ValuationDate = '1-July-2002';
Maturity = '1-July-2006';
TimeSpec = eqptimespec(ValuationDate, Maturity, 4)

TimeSpec = struct with fields:
           FinObj: 'BinTimeSpec'
    ValuationDate: 731398
         Maturity: 732859
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [731398 731763 732128 732493 732859]
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Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the eqptree, specified as a scalar date using a serial
date number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the EQP stock tree
serial date number | date character vector

Date marking the depth of the eqptree binomial tree, specified as scalar serial date
number or date character vector.
Data Types: double | char

NumPeriods — Number of time steps in the EQP tree
integer

Number of time steps in the eqptree binomial tree, specified as scalar integer value.
Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for eqptree
structure

Specification for the time layout for eqptree, returned as a structure.

See Also
eqptree | stockspec

Topics
“Computing Prices Using EQP” on page 3-131
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
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“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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eqptree
Build Equal Probabilities stock tree

Syntax
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec)

Description
EQPTree = eqptree(StockSpec,RateSpec,TimeSpec) builds an Equal Probabilities
stock tree.

Examples

Create an EQP Tree

Using the data provided, create a stock specification (StockSpec), rate specification
(RateSpec), and tree time layout specification (TimeSpec). Then use these specifications
to create an EQP stock tree with eqptree.

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2003'; '01-Apr-2003'; '05-July-2003'; 
'01-Oct-2003'};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... 
DividendAmounts, ExDividendDates);

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'01-Jan-2003', 'EndDates', '31-Dec-2003');

ValuationDate = '1-Jan-2003';
Maturity = '31-Dec-2003';
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TimeSpec = eqptimespec(ValuationDate, Maturity, 4);

EQPTree = eqptree(StockSpec, RateSpec, TimeSpec)

Warning: RateSpec was not created with continuous compounding. Compounding will
be set to continuous while leaving discount factors unaltered. This will result
in the recalculation of the interest rates. 

EQPTree = 

  struct with fields:

       FinObj: 'BinStockTree'
       Method: 'EQP'
    StockSpec: [1×1 struct]
     TimeSpec: [1×1 struct]
     RateSpec: [1×1 struct]
         tObs: [0 0.2493 0.4986 0.7479 0.9972]
         dObs: [731582 731673 731764 731855 731946]
        STree: {1×5 cell}
      UpProbs: [0.5000 0.5000 0.5000 0.5000]]

Use treeviewer to observe the tree you have created.

Input Arguments
StockSpec — Stock specification
structure

Stock specification, specified by the StockSpec obtained from stockspec. See
stockspec for information on creating a stock specification.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see
intenvset.
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Note The standard equal probabilities tree assumes a constant interest rate, but
RateSpec allows you to specify an interest-rate curve with varying rates. If you specify
variable interest rates, the resulting tree is not a standard equal probabilities tree.

Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified by the TimeSpec obtained from eqptimespec.
The TimeSpec defines the observation dates of the EQP stock tree. See eqptimespec for
information on the tree structure.
Data Types: struct

Output Arguments
EQPTree — EQP stock tree
structure

EQP stock tree, returned as a structure specifying the time layout for the tree.

See Also
eqptimespec | intenvset | stockspec

Topics
“Computing Prices Using EQP” on page 3-131
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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fixedbybdt
Price fixed-rate note from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = fixedbybdt(BDTTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbybdt(BDTTree,CouponRate,Settle,Maturity)
prices a fixed-rate note from a Black-Derman-Toy interest-rate tree.

[Price,PriceTree] = fixedbybdt( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a 10% Fixed-Rate Note Using a BDT Interest-Rate Tree

This example shows how to price a 10% fixed-rate note using a BDT interest-rate tree by
loading the file deriv.mat, which provides BDTTree. The BDTTree structure contains
the time and interest-rate information needed to price the note.

load deriv.mat 

CouponRate = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
FixedReset = 1;

Price = fixedbybdt(BDTTree, CouponRate, Settle, Maturity, FixedReset)

Price = 92.9974
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Input Arguments
BDTTree — Interest-rate structure
structure

Interest-rate tree structure, created by bdttree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the BDT Tree.
The fixed-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
fixedbybdt(BDTTree,CouponRate,Settle,Maturity,'FixedReset',4)
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FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FixedReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.
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Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
bdttree | bondbybdt | capbybdt | cfbybdt | floatbybdt | floorbybdt | swapbybdt

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a

11 Functions — Alphabetical List

11-580



fixedbybk
Price fixed-rate note from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = fixedbybk(BKTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbybk(BKTree,CouponRate,Settle,Maturity)
prices a fixed-rate note from a Black-Karasinski interest-rate tree.

[Price,PriceTree] = fixedbybk( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a 5% Fixed-Rate Note Using a Black-Karasinski Interest-Rate Tree

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the
time and interest-rate information needed to price the note.

load deriv.mat;

Set the required values. Other arguments will use defaults.

CouponRate = 0.05;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use fixedbybk to compute the price of the note.

Price = fixedbybk(BKTree, CouponRate, Settle, Maturity)
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Warning: Fixed rate notes are valued at Tree ValuationDate rather than Settle

Price = 103.5126

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the BK Tree.
The fixed-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
fixedbybk(BKTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FixedReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
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Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector
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Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bktree | bondbybk | capbybk | cfbybk | floatbybk | floorbybk | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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fixedbycir
Price fixed rate note from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = fixedbycir(CIRTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbycir(CIRTree,CouponRate,Settle,Maturity)
prices a fixed-rate note from a Cox-Ingersoll-Ross (CIR) interest-rate tree using a CIR++
model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = fixedbycir( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Fixed-Rate Note Using a CIR Interest-Rate Tree

Define the CouponRate for a fixed-rate note.

CouponRate = 0.03;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.
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NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 3% fixed-rate note.

[Price,PriceTree] = fixedbycir(CIRT,CouponRate,Settle,Maturity) 

Price = 92.1422

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
       dObs: [736696 737061 737426 737791 738157]
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate structure
structure
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Interest-rate tree structure, created by cirtree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector | string array | datetime

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers,
date character vectors, string arrays, or datetime arrays.

The Settle date for every fixed-rate note is set to the ValuationDate of the CIR tree.
The fixed-rate note argument Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime

Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays representing the maturity date for each fixed-
rate note.
Data Types: char | double | string | datetime

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
fixedbycir(CIRTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector
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Frequency of payments per year, specified as the comma-separated pair consisting of
'FixedReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
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column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
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vectors of business day conventions. The selection for business day convention
determines how nonbusiness days are treated. Nonbusiness days are defined as weekends
plus any other date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Nonbusiness days are effectively ignored. Cash flows that fall on
nonbusiness days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.
• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
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See Also
bondbycir | capbycir | cfbycir | floatbycir | floorbycir | instfixed |
oasbycir | optbndbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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fixedbyhjm
Price fixed-rate note from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = fixedbyhjm(HJMTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbyhjm(HJMTree,CouponRate,Settle,Maturity)
prices a fixed-rate note from a Heath-Jarrow-Morton interest-rate tree.

[Price,PriceTree] = fixedbyhjm( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a 4% Fixed-Rate Note Using an HJM Forward-Rate Tree

This example shows how to price a 4% fixed-rate note using an HJM forward-rate tree by
loading the file deriv.mat, which provides HJMTree. The HJMTree structure contains
the time and forward-rate information needed to price the note.

load deriv.mat 

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Price = fixedbyhjm(HJMTree, CouponRate, Settle, Maturity)

Price = 98.7159
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Input Arguments
HJMTree — Interest-rate structure
structure

Interest-rate tree structure, created by hjmtree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the HJM tree.
The fixed-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
fixedbyhjm(HJMTree,CouponRate,Settle,Maturity,'FixedReset',4)
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FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FixedReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.
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Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector

Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PBush contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
bondbyhjm | capbyhjm | cfbyhjm | floatbyhjm | floorbyhjm | hjmtree | swapbyhjm

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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fixedbyhw
Price fixed-rate note from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = fixedbyhw(HWTree,CouponRate,Settle,Maturity)
[Price,PriceTree] = fixedbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = fixedbyhw(HWTree,CouponRate,Settle,Maturity)
prices a fixed-rate note from a Hull-White interest-rate tree.

[Price,PriceTree] = fixedbyhw( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a 5% Fixed-Rate Note Using a Hull-White Interest-Rate Tree

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the
time and interest-rate information needed to price the note.

load deriv.mat;

Set the required values. Other arguments will use defaults.

CouponRate = 0.05;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use fixedbyhw to compute the price of the note.

Price = fixedbyhw(HWTree, CouponRate, Settle, Maturity)
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Warning: Fixed rate notes are valued at Tree ValuationDate rather than Settle

Price = 103.5126

Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree
Data Types: struct

CouponRate — Coupon annual rate
decimal

Coupon annual rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every fixed-rate note is set to the ValuationDate of the HW tree.
The fixed-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
fixedbyhw(HWTree,CouponRate,Settle,Maturity,'FixedReset',4)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FixedReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
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Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Expected fixed-rate note prices at time 0
vector
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Expected fixed-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bondbyhw | capbyhw | cfbyhw | floatbyhw | floorbyhw | hwtree | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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fixedbyzero
Price fixed-rate note from set of zero curves

Syntax
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero(RateSpec,
CouponRate,Settle,Maturity)
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero( ___ ,
Name,Value)

Description
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero(RateSpec,
CouponRate,Settle,Maturity) prices a fixed-rate note from a set of zero curves.

[Price,DirtyPrice,CFlowAmounts,CFlowDates] = fixedbyzero( ___ ,
Name,Value) adds additional name-value pair arguments.

Examples

Price a 4% Fixed-Rate Note Using a Set of Zero Curves

This example shows how to price a 4% fixed-rate note using a set of zero curves by
loading the file deriv.mat, which provides ZeroRateSpec, the interest-rate term
structure needed to price the note.

load deriv.mat 

CouponRate = 0.04;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Price = fixedbyzero(ZeroRateSpec, CouponRate, Settle, Maturity)

Price = 98.7159
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Pricing a Fixed-Fixed Cross Currency Swap

Assume that a financial institution has an existing swap with three years left to maturity
where they are receiving 5% per year in yen and paying 8% per year in USD. The reset
frequency for the swap is annual, the principals for the two legs are 1200 million yen and
$10 million USD, and both term structures are flat.

Settle = datenum('15-Aug-2015');
Maturity = datenum('15-Aug-2018');
Reset = 1;

r_d = .09;
r_f = .04;

FixedRate_d = .08;
FixedRate_f = .05;

Principal_d = 10000000;
Principal_f = 1200000000;

S0 = 1/110;

Construct term structures.

RateSpec_d = intenvset('StartDate',Settle,'EndDate',Maturity,'Rates',r_d,'Compounding',-1);
RateSpec_f = intenvset('StartDate',Settle,'EndDate',Maturity,'Rates',r_f,'Compounding',-1);

Use fixedbyzero:

B_d = fixedbyzero(RateSpec_d,FixedRate_d,Settle,Maturity,'Principal',Principal_d,'Reset',Reset);
B_f = fixedbyzero(RateSpec_f,FixedRate_f,Settle,Maturity,'Principal',Principal_f,'Reset',Reset);

Compute swap price. Based on Hull (see References), a cross currency swap can be
valued with the following formula V_swap = S0*B_f − B_d.

V_swap = S0*B_f - B_d

V_swap = 1.5430e+06
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Input Arguments
RateSpec — Annualized zero rate term structure
structure

Annualized zero rate term structure, specified using intenvset to create a RateSpec.
Data Types: struct

CouponRate — Annual rate
decimal

Annual rate, specified as NINST-by-1 decimal annual rate or a NINST-by-1 cell array
where each element is a NumDates-by-2 cell array and the first column is dates and the
second column is associated rates. The date indicates the last day that the coupon rate is
valid.
Data Types: double | cell

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

Settle must be earlier than Maturity.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each fixed-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [Price,DirtyPrice,CFlowAmounts,CFlowDates] =
fixedbyzero(RateSpec,CouponRate,Settle,Maturity,'Principal',Principa
l)

FixedReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FixedReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array
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Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double
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BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Fixed-rate note prices
matrix

Floating-rate note prices, returned as a (NINST) by number of curves (NUMCURVES)
matrix. Each column arises from one of the zero curves.

DirtyPrice — Dirty bond price
matrix

Dirty bond price (clean + accrued interest), returned as a NINST- by-NUMCURVES matrix.
Each column arises from one of the zero curves.
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CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, returned as a NINST- by-NUMCFS matrix of cash flows for each bond.

CFlowDates — Cash flow dates
matrix

Cash flow dates, returned as a NINST- by-NUMCFS matrix of payment dates for each bond.

References
[1] Hull, J. Options, Futures, and Other Derivatives. Prentice-Hall, 2011.

See Also
bondbyzero | cfbyzero | floatbyzero | swapbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floatbybdt
Price floating-rate note from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = floatbybdt(BDTTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbybdt(BDTTree,Spread,Settle,Maturity) prices a
floating-rate note from a Black-Derman-Toy interest-rate tree.

floatbybdt computes prices of vanilla floating-rate notes, amortizing floating-rate
notes, capped floating-rate notes, floored floating-rate notes and collared floating-rate
notes.

[Price,PriceTree] = floatbybdt( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Floating-Rate Note Using a BDT Tree

Price a 20-basis point floating-rate note using a BDT interest-rate tree.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the
time and interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use
defaults.
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Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbybdt to compute the price of the note.

Price = floatbybdt(BDTTree, Spread, Settle, Maturity)

Price = 100.4865

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:
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Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BDT tree and assume volatility is 10%.

MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input
argument to define the collar pricing.

Create the RateSpec.

Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the BDT tree and assume volatility is 5%.
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MatDates = {'1-April-2013'; '1-April-2014';'1-April-2015';'1-April-2016';'1-April-2017';'1-April-2018'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.05;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Create the floating rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;

Compute the price of a collared floating-rate note.

CapStrike = {{'1-April-2013' 0.03; '1-April-2015' 0.055}};
FloorStrike = {{'1-April-2013' 0.025; '1-April-2015' 0.04}};

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'CapRate',...
CapStrike, 'FloorRate', FloorStrike)

Price = 101.2414

Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbybdt to price floating-rate notes, there are cases where the dates
specified in the BDT tree TimeSpec are not aligned with the cash flow dates.

Price floating-rate notes using the following data:

ValuationDate = '01-Sep-2013'; 
Rates = [0.0235; 0.0239; 0.0311; 0.0323]; 
EndDates = {'01-Sep-2014'; '01-Sep-2015'; '01-Sep-2016';'01-Sep-2017'};

Create the RateSpec.

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDates,'Rates',Rates,'Compounding', 1);

Build the BDT tree.
VolCurve = [.10; .11; .11; .12];
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BDTVolatilitySpec = bdtvolspec(RateSpec.ValuationDate, EndDates,... 
                               VolCurve); 

BDTTimeSpec = bdttimespec(RateSpec.ValuationDate, EndDates, 1); 

BDTT = bdttree(BDTVolatilitySpec, RateSpec, BDTTimeSpec); 

Compute the price of the floating-rate note using the following data:
Spread = 5; 
Settle = '01-Sep-2013';
Maturity = '01-Dec-2015'; 
Reset = 2; 

Price = floatbybdt(BDTT, Spread, Settle, Maturity, 'FloatReset', Reset)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In floatengbybdt at 204
  In floatbybdt at 123 
Error using floatengbybdt (line 299)
Instrument '1 ' has cash flow dates that span across tree nodes.

Error in floatbybdt (line 123)
[Price, PriceTree, CFTree, TLPpal] = floatengbybdt(BDTTree, Spread, Settle, Maturity, OArgs{:});

This error indicates that it is not possible to determine the applicable rate used to
calculate the payoff at the reset dates, given that the applicable rate needed cannot be
calculated (the information was lost due to the recombination of the tree nodes). Note, if
the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path
connecting the two consecutive reset dates cannot be uniquely determined because there
is more than one possible path for connecting the two payment dates. The simplest
solution is to place the tree levels at the cash flow dates of the instrument, which is done
by specifying BDTTimeSpec. It is also acceptable to have reset dates between tree levels,
as long as there are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity, Reset ,Basis, EOM);
BDTTimeSpec = bdttimespec(RateSpec.ValuationDate,resetDates,Reset);
BDTT = bdttree(BDTVolatilitySpec, RateSpec, BDTTimeSpec);

Price = floatbybdt(BDTT, Spread, RateSpec.ValuationDate, ...
                   Maturity, 'FloatReset', Reset)
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Price =

  100.1087

Input Arguments
BDTTree — Interest-rate structure
structure

Interest-rate tree structure, created by bdttree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every floating-rate note is set to the ValuationDate of the BDT
tree. The floating-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
floatbybdt(BDTTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there is more than one possible path for connecting the two payment
dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
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• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.
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• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

 floatbybdt

11-621



• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a
NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated cap rates. The date indicates the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and
a NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated floor rates. The date indicates the last day that the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
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• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
bdttree | bondbybdt | capbybdt | cfbybdt | fixedbybdt | floorbybdt | swapbybdt

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floatbybk
Price floating-rate note from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = floatbybk(BKTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbybk(BKTree,Spread,Settle,Maturity) prices a
floating-rate note from a Black-Karasinski interest-rate tree.

floatbybk computes prices of vanilla floating-rate notes, amortizing floating-rate notes,
capped floating-rate notes, floored floating-rate notes and collared floating-rate notes.

[Price,PriceTree] = floatbybk( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Floating-Rate Note Using a Black-Karasinski Tree

Price a 20-basis point floating-rate note using a Black-Karasinski interest-rate tree.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the
time and interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use
defaults.
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Spread = 20;
Settle = '01-Jan-2005';
Maturity = '01-Jan-2006';

Use floatbybk to compute the price of the note.

Price = floatbybk(BKTree, Spread, Settle, Maturity)

Warning: Floating range notes are valued at Tree ValuationDate rather than Settle.

Price = 100.3825

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:
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Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BK tree and assume the volatility is 10%.

VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'];
VolCurve = 0.1;
AlphaDates = '15-Nov-2017';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbybk(BKT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input
argument to define the collar pricing.

Price a portfolio of collared floating-rate notes using the following data:

Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.
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RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the BK tree and assume the volatility to be 5%.

VolDates = ['1-April-2013';'1-April-2014';'1-April-2015';'1-April-2016';...
'1-April-2017';'1-April-2018'];
VolCurve = 0.05;
AlphaDates = '15-Nov-2018';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Create the floating-rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = [15;10];
Principal = 100;

Compute the price of the two vanilla floaters.

Price = floatbybk(BKT, Spread, Settle, Maturity)

Price = 2×1

  100.5519
  100.3680

Compute the price of the collared floating-rate notes.

CapStrike = {{'1-April-2013' 0.045; '1-April-2014' 0.05;...
'1-April-2015' 0.06}; 0.06};
         
FloorStrike = {{'1-April-2013' 0.035; '1-April-2014' 0.04;...
'1-April-2015' 0.05}; 0.03};
PriceCollared = floatbybk(BKT, Spread, Settle, Maturity,...
'CapRate', CapStrike,'FloorRate', FloorStrike)

PriceCollared = 2×1

  102.8537
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  100.4918

Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbybk to price floating-rate notes, there are cases where the dates
specified in the BK tree Time Specs are not aligned with the cash flow dates.

Price floating-rate notes using the following data:
ValuationDate      = '13-Sep-2013'; 
ForwardRatesVector = [ 0.0001; 0.0001; 0.0010; 0.0015]; 
EndDatesVector     = ['13-Dec-2013'; '14-Mar-2014'; '13-Jun-2014'; '13-Sep-2014'];

Create the RateSpec.
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDatesVector,'Rates',ForwardRatesVector,'Compounding', 1);

Build the BK tree.
Volcurve         = 0.1;                         
Alpha            = 0.01; 
BKVolatilitySpec = bkvolspec(RateSpec.ValuationDate, ... 
                  EndDatesVector, Volcurve,... 
                  EndDatesVector, Alpha); 

BKTimeSpec = bktimespec(RateSpec.ValuationDate, EndDatesVector, 1); 

BKT = bktree(BKVolatilitySpec, RateSpec, BKTimeSpec); 

Create the floating-rate note instrument using the following data;
Spread      = 0; 
Maturity    = '13-Jun-2014'; 
reset = 4; 

Compute the price of the floating-rate note.
Price = floatbybk(BKT, Spread, RateSpec.ValuationDate,...
Maturity, 'FloatReset', reset)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In floatengbytrintree at 214
  In floatbybk at 136 
Error using floatengbytrintree (line 319)
Instrument '1 ' has cash flow dates that span across tree nodes.

Error in floatbybk (line 136)
[Price, PriceTree, CFTree] = floatengbytrintree(BKTree, Spread, Settle, Maturity, OArgs{:});

This error indicates that it is not possible to determine the applicable rate used to
calculate the payoff at the reset dates, given that the applicable rate needed cannot be
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calculated (the information was lost due to the recombination of the tree nodes). Note, if
the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path
connecting the two consecutive reset dates cannot be uniquely determined because there
is more than one possible path for connecting the two payment dates. The simplest
solution is to place the tree levels at the cash flow dates of the instrument, which is done
by specifying BKTimeSpec. It is also acceptable to have reset dates between tree levels,
as long as there are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity,reset,Basis,EOM);
BKTimeSpec = bktimespec(RateSpec.ValuationDate,resetDates,reset);
BKT        = bktree(BKVolatilitySpec, RateSpec, BKTimeSpec);

Price      = floatbybk(BKT, Spread, RateSpec.ValuationDate, ...
             Maturity, 'FloatReset', reset)

Price =

  100.0004

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

 floatbybk

11-629



The Settle date for every floating-rate note is set to the ValuationDate of the BK tree.
The floating-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
floatbybk(BKTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there is more than one possible path for connecting the two payment
dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13
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Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure
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Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
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vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a
NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated cap rates. The date indicates the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and
a NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated floor rates. The date indicates the last day that the floor rate is valid.
Data Types: double | cell
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Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bktree | bondbybk | capbybk | cfbybk | fixedbybk | floorbybk | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floatbycir
Price floating-rate note from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = floatbycir(CIRTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbycir(CIRTree,Spread,Settle,Maturity) prices a
floating-rate note from a Cox-Ingersoll-Ross (CIR) interest-rate tree.

floatbycir computes prices of vanilla floating-rate notes, amortizing floating-rate
notes, capped floating-rate notes, floored floating-rate notes, and collared floating-rate
notes using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = floatbycir( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Floating-Rate Note Using a CIR Interest-Rate Tree

Define a Spread of 20-basis points for a floating-rate note.

Spread = 20;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
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Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 20-basis point floating-rate note.

[Price,PriceTree] = floatbycir(CIRT,Spread,Settle,Maturity) 

Price = 100.7143

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x5 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0 0 0]  [0 0 0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
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Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, created by cirtree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector | string array | datetime

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers,
date character vectors, string arrays, or datetime arrays.

The Settle date for every floating-rate note is set to the ValuationDate of the CIR
tree. The floating-rate note argument Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime

Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays representing the maturity date for each floating-
rate note.
Data Types: char | double | string | datetime

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [Price,PriceTree] =
floatbycir(CIRTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there is more than one possible path for connecting the two payment
dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array, and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
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Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how nonbusiness days are treated. Nonbusiness days are defined as weekends
plus any other date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Nonbusiness days are effectively ignored. Cash flows that fall on
nonbusiness days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a
NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated cap rates. The date indicates the last day that the cap rate is valid.
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Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and
a NINST-by-1 decimal annual rate or NINST-by-1 cell array.

For the NINST-by-1 cell array, each element is a NumDates-by-2 cell array, where the cell
array first column is dates, and the second column is associated floor rates. The date
indicates the last day that the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.
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See Also
bondbycir | capbycir | cfbycir | fixedbycir | floorbycir | instfloat |
oasbycir | optbndbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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floatbyhjm
Price floating-rate note from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = floatbyhjm(HJMTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbyhjm(HJMTree,Spread,Settle,Maturity) prices a
floating-rate note from a Heath-Jarrow-Morton interest-rate tree.

floatbyhjm computes prices of vanilla floating-rate notes, amortizing floating-rate
notes, capped floating-rate notes, floored floating-rate notes and collared floating-rate
notes.

[Price,PriceTree] = floatbyhjm( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Floating-Rate Note Using an HJM Tree

Price a 20-basis point floating-rate note using an HJM forward-rate tree.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the
time and interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use
defaults.
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Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyhjm to compute the price of the note.

Price = floatbyhjm(HJMTree, Spread, Settle, Maturity)

Price = 100.5529

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:
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Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the HJM tree using the following data:

MatDates = {'15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbyhjm(HJMT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input
argument to define the collar pricing.

Price a portfolio of collared floating-rate notes using the following data:

Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the HJM tree with the following data:

 floatbyhjm

11-645



MatDates = {'1-April-2013'; '1-April-2014';'1-April-2015';...
'1-April-2016';'1-April-2017';'1-April-2018'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Create the floating-rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;

Compute the price of two capped collared floating-rate notes.

CapStrike = [0.04;0.055];
PriceCapped = floatbyhjm(HJMT, Spread, Settle, Maturity,...
'CapRate', CapStrike)

PriceCapped = 2×1

   98.9986
  100.2051

Compute the price of two collared floating-rate notes.

FloorStrike = [0.035;0.040];
PriceCollared = floatbyhjm(HJMT, Spread, Settle, Maturity,...
'CapRate', CapStrike, 'FloorRate', FloorStrike)

PriceCollared = 2×1

   99.9246
  102.2321

Input Arguments
HJMTree — Interest-rate structure
structure
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Interest-rate tree structure, created by hjmtree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every floating-rate note is set to the ValuationDate of the HJM
tree. The floating-rate note argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
floatbyhjm(HJMTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector
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Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there is more than one possible path for connecting the two payment
dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)
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Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal
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Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a
NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated cap rates. The date indicates the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and
a NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated floor rates. The date indicates the last day that the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector

Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PBush contains the clean prices.
• PriceTree.AIBush contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
bondbyhjm | capbyhjm | cfbyhjm | fixedbyhjm | floorbyhjm | hjmtree | swapbyhjm
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Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floatbyhw
Price floating-rate note from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = floatbyhw(HWTree,Spread,Settle,Maturity)
[Price,PriceTree] = floatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = floatbyhw(HWTree,Spread,Settle,Maturity) prices a
floating-rate note from a Hull-White interest-rate tree.

floatbyhw computes prices of vanilla floating-rate notes, amortizing floating-rate notes,
capped floating-rate notes, floored floating-rate notes and collared floating-rate notes.

[Price,PriceTree] = floatbyhw( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Floating-Rate Note Using a Hull-White Tree

Price a 20-basis point floating-rate note using a Hull-White interest-rate tree.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the
time and interest-rate information needed to price the note.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use
defaults.
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Spread = 20;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use floatbyhw to compute the price of the note.

Price = floatbyhw(HWTree, Spread, Settle, Maturity)

Price = 100.5618

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:
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Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the HW tree and assume the volatility is 10%.

VolDates = ['15-Nov-2012'; '15-Nov-2013';'15-Nov-2014';'15-Nov-2015';'15-Nov-2016';'15-Nov-2017'];
VolCurve = 0.1;
AlphaDates = '15-Nov-2017';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing floating-rate note.

Price = floatbyhw(HWT, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Price a Collar with a Floating-Rate Note

Price a collar with a floating-rate note using the CapRate and FloorRate input
argument to define the collar pricing.

Price two collared floating-rate notes using the following data:

Rates = [0.0287; 0.03024; 0.03345; 0.03861; 0.04033];
ValuationDate = '1-April-2012';
StartDates = ValuationDate;
EndDates = {'1-April-2013';'1-April-2014';'1-April-2015' ;...
'1-April-2016';'1-April-2017'};
Compounding = 1;

Create the RateSpec.
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RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Build the HW tree and assume the volatility to be 5%.

VolDates = ['1-April-2013';'1-April-2014';'1-April-2015';...
'1-April-2016';'1-April-2017';'1-April-2018'];
VolCurve = 0.05;
AlphaDates = '15-Nov-2018';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Create the floating-rate note instrument.

Settle ='1-April-2012';
Maturity = '1-April-2016';
Spread = 10;
Principal = 100;

Compute the price of a vanilla floater.

Price = floatbyhw(HWT, Spread, Settle, Maturity)

Price = 100.3680

Compute the price of the collared floating-rate notes.

CapStrike = {{'1-April-2014' 0.045; '1-April-2015' 0.05;...
 '1-April-2016' 0.06}; 0.06};
         
FloorStrike = {{'1-April-2014' 0.035; '1-April-2015' 0.04;...
 '1-April-2016' 0.05}; 0.03};
PriceCollared = floatbyhw(HWT, Spread, Settle, Maturity,....
'CapRate', CapStrike,'FloorRate', FloorStrike)

PriceCollared = 2×1

  102.0458
  100.9299
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Pricing a Floating-Rate Note When the Reset Dates Are Not Tree Level Dates

When using floatbyhw to price floating-rate notes, there are cases where the dates
specified in the HW tree TimeSpec are not aligned with the cash flow dates.

Price floating-rate notes using the following data:
ValuationDate = '01-Sep-2013'; 
Rates = [0.0001; 0.0001; 0.0010; 0.0015]; 
EndDates = ['01-Dec-2013'; '01-Mar-2014'; '01-Jun-2014'; '01-Sep-2014'];

Create the RateSpec.
RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',...
ValuationDate,'EndDates',EndDates,'Rates',Rates,'Compounding', 1);

Build the HW tree.
Volcurve = 0.1;                         
Alpha = 0.01; 
HWVolatilitySpec = hwvolspec(RateSpec.ValuationDate, ... 
                             EndDates, Volcurve,... 
                             EndDates, Alpha); 

HWTimeSpec = hwtimespec(RateSpec.ValuationDate, EndDates, 1); 

HWT = hwtree(HWVolatilitySpec, RateSpec, HWTimeSpec); 

Compute the price of the floating-rate note using the following data.
Spread = 10; 
Settle = '01-Sep-2013'; 
Maturity = '01-Jun-2014'; 
Reset = 2; 

Price = floatbyhw(HWT, Spread, Settle, Maturity, 'FloatReset', Reset)

Error using floatengbytrintree (line 318)
Instrument '1 ' has cash flow dates that span across tree nodes.

Error in floatbyhw (line 136)
        [Price, PriceTree, CFTree] = floatengbytrintree(HWTree, Spread, Settle, Maturity, OArgs{:});

This error indicates that it is not possible to determine the applicable rate used to
calculate the payoff at the reset dates, given that the applicable rate needed cannot be
calculated (the information was lost due to the recombination of the tree nodes). Note, if
the reset period for an FRN spans more than one tree level, calculating the payment
becomes impossible due to the recombining nature of the tree. That is, the tree path
connecting the two consecutive reset dates cannot be uniquely determined because there
is more than one possible path for connecting the two payment dates. The simplest
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solution is to place the tree levels at the cash flow dates of the instrument, which is done
by specifying HWTimeSpec. It is also acceptable to have reset dates between tree levels,
as long as there are reset dates on the tree levels.

To recover from this error, build a tree that lines up with the instrument.
Basis = intenvget(RateSpec, 'Basis');
EOM = intenvget(RateSpec, 'EndMonthRule');
resetDates = cfdates(ValuationDate, Maturity, Reset, Basis, EOM);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate,resetDates, Reset);
HWT = hwtree(HWVolatilitySpec, RateSpec, HWTimeSpec);

Price = floatbyhw(HWT, Spread, RateSpec.ValuationDate, ...
                  Maturity, 'FloatReset', Reset)

Price =

  100.0748

Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every floating-rate note is set to the ValuationDate of the HW
tree. The floating-rate note argument Settle is ignored.
Data Types: char | double

11 Functions — Alphabetical List

11-658



Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each floating-rate note.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
floatbyhw(HWTree,Spread,Settle,Maturity,'Basis',3)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and a NINST-by-1 vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there is more than one possible path for connecting the two payment
dates.

Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure using derivset.
Data Types: struct
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMOnthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:
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• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

CapRate — Annual cap rate
decimal

Annual cap rate, specified as the comma-separated pair consisting of 'CapRate' and a
NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated cap rates. The date indicates the last day that the cap rate is valid.
Data Types: double | cell

FloorRate — Annual floor rate
decimal

Annual floor rate, specified as the comma-separated pair consisting of 'FloorRate' and
a NINST-by-1 decimal annual rate or NINST-by-1 cell array, where each element is a
NumDates-by-2 cell array, and the cell array first column is dates, and the second column
is associated floor rates. The date indicates the last day that the floor rate is valid.
Data Types: double | cell

Output Arguments
Price — Expected floating-rate note prices at time 0
vector
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Expected floating-rate note prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floatbyzero
Price floating-rate note from set of zero curves

Syntax
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero(RateSpec,
Spread,Settle,Maturity)
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero( ___ ,
Name,Value)

Description
[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero(RateSpec,
Spread,Settle,Maturity) prices a floating-rate note from a set of zero curves.

floatbyzero computes prices of vanilla floating-rate notes and amortizing floating-rate
notes.

[Price,DirtyPrice,CFlowAmounts,CFlowDates] = floatbyzero( ___ ,
Name,Value) adds additional name-value pair arguments.

Examples

Price a Floating-Rate Note Using a Set of Zero Curves

Price a 20-basis point floating-rate note using a set of zero curves.

Load deriv.mat, which provides ZeroRateSpec, the interest-rate term structure,
needed to price the bond.

load deriv.mat;

Define the floating-rate note using the required arguments. Other arguments use
defaults.
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Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';

Use floatbyzero to compute the price of the note.

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Price = 100.5529

Price an Amortizing Floating-Rate Note

Price an amortizing floating-rate note using the Principal input argument to define the
amortization schedule.

Create the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Create the floating-rate instrument using the following data:
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Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Spread = 15;

Define the floating-rate note amortizing schedule.

Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Compute the price of the amortizing floating-rate note.

Price  = floatbyzero(RateSpec, Spread, Settle, Maturity, 'Principal', Principal)

Price = 100.3059

Specify the Rate at the Instrument’s Starting Date When It Cannot Be Obtained
from the RateSpec

If Settle is not on a reset date of a floating-rate note, floatbyzero attempts to obtain
the latest floating rate before Settle from RateSpec or the LatestFloatingRate
parameter. When the reset date for this rate is out of the range of RateSpec (and
LatestFloatingRate is not specified), floatbyzero fails to obtain the rate for that
date and generates an error. This example shows how to use the LatestFloatingRate
input parameter to avoid the error.

Create the error condition when a floating-rate instrument’s StartDate cannot be
determined from the RateSpec.
load deriv.mat;

Spread = 20;
Settle = '01-Jan-2000';
Maturity = '01-Dec-2003';

Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity)

Error using floatbyzero (line 256)
The rate at the instrument starting date cannot be obtained from RateSpec.
 Its reset date (01-Dec-1999) is out of the range of dates contained in RateSpec.
 This rate is required to calculate cash flows at the instrument starting date.
 Consider specifying this rate with the 'LatestFloatingRate' input parameter.

Here, the reset date for the rate at Settle was 01-Dec-1999, which was earlier than the
valuation date of ZeroRateSpec (01-Jan-2000). This error can be avoided by specifying
the rate at the instrument’s starting date using the LatestFloatingRate name-value
pair argument.
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Define LatestFloatingRate and calculate the floating-rate price.
Price = floatbyzero(ZeroRateSpec, Spread, Settle, Maturity, 'LatestFloatingRate', 0.03)

Price =

  100.0285

Price a Floating-Rate Note Using a Different Curve to Generate Floating Cash
Flows

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .011 .016 .022 .026 .030 .0348]';

Plot the dual curves.

figure,plot(CurveDates,OISRates,'r');hold on;plot(CurveDates,LiborRates,'b')
datetick
legend({'OIS Curve', 'Libor Curve'})
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Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates);

Define the floating-rate note.

Maturity = datenum('15-Mar-2018');

Compute the price for the floating-rate note. The LiborCurve term structure will be
used to generate the floating cash flows of the floater instrument. The OISCurve term
structure will be used for discounting the cash flows.

Price = floatbyzero(OISCurve,0,Settle,Maturity,'ProjectionCurve',LiborCurve)
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Price = 102.4214

Some instruments require using different interest-rate curves for generating the floating
cash flows and discounting. This is when the ProjectionCurve parameter is useful.
When you provide both RateSpec and ProjectionCurve, floatbyzero uses the
RateSpec for the purpose of discounting and it uses the ProjectionCurve for
generating the floating cash flows.

Input Arguments
RateSpec — Annualized zero rate term structure
structure

Annualized zero rate term structure, specified using intenvset to create a RateSpec.
Data Types: struct

Spread — Number of basis points over the reference rate
vector

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

Settle must be earlier than Maturity.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each floating-rate note.
Data Types: char | double
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Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,DirtyPrice,CFlowAmounts,CFlowDates] =
floatbyzero(RateSpec,Spread,Settle,Maturity,'Principal',Principal)

FloatReset — Frequency of payments per year
1 (default) | vector

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day count basis
0 (actual/actual) (default) | integer from 0 to 13

Day count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts, specified as the comma-separated pair consisting of
'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array, where each element of
the cell array is a NumDates-by-2 cell array and the first column is dates and the second
column is its associated notional principal value. The date indicates the last day that the
principal value is valid.
Data Types: cell | double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

LatestFloatingRate — Rate for the next floating payment
if not specified, the floating rate at the previous reset date is computed from RateSpec
(default) | numeric

Rate for the next floating payment set at the last reset date, specified as the comma-
separated pair consisting of 'LatestFloatingRate' and a NINST-by-1.
Data Types: double
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ProjectionCurve — Rate curve used in generating future forward rates
if not specified, then RateSpec is used both for discounting cash flows and projecting
future forward rates (default) | structure

The rate curve to be used in generating the future forward rates, specified as the comma-
separated pair consisting of 'ProjectionCurve' and a structure created using
intenvset. Use this optional input if the forward curve is different from the discount
curve.
Data Types: struct

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 vector of
logicals with values of 0 (false) or 1 (true).
Data Types: logical

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.
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• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Output Arguments
Price — Floating-rate note prices
matrix

Floating-rate note prices, returned as a (NINST) by number of curves (NUMCURVES)
matrix. Each column arises from one of the zero curves.

DirtyPrice — Dirty note price
matrix

Dirty note price (clean + accrued interest), returned as a NINST- by-NUMCURVES matrix.
Each column arises from one of the zero curves.

CFlowAmounts — Cash flow amounts
matrix

Cash flow amounts, returned as a NINST- by-NUMCFS matrix of cash flows for each note. If
there is more than one curve specified in the RateSpec input, then the first NCURVES
rows correspond to the first note, the second NCURVES rows correspond to the second
note, and so on.

CFlowDates — Cash flow dates
matrix

Cash flow dates, returned as a NINST- by-NUMCFS matrix of payment dates for each note.
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See Also
bondbyzero | cfbyzero | fixedbyzero | intenvset | swapbyzero

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floorbybdt
Price floor instrument from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = floorbybdt(BDTTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbybdt( ___ ,FloorReset,Basis,Principal,
Options)

Description
[Price,PriceTree] = floorbybdt(BDTTree,Strike,Settle,Maturity)
computes the price of a floor instrument from a Black-Derman-Toy interest-rate tree.
floorbybdt computes prices of vanilla floors and amortizing floors.

[Price,PriceTree] = floorbybdt( ___ ,FloorReset,Basis,Principal,
Options) adds optional arguments.

Examples

Price a 10% Floor Instrument Using a BDT Interest-Rate Tree

Load the file deriv.mat, which provides BDTTree. BDTTree contains the time and
interest-rate information needed to price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.10;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Use floorbybdt to compute the price of the floor instrument.
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Price = floorbybdt(BDTTree, Strike, Settle, Maturity)

Price = 0.2428

Price a 10% Floor Instrument Using a Newly Created BDT Interest-Rate Tree

First set the required arguments for the three needed specifications.

Compounding = 1; 
ValuationDate = '01-01-2000'; 
StartDate = ValuationDate; 
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; 
'01-01-2004'; '01-01-2005']; 
Rates = [.1; .11; .12; .125; .13]; 
Volatility = [.2; .19; .18; .17; .16];

Create the specifications.

RateSpec = intenvset('Compounding', Compounding,... 
'ValuationDate', ValuationDate,... 
'StartDates', StartDate,... 
'EndDates', EndDates,... 
'Rates', Rates); 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding); 
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility);

Create the BDT tree from the specifications.

BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Set the floor arguments. Remaining arguments will use defaults.
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FloorStrike = 0.10; 
Settlement = ValuationDate; 
Maturity = '01-01-2002'; 
FloorReset = 1;

Use floorbybdt to find the price of the floor instrument.

Price= floorbybdt(BDTTree, FloorStrike, Settlement, Maturity,... 
FloorReset)

Price = 0.0863

Compute the Price of an Amortizing Floor Using the BDT Model

Define the RateSpec.

Rates = [0.03583; 0.042147; 0.047345; 0.052707; 0.054302];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the floor instrument.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.039;
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Reset = 1;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Build the BDT Tree.

BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility*ones(1,length(EndDates))');
BDTTree = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [734822 735188 735553 735918 736283]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Price the amortizing floor.

Basis = 0;
Price = floorbybdt(BDTTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price = 0.3060

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which the floor is exercised, specified as a NINST-by-1 vector of decimal values.
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Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every floor is set to the ValuationDate of
the BDT tree. The floor argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

FloorReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector
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Tree structure with values of the floor at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:

• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.

See Also
bdttree | capbybdt | cfbybdt | floorbynormal | swapbybdt

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floorbybk
Price floor instrument from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = floorbybk(BKTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbybk( ___ ,Reset,Basis,Principal,Options)

Description
[Price,PriceTree] = floorbybk(BKTree,Strike,Settle,Maturity) computes
the price of a floor instrument from a Black-Karasinski interest-rate tree. floorbybk
computes prices of vanilla floors and amortizing floors.

[Price,PriceTree] = floorbybk( ___ ,Reset,Basis,Principal,Options) adds
optional arguments.

Examples

Price a 3% Floor Instrument Using a Black-Karasinski Interest-Rate Tree

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the
time and interest rate information needed to price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use floorbybk to compute the price of the floor instrument.

Price = floorbybk(BKTree, Strike, Settle, Maturity)
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Price = 0.2061

Compute the Price of an Amortizing and Vanilla Floors Using the BK Model

Load deriv.mat to specify the BKTree and then define the floor instrument.

load deriv.mat; 
Settle = '01-Jan-2004';
Maturity = '01-Jan-2008';
Strike = 0.045;
Reset = 1;
Principal ={{'01-Jan-2005' 100;'01-Jan-2006' 60;'01-Jan-2007' 30;'01-Jan-2008' 30};...
            100};

Price the amortizing and vanilla floors.

Basis = 1;
Price = floorbybk(BKTree, Strike, Settle, Maturity, Reset, Basis, Principal)

Price = 2×1

    2.2000
    2.5564

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double
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Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every floor is set to the ValuationDate of
the BK tree. The floor argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

Reset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:
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• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bktree | capbybk | cfbybk | floorbynormal | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floorbycir
Price floor instrument from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = floorbycir(CIRTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = floorbycir(CIRTree,Strike,Settle,Maturity)
computes the price of a floor instrument from a Cox-Ingersoll-Ross (CIR) interest-rate
tree. floorbycir computes prices of vanilla floors and amortizing floors using a CIR++
model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = floorbycir( ___ ,Name,Value) adds additional name-value
pair arguments.

Examples

Price a Floor Using a CIR Interest-Rate Tree

Define the Strike for a floor.

Strike = 0.02;

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 
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Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the 2% floor.

[Price,PriceTree] = floorbycir(CIRT,Strike,Settle,Maturity) 

Price = 1.4211e-14

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure
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Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Strike — Rate at which cap is exercised
decimal

Rate at which cap is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers,
date character vectors, string arrays, or datetime arrays. The Settle date for every floor
is set to the ValuationDate of the CIR tree. The floor argument Settle is ignored.
Data Types: double | char | cell | datetime

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | datetime

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
floorbycir(CIRTree,CouponRate,Settle,Maturity,'Basis',3)

FloorReset — Reset frequency payment per year
1 (default) | numeric
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Reset frequency payment per year, specified as the comma-separated pair consisting of
'FloorReset' and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate,
specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1 vector of
integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 of notional principal amounts, or a NINST-by-1 cell
array.
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For the NINST-by-1 cell array, each element is a NumDates-by-2 cell array where the first
column is dates, and the second column is associated principal amount. The date
indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:

• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

References
[1] Cox, J., Ingersoll, J.,and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.
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[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | instfloor |
oasbycir | optbndbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a

11 Functions — Alphabetical List

11-692



floorbyblk
Price floors using Black option pricing model

Syntax
[FloorPrice,Floorlets] = floorbyblk(RateSpec,Strike,Settle,Maturity,
Volatility)
[FloorPrice,Floorlets] = floorbyblk( ___ ,Name,Value)

Description
[FloorPrice,Floorlets] = floorbyblk(RateSpec,Strike,Settle,Maturity,
Volatility) price floors using the Black option pricing model. floorbyblk computes
prices of vanilla floors and amortizing floors.

[FloorPrice,Floorlets] = floorbyblk( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a Floor Using the Black Option Pricing Model

This example shows how to price a floor using the Black option pricing model. Consider
an investor who gets into a contract that floors the interest rate on a $100,000 loan at 6%
quarterly compounded for 3 months, starting on January 1, 2009. Assuming that on
January 1, 2008 the zero rate is 6.9394% continuously compounded and the volatility is
20%, use this data to compute the floor price.

ValuationDate = 'Jan-01-2008';  
EndDates ='April-01-2010';
Rates = 0.069394;
Compounding = -1; 
Basis = 1;
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% calculate the RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Settle = 'Jan-01-2009'; % floor starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
FloorRate = 0.06;
FloorReset = 4;
Principal=100000;

FloorPrice = floorbyblk(RateSpec, FloorRate, Settle, Maturity, Volatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

FloorPrice = 37.4864

Price a Floor Using a Different Curve to Generate the Future Forward Rates

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109  .0162 .0216 .0262 .0309 .0348]';

Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);

Define the Floor instruments.

Maturity = {'15-Mar-2018';'15-Mar-2020'};
Strike = [.04;.05];
BlackVol = .2;

Price the floor instruments using the term structure OISCurve both for discounting the
cash flows and generating future forward rates.

[Price, Floorlets] = floorbyblk(OISCurve, Strike, Settle, Maturity, BlackVol)
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Price = 2×1

    9.9808
   16.9057

Floorlets = 2×7

    3.6783    3.0706    1.8275    0.7280    0.6764       NaN       NaN
    4.6753    4.0587    2.7921    1.4763    1.3442    1.4130    1.1462

Price the floor instruments using the term structure LiborCurve to generate future
forward rates. The term structure OISCurve is used for discounting the cash flows.

[PriceLC, FloorletsLC] = floorbyblk(OISCurve, Strike, Settle, Maturity, BlackVol,'ProjectionCurve',LiborCurve)

PriceLC = 2×1

    8.0524
   14.3184

FloorletsLC = 2×7

    3.2385    2.5338    1.2895    0.5889    0.4017       NaN       NaN
    4.2355    3.5219    2.2286    1.2751    0.9169    1.1698    0.9706

Compute the Price of an Amortizing Floor Using the Black Model

Define the RateSpec.

Rates = [0.0358; 0.0421; 0.0473; 0.0527; 0.0543];
ValuationDate = '15-Nov-2011';
StartDates = ValuationDate;
EndDates = {'15-Nov-2012';'15-Nov-2013';'15-Nov-2014' ;'15-Nov-2015';'15-Nov-2016'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
             'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734822
    ValuationDate: 734822
            Basis: 0
     EndMonthRule: 1

Define the floor instrument.

Settle ='15-Nov-2011';
Maturity = '15-Nov-2015';
Strike = 0.05;
Reset = 2;
Principal ={{'15-Nov-2012' 100;'15-Nov-2013' 70;'15-Nov-2014' 40;'15-Nov-2015' 10}};

Price the amortizing floor.

Volatility = 0.20;
Price = floorbyblk(RateSpec, Strike, Settle, Maturity, Volatility,...
'Reset',Reset,'Principal', Principal)

Price = 1.9315

Price a Floor Using the Shifted Black Model

Create the RateSpec.

ValuationDate = 'Mar-01-2016';
EndDates = {'Mar-01-2017';'Mar-01-2018';'Mar-01-2019';'Mar-01-2020';'Mar-01-2021'};
Rates = [-0.21; -0.12; 0.01; 0.10; 0.20]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736390
    ValuationDate: 736390
            Basis: 1
     EndMonthRule: 1

Price the floor with a negative strike using the Shifted Black model.

Settle = 'Jun-01-2016'; % Floor starts in 3 months.
Maturity = 'Sep-01-2016';
ShiftedBlackVolatility = 0.31;
FloorRate = -0.001;  % -0.1 percent strike.
FloorReset = 4;
Principal = 100000;
Shift = 0.01; % 1 percent shift.

FloorPrice = floorbyblk(RateSpec,FloorRate,Settle,Maturity,ShiftedBlackVolatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal',Principal,...
'Basis',Basis,'Shift',Shift)

FloorPrice = 31.2099

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which floor is exercised, specified as a NINST-by-1 vector of decimal values.
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Data Types: double

Settle — Settlement date for floor
serial date number | date character vector

Settlement date for the floor, specified as a serial date number or a date character vector.
Data Types: double | char

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a serial date number or date character vector.
Data Types: double | char

Volatility — Volatilities values
numeric

Volatilities values, specified as a NINST-by-1 vector of numeric values.

The Volatility input is not intended for volatility surfaces or cubes. If you specify a
matrix for the Volatility input, floorbyblk internally converts it into a vector.
floorbyblk assumes that the volatilities specified in the Volatility input are flat
volatilities, which are applied equally to each of the floorlets.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [FloorPrice,Floorlets] =
floorbyblk(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',CapRes
et,'Principal',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as a NINST-by-1 vector.
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Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as a NINST-by-1 of notional principal amounts, or a
NINST-by-1 cell array. When Principal is a NINST-by-1 cell array, each element is a
NumDates-by-2 cell array, where the first column is dates and the second column is
associated principal amount. The date indicates the last day that the principal value is
valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate,
specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

ProjectionCurve — Rate curve used in generating future forward rates
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash
flows and projecting future forward rates (default) | structure

The rate curve to be used in generating the future forward rates. This structure must be
created using intenvset. Use this optional input if the forward curve is different from
the discount curve.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified using a scalar or NINST-by-1
vector of rate shifts in positive decimals. Set this parameter to a positive rate shift in
decimals to add a positive shift to the forward rate and strike, which effectively sets a
negative lower bound for the forward rate. For example, a Shift of 0.01 is equal to a 1%
shift.
Data Types: double

Output Arguments
FloorPrice — Expected price of floor
vector

Expected price of the floor, returned as a NINST-by-1 vector.

Floorlets — Floorlets
array

Floorlets, returned as a NINST-by-NCF array of floorlets, padded with NaNs.
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Definitions

Shifted Black
The Shifted Black model is essentially the same as the Black’s model, except that it
models the movements of (F + Shift) as the underlying asset, instead of F (which is the
forward rate in the case of floorlets).

This model allows negative rates, with a fixed negative lower bound defined by the
amount of shift; that is, the zero lower bound of Black’s model has been shifted.

Algorithms

Black Model
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Where F is the forward value and K is the strike.
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Shifted Black Model
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Where F+Shift is the forward value and K+Shift is the strike for the shifted version.

See Also
capbyblk | floorbynormal | intenvset

Topics
“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2009a
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floorbyhjm
Price floor instrument from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = floorbyhjm(HJMTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbyhjm( ___ ,FloorReset,Basis,Principal,
Options)

Description
[Price,PriceTree] = floorbyhjm(HJMTree,Strike,Settle,Maturity)
computes the price of a floor instrument from a Heath-Jarrow-Morton interest-rate tree.
floorbyhjm computes prices of vanilla floors and amortizing floors.

[Price,PriceTree] = floorbyhjm( ___ ,FloorReset,Basis,Principal,
Options) adds optional arguments.

Examples

Price a 3% Floor Instrument Using an HJM Forward-Rate Tree

This example shows how to price a 3% floor instrument using an HJM forward-rate tree
by loading the file deriv.mat, which provides HJMTree. The HJMTree structure contains
the time and forward-rate information needed to price the floor instrument.

load deriv.mat;

Strike = 0.03;
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity)

Price = 0.0486
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Compute the Price of an Amortizing Floor Using the HJM Model

Load deriv.mat to specify the HJMTree and then define the floor instrument.

load deriv.mat; 
Settle = '01-Jan-2000';
Maturity = '01-Jan-2004';
Strike = 0.05;
FloorReset = 1;
Principal ={{'01-Jan-2001' 100;'01-Jan-2002' 80;'01-Jan-2003' 70;'01-Jan-2004' 30}};

Price the amortizing floor.

Price = floorbyhjm(HJMTree, Strike, Settle, Maturity, FloorReset, Principal)

Price = 2.8215

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which the floor is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every floor is set to the ValuationDate of
the HJM tree. The floor argument Settle is ignored.
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Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

FloorReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector

Tree structure with values of the floor at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:

• PriceTree.tObs contains the observation times.
• PriceTree.PBush contains the clean prices.

See Also
capbyhjm | cfbyhjm | floorbynormal | hjmtree | swapbyhjm
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Topics
“Computing Instrument Prices” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floorbyhw
Price floor instrument from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = floorbyhw(HWTree,Strike,Settle,Maturity)
[Price,PriceTree] = floorbyhw( ___ ,FloorReset,Basis,Principal,
Options)

Description
[Price,PriceTree] = floorbyhw(HWTree,Strike,Settle,Maturity) computes
the price of a floor instrument from a Hull-White interest-rate tree. capbyhw computes
prices of vanilla floors and amortizing floors.

[Price,PriceTree] = floorbyhw( ___ ,FloorReset,Basis,Principal,
Options) adds optional arguments.

Examples

Price a 3% Floor Instrument Using a Hull-White Interest-Rate Tree

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the
time and interest rate information needed to price the floor instrument.

load deriv.mat;

Set the required values. Other arguments will use defaults.

Strike = 0.03;
Settle = '01-Jan-2004';
Maturity = '01-Jan-2007';

Use floorbyhw to compute the price of the floor instrument.

11 Functions — Alphabetical List

11-708



Price = floorbyhw(HWTree, Strike, Settle, Maturity)

Price = 0.4186

Compute the Price of an Amortizing and Vanilla Floors Using the HW Model

Define the RateSpec.

Rates = [0.035; 0.042; 0.047; 0.052; 0.054];
ValuationDate = '01-April-2014';
StartDates = ValuationDate;
EndDates = {'01-April-2019'};
Compounding = 1;
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: 737516
       StartDates: 735690
    ValuationDate: 735690
            Basis: 0
     EndMonthRule: 1

Define the floor instruments.

Settle ='01-April-2014';
Maturity = '01-April-2018';
Strike = 0.05;
FloorReset = 1;
Principal ={{'01-April-2015' 100;'01-April-2016' 60;'01-April-2017' 40;'01-April-2018' 20};
            100};

Build the HW Tree.

VolDates = ['01-April-2015';'01-April-2016';'01-April-2017';'01-April-2018'];
VolCurve = 0.05;
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AlphaDates = '01-April-2018';
AlphaCurve = 0.10;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
                      AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [735690 736055 736421 736786]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0350]  [1.1300 1.0363 0.9503]  [1x5 double]  [1x7 double]}

Price the amortizing and vanilla floors.

Basis = 0;
Price  = floorbyhw(HWTree, Strike, Settle, Maturity, FloorReset, Basis, Principal)

Price = 2×1

    4.8675
   10.3881

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Strike — Rate at which floor is exercised
decimal
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Rate at which the floor is exercised, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | cell array of date character vectors

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors. The Settle date for every floor is set to the ValuationDate of
the HW tree. The floor argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floor
serial date number | date character vector | cell array of date character vectors

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

FloorReset — Reset frequency payment per year
1 (default) | numeric

(Optional) Reset frequency payment per year, specified as a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis representing the basis used when annualizing the input
forward rate, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
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• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 of notional principal
amounts, or a NINST-by-1 cell array, where each element is a NumDates-by-2 cell array
where the first column is dates and the second column is associated principal amount.
The date indicates the last day that the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing floor.
Data Types: double | cell

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, specified using derivset.
Data Types: struct

Output Arguments
Price — Expected price of floor at time 0
vector

Expected price of the floor at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure with values of floor at each node
vector
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Tree structure with values of the floor at each node, returned as a MATLAB structure of
trees containing vectors of instrument prices and a vector of observation times for each
node:

• PriceTree.PTree contains floor prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
capbyhw | cfbyhw | floorbynormal | hwtree | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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floorbylg2f
Price floor using Linear Gaussian two-factor model

Syntax
FloorPrice = floorbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,
Maturity)
FloorPrice = floorbylg2f( ___ ,Name,Value)

Description
FloorPrice = floorbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,
Maturity) returns the floor price for a two-factor additive Gaussian interest-rate model.

FloorPrice = floorbylg2f( ___ ,Name,Value) adds optional name-value pair
arguments.

Note Use the optional name-value pair argument, Notional, to pass a schedule to
compute the price for an amortizing floor.

Examples

Price a Floor Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to compute the floor price.

Settle = datenum('15-Dec-2007');
 
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
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a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
FloorMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
 
Strike = [0.035 0.037 0.038 0.039 0.040 0.042 0.044 0.046 0.047 0.047 0.047]';
 
Price = floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity)

Price = 11×1

         0
    0.4041
    0.8282
    1.3103
    1.8346
    3.0636
    4.9172
    7.7614
    9.7166
   11.4163
      ⋮

Price an Amortizing Floor Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, rho, and Notional parameters for the
amortizing floor.

Settle = datenum('15-Dec-2007');
% Define ZeroCurve
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

% Define a, b, sigma, eta, and rho
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a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;

% Define the amortizing floors
FloorMaturity = daysadd(Settle,360*[1:5 7 10 15 20 25 30],1);
Strike = [0.025 0.036 0.037 0.038 0.039 0.041 0.043 0.045 0.046 0.046 0.046]';
Notional = {{'15-Dec-2012' 100;'15-Dec-2017' 70;'15-Dec-2022' 40;'15-Dec-2037' 10}};

% Price the amortizing floors
Price = floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity,'Notional',Notional)

Price = 11×1

         0
    0.2633
    0.6438
    1.0815
    1.5637
    2.5196
    3.9061
    5.4326
    6.0416
    6.2033
      ⋮

Input Arguments
ZeroCurve — Zero curve for Linear Gaussian two-factor model
structure

Zero curve for the Linear Gaussian two-factor model, specified using IRDataCurve or
RateSpec.
Data Types: struct

a — Mean reversion for first factor for Linear Gaussian two-factor model
scalar
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Mean reversion for the first factor for the Linear Gaussian two-factor model, specified as
a scalar.
Data Types: single | double

b — Mean reversion for second factor for Linear Gaussian two-factor model
scalar

Mean reversion for the second factor for the Linear Gaussian two-factor model, specified
as a scalar.
Data Types: single | double

sigma — Volatility for first factor for Linear Gaussian two-factor model
scalar

Volatility for the first factor for the Linear Gaussian two-factor model, specified as a
scalar.
Data Types: single | double

eta — Volatility for second factor for Linear Gaussian two-factor model
scalar

Volatility for the second factor for the Linear Gaussian two-factor model, specified as a
scalar.
Data Types: single | double

rho — Scalar correlation of factors
scalar

Scalar correlation of the factors, specified as a scalar.
Data Types: single | double

Strike — Floor strike price
nonnegative integer | vector of nonnegative integers

Floor strike price specified, as a nonnegative integer using a NumFloors-by-1 vector of
floor strike prices.
Data Types: single | double

Maturity — Floor maturity date
serial date number | vector of serial date numbers | date character vector
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Floor maturity date, specified using a NumFloors-by-1 vector of serial date numbers or
date character vectors.
Data Types: single | double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
floorbylg2f(irdc,a,b,sigma,eta,rho,Strike,FloorMaturity,'Reset',
1,'Notional',100)

Reset — Frequency of floor payments per year
2 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of floor payments per year, specified as the comma-separated pair consisting
of 'Reset' and positive integers for the values [1,2,4,6,12] in a NumFloors-by-1
vector.
Data Types: single | double

Notional — Notional value of floor
100 (default) | nonnegative integer | vector of nonnegative integers

NINST-by-1 of notional principal amounts or NINST-by-1 cell array where each element is
a NumDates-by-2 cell array where the first column is dates and the second column is the
associated principal amount. The date indicates the last day that the principal value is
valid.
Data Types: single | double

Output Arguments
FloorPrice — Floor price
scalar | vector

Floor price, returned as a scalar or a NumFloors-by-1 vector.
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Algorithms
The following defines the two-factor additive Gaussian interest-rate model, given the
ZeroCurve, a, b, sigma, eta, and rho parameters:

r t x t y t t( ) ( ) ( ) ( )= + +f

dx t a x t dt dW t x( ) ( )( ) ( ( ), ( )= - + =s 1 0 0

dy t b y t dt dW t y( ) ( )( ) ( ( ), ( )= - + =h 2 0 0

where dW t dW t dt1 2( ) ( ) = r  is a two-dimensional Brownian motion with correlation ρ and ϕ
is a function chosen to match the initial zero curve.

References
[1] Brigo, D. and F. Mercurio, Interest Rate Models - Theory and Practice. Springer

Finance, 2006.

See Also
LinearGaussian2F | capbylg2f | swaptionbylg2f

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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floorbynormal
Price floors using Normal or Bachelier pricing model

Syntax
[FloorPrice,Floorlets] = floorbynormal(RateSpec,Strike,Settle,
Maturity,Volatility)
[FloorPrice,Floorlets] = floorbynormal( ___ ,Name,Value)

Description
[FloorPrice,Floorlets] = floorbynormal(RateSpec,Strike,Settle,
Maturity,Volatility) prices floors using the Normal (Bachelier) pricing model for
negative rates. floorbynormal computes prices of vanilla floors and amortizing floors.

[FloorPrice,Floorlets] = floorbynormal( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Price a Floor Using Normal Model for Negative Rates

Consider an investor who gets into a contract that floors the interest rate on a $100,000
loan at –.6% quarterly compounded for 3 months, starting on January 1, 2009. Assuming
that on January 1, 2008 the zero rate is .69394% continuously compounded and the
volatility is 20%, use this data to compute the floor price. First, calculate the RateSpec,
and then use floorbynormal to compute the FloorPrice.

ValuationDate = 'Jan-01-2008';
EndDates ='April-01-2010';
Rates = 0.0069394;
Compounding = -1;
Basis = 1;
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% calculate the RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate,'EndDates', EndDates, ...
'Rates', Rates,'Compounding', Compounding,'Basis', Basis);

Settle = 'Jan-01-2009'; % floor starts in a year
Maturity = 'April-01-2009';
Volatility = 0.20;
FloorRate = -0.006;
FloorReset = 4;
Principal=100000;

FloorPrice = floorbynormal(RateSpec, FloorRate, Settle, Maturity, Volatility,...
'Reset',FloorReset,'ValuationDate',ValuationDate,'Principal', Principal,...
'Basis', Basis)

FloorPrice = 1.8212e+03

Price a Floor Using floorbynormal and Compare to floorbyblk

Define the RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the floor instrument and price with floorbyblk.
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ExerciseDate = datenum('20-Jan-2026');

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,ExerciseDate)

ParSwapRate = 0.0216

Strike = .01;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price = floorbyblk(RateSpec,Strike,Settle,ExerciseDate,BlackVol)

Price = 1.2297

Price the floor instrument using floorbynormal.

Price_Normal = floorbynormal(RateSpec,Strike,Settle,ExerciseDate,NormalVol)

Price_Normal = 1.9099

Price the floor instrument using floorbynormal for a negative strike.

 Price_Normal = floorbynormal(RateSpec,-.005,Settle,ExerciseDate,NormalVol)

Price_Normal = 0.0857

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

Strike — Rate at which floor is exercised
decimal

Rate at which floor is exercised, specified as a NINST-by-1 vector of decimal values.

11 Functions — Alphabetical List

11-722



Data Types: double

Settle — Settlement date for floor
serial date number | date character vector | datetime object | string object

Settlement date for the floor, specified as a NINST-by-1 vector of serial date numbers,
date character vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Maturity — Maturity date for floor
serial date number | date character vector | datetime object | string object

Maturity date for the floor, specified as a NINST-by-1 vector of serial date numbers, date
character vectors, datetime objects, or string objects.
Data Types: double | char | datetime | string

Volatility — Normal volatilities values
numeric

Normal volatilities values, specified as a NINST-by-1 vector of numeric values.

For more information on the Normal model, see “Work with Negative Interest Rates” on
page 2-22.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [FloorPrice,Floorlets] =
floorbynormal(RateSpec,Strike,Settle,Maturity,Volatility,'Reset',Cap
Reset,'Principal',100000,'Basis',7)

Reset — Reset frequency payment per year
1 (default) | numeric

Reset frequency payment per year, specified as the comma-separated pair consisting of
'Reset' and a NINST-by-1 vector.
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Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector or a NINST-by-1 cell array. Each element in the
NINST-by-1 cell array is a NumDates-by-2 cell array, where the first column is dates, and
the second column is the associated principal amount. The date indicates the last day that
the principal value is valid.

Use Principal to pass a schedule to compute the price for an amortizing cap.
Data Types: double | cell

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of instrument representing the basis used when annualizing the input
forward rate, specified as the comma-separated pair consisting of 'Basis' and a NINST-
by-1 vector of integers. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

ValuationDate — Observation date of investment horizon
if ValuationDate is not specified, then Settle is used (default) | serial date number |
date character vector | datetime object | string object

Observation date of the investment horizon, specified as the comma-separated pair
consisting of 'ValuationDate' and a serial date number, date character vector,
datetime object, or string array.
Data Types: double | char | datetime | string

ProjectionCurve — Rate curve used in generating future cash flows
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash
flows and projecting future cash flows (default) | structure

The rate curve to be used in projecting the future cash flows, specified as the comma-
separated pair consisting of 'ProjectionCurve' and a rate curve structure. This
structure must be created using intenvset. Use this optional input if the forward curve
is different from the discount curve.
Data Types: struct

Output Arguments
FloorPrice — Expected price of floor
vector

Expected price of the floor, returned as a NINST-by-1 vector.

Floorlets — Floorlets
array

Floorlets, returned as a NINST-by-NCF array of caplets, padded with NaNs.

See Also
capbynormal | floorbyblk | intenvset | swaptionbynormal

Topics
“Calibrating Floorlets Using the Normal (Bachelier) Model”
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“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2017a
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floorvolstrip
Strip floorlet volatilities from flat floor volatilities

Syntax
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip(
ZeroCurve,FloorSettle,FloorMaturity,FloorVolatility)
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip( ___
,Name,Value)

Description
[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip(
ZeroCurve,FloorSettle,FloorMaturity,FloorVolatility) strips floorlet
volatilities from the flat floor volatilities by using the bootstrapping method. The floor
volatilities are interpolated on each floorlet payment date before stripping the floorlet
volatilities.

[FloorletVols,FloorletPaymentDates,FloorStrikes] = floorvolstrip( ___
,Name,Value) adds optional name-value pair arguments. The floor volatilities are
interpolated on each floorlet payment date before stripping the floorlet volatilities.

Examples

Stripping Floorlet Volatilities from At-The-Money (ATM) Floors

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('10-Aug-2015');
ZeroRates = [0.12 0.24 0.40 0.73 1.09 1.62]/100;             
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
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           Settle: 736186 (10-Aug-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the ATM floor volatility data.

FloorSettle = datenum('12-Aug-2015');
FloorMaturity = datenum({'12-Aug-2016';'14-Aug-2017';'13-Aug-2018';...
    '12-Aug-2019',;'12-Aug-2020'});
FloorVolatility = [0.31;0.39;0.43;0.42;0.40];

Strip floorlet volatilities from ATM floors.

[FloorletVols, FloorletPaymentDates, ATMFloorStrikes] = floorvolstrip(ZeroCurve,...
    FloorSettle, FloorMaturity, FloorVolatility);

PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, ATMFloorStrikes)

ans=9×3 table
    PaymentDates     FloorletVols    ATMFloorStrikes
    _____________    ____________    _______________

    '12-Aug-2016'         0.31          0.0056551   
    '13-Feb-2017'       0.3646          0.0073508   
    '14-Aug-2017'      0.41948          0.0090028   
    '12-Feb-2018'      0.43152           0.010827   
    '13-Aug-2018'      0.46351           0.012617   
    '12-Feb-2019'      0.40407           0.013862   
    '12-Aug-2019'      0.39863           0.015105   
    '12-Feb-2020'       0.3674           0.016369   
    '12-Aug-2020'      0.35371            0.01762   

Stripping Floorlet Volatilities from Floors with the Same Strikes

Compute the zero curve for discounting and projecting forward rates.
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ValuationDate = datenum('10-Jun-2015');
ZeroRates = [0.02 0.10 0.28 0.75 1.15 1.80]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736125 (10-Jun-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the floor volatility data.

FloorSettle = datenum('12-Jun-2015');
FloorMaturity = datenum({'13-Jun-2016';'12-Jun-2017';'12-Jun-2018';...
    '12-Jun-2019';'12-Jun-2020'});
FloorVolatility = [0.41;0.43;0.43;0.41;0.38];
FloorStrike = 0.015;

Strip floorlet volatilities from floors with the same strike.

[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
    FloorSettle, FloorMaturity, FloorVolatility, 'Strike', FloorStrike);

PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, FloorStrikes)

ans=9×3 table
    PaymentDates     FloorletVols    FloorStrikes
    _____________    ____________    ____________

    '13-Jun-2016'         0.41          0.015    
    '12-Dec-2016'         0.42          0.015    
    '12-Jun-2017'      0.43433          0.015    
    '12-Dec-2017'      0.43001          0.015    
    '12-Jun-2018'         0.43          0.015    
    '12-Dec-2018'      0.39173          0.015    
    '12-Jun-2019'      0.37244          0.015    
    '12-Dec-2019'      0.32056          0.015    
    '12-Jun-2020'      0.28308          0.015    
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Stripping Floorlet Volatilities Using Manually Specified Floorlet Dates

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('19-May-2015');
ZeroRates = [0.02 0.07 0.23 0.63 1.01 1.60]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736103 (19-May-2015)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the floor volatility data.

FloorSettle = datenum('19-May-2015');
FloorMaturity = datenum({'19-May-2016';'19-May-2017';'21-May-2018'; ...
    '20-May-2019';'19-May-2020'});
FloorVolatility = [0.39;0.42;0.43;0.42;0.40];
FloorStrike = 0.010;

Specify the quarterly and semiannual dates.

FloorletDates = [cfdates(FloorSettle, '19-May-2016', 4)...
     cfdates('19-May-2016', '19-May-2020', 2)]'; 
FloorletDates(~isbusday(FloorletDates)) = ...
    busdate(FloorletDates(~isbusday(FloorletDates)), 'modifiedfollow');

Strip floorlet volatilities using specified FloorletDates.

[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
    FloorSettle, FloorMaturity, FloorVolatility, 'Strike', FloorStrike, ...
    'FloorletDates', FloorletDates);

PaymentDates = cellstr(datestr(FloorletPaymentDates));
format;
table(PaymentDates, FloorletVols, FloorStrikes)
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ans=11×3 table
    PaymentDates     FloorletVols    FloorStrikes
    _____________    ____________    ____________

    '19-Nov-2015'         0.39           0.01    
    '19-Feb-2016'         0.39           0.01    
    '19-May-2016'         0.39           0.01    
    '21-Nov-2016'       0.4058           0.01    
    '19-May-2017'       0.4307           0.01    
    '20-Nov-2017'      0.43317           0.01    
    '21-May-2018'      0.44309           0.01    
    '19-Nov-2018'      0.40831           0.01    
    '20-May-2019'      0.39831           0.01    
    '19-Nov-2019'       0.3524           0.01    
    '19-May-2020'      0.32765           0.01    

Stripping Floorlet Volatilities from Floors Using the Shifted Black Model

Compute the zero curve for discounting and projecting forward rates.

ValuationDate = datenum('3-May-2016');
ZeroRates = [-0.31 -0.21 -0.15 -0.10 0.009 0.19]/100;
CurveDates = datemnth(ValuationDate, [0.25 0.5 1 2 3 5]*12);
ZeroCurve = IRDataCurve('Zero',ValuationDate,CurveDates,ZeroRates)

ZeroCurve = 
             Type: Zero
           Settle: 736453 (03-May-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [6x1 double]
             Data: [6x1 double]

Define the floor volatility (Shifted Black) data.

FloorSettle = datenum('3-May-2016');
FloorMaturity = datenum({'3-May-2017';'3-May-2018';'3-May-2019'; ...
    '4-May-2020';'3-May-2021'});
FloorVolatility = [0.42;0.45;0.43;0.40;0.36]; % Shifted Black volatilities
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Shift = 0.01; % 1 percent shift.
FloorStrike = -0.001; % -0.1 percent strike.

Strip floorlet volatilities from floors using the Shifted Black Model.

[FloorletVols, FloorletPaymentDates, FloorStrikes] = floorvolstrip(ZeroCurve, ...
FloorSettle,FloorMaturity,FloorVolatility,'Strike',FloorStrike,'Shift',Shift);

PaymentDates = string(datestr(FloorletPaymentDates));
format;
table(PaymentDates,FloorletVols,FloorStrikes)

ans=9×3 table
    PaymentDates     FloorletVols    FloorStrikes
    _____________    ____________    ____________

    "03-May-2017"         0.42          -0.001   
    "03-Nov-2017"      0.44575          -0.001   
    "03-May-2018"      0.47092          -0.001   
    "05-Nov-2018"      0.41911          -0.001   
    "03-May-2019"      0.40197          -0.001   
    "04-Nov-2019"      0.36262          -0.001   
    "04-May-2020"      0.33615          -0.001   
    "03-Nov-2020"      0.27453          -0.001   
    "03-May-2021"      0.23045          -0.001   

Input Arguments
ZeroCurve — Zero rate curve
RateSpec or IRDataCurve object

Zero rate curve, specified using a RateSpec or IRDataCurve object containing the zero
rate curve for discounting according to its day count convention. ZeroCurve is also used
for computing the underlying forward rates if the optional argument ProjectionCurve
is not specified. Its observation date specifies the valuation date. For more information on
creating a RateSpec, see intenvset. For more information on creating an
IRDataCurve object, see IRDataCurve.
Data Types: struct
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FloorSettle — Common floor settle date
serial date number or date character vector

Common floor settle date, specified using a serial date number or date character vector.
The FloorSettle date cannot be earlier than the ZeroCurve valuation date.
Data Types: double | char

FloorMaturity — Floor maturity dates
serial date numbers or date character vectors

Floor maturity dates, specified using serial date numbers or date character vectors as an
NFloor-by-1 vector.
Data Types: double | char

FloorVolatility — Flat floor volatilities
positive decimals

Flat floor volatilities, specified using positive decimals as a NFloor-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [FloorletVols,FloorletPaymentDates,FloorStrikes] =
floorvolstrip(ZeroCurve,FloorSettle,FloorMaturity,FloorVolatility,'S
trike',.2)

Strike — Floor strike rate
if not specified, the default is to assume that all floors are at-the-money (ATM) and the
ATM strike will be computed for each cap maturing on each floorlet payment date.
(default) | decimals

Floor strike rate, specified as the comma-separated pair consisting of 'Strike' and
decimal values. Use Strike to specify a single strike that is equally applied to all floors.
Data Types: double
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FloorletDates — Floorlet reset and payment dates
If not specified, the default is to automatically generate periodic floorlet dates (default) |
serial date numbers | date character vectors

Floorlet reset and payment dates, specified as the comma-separated pair consisting of
'FloorletDates' and serial date numbers or date character vectors using a
NFloorletDates-by-1 vector.

Use FloorletDates to manually specify all floorlet reset and payment dates. For
example, some date intervals may be quarterly while others may be semiannual. All dates
must be later than FloorSettle and cannot be later than the last FloorMaturity date.
Dates are adjusted according to the BusDayConvention and Holidays inputs.

If FloorletDates is not specified, the default is to automatically generate periodic
floorlet dates after FloorSettle based on the last FloorMaturity date as the
reference date, using the following optional inputs: Reset, EndMonthRule,
BusDayConvention, and Holidays
Data Types: double | char

Reset — Frequency of periodic payments per year within a floor
2 (default) | positive integer with values 1,2, 3, 4, 6, or 12

Frequency of periodic payments per year within a floor, specified as the comma-separated
pair consisting of 'Reset' and a positive integer with values 1,2, 3, 4, 6, or 12.

Note The input for Reset is ignored if FloorletDates is specified.

Data Types: double

EndMonthRule — End-of-month rule flag for generating floorlet dates
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating floorlet dates, specified as the comma-separated
pair consisting of 'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.
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Data Types: logical

BusDayConvention — Business day conventions
modifiedfollow (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusDayConvention' and a character vector or N-by-1 cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using an NHolidays-by-1 vector.
Data Types: double

ProjectionCurve — Rate curve for computing underlying forward rates
if not specified, the default is to use the ZeroCurve input for computing the underlying
forward rates (default) | RateSpec or IRDatCurve object

Rate curve for computing underlying forward rates, specified as the comma-separated
pair consisting of 'ProjectionCurve' and a RateSpec or IRDatCurve object. For
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more information on creating a RateSpec, see intenvset and for more information on
creating an IRDataCurve object, see IRDataCurve.
Data Types: struct

MaturityInterpMethod — Method used when interpolating floor volatilities on
each floorlet maturity date before stripping floorlet volatilities
linear (default) | character vector with values: linear, nearest, next, previous,
spline, pchip

Method used when interpolating the floor volatilities on each floorlet maturity date before
stripping the floorlet volatilities, specified as the comma-separated pair consisting of
'MaturityInterpMethod' and a character vector with values: linear, nearest,
next, previous, spline, or pchip. The definitions of the methods are:

• linear — Linear interpolation. The interpolated value at a query point is based on
linear interpolation of the values at neighboring grid points in each respective
dimension. This is the default interpolation method.

• nearest — Nearest neighbor interpolation. The interpolated value at a query point is
the value at the nearest sample grid point.

• next — Next neighbor interpolation. The interpolated value at a query point is the
value at the next sample grid point.

• previous — Previous neighbor interpolation. The interpolated value at a query point
is the value at the previous sample grid point.

• spline — Spline interpolation using not-a-knot end conditions. The interpolated value
at a query point is based on a cubic interpolation of the values at neighboring grid
points in each respective dimension.

• pchip — Shape-preserving piecewise cubic interpolation. The interpolated value at a
query point is based on a shape-preserving piecewise cubic interpolation of the values
at neighboring grid points.

For more information on interpolation methods, see interp1.

Note Constant extrapolation is used for volatilities falling outside the range of user-
supplied data.

Data Types: char
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Limit — Upper bound of implied volatility search interval
10 (or 1000% per annum) (default) | positive scalar decimal

Upper bound of implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a positive scalar decimal.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-5 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair
consisting of 'Tolerance' and a positive scalar.
Data Types: double

OmitFirstFloorlet — Flag indicating whether to omit the first floorlet payment
in the floors
true always omit the first floorlet (default) | logical

Flag indicating whether to omit the first floorlet payment in the floors, specified as the
comma-separated pair consisting of 'OmitFirstFloorlet' and a scalar logical. For
example, the first floorlet payment is omitted in spot-starting floors, while it is included in
forward-starting floors. Setting this logical to false means to always include the first
floorlet.

In general, “spot lag” is the delay between the fixing date and the effective date for
LIBOR-like indices. It also determines whether a floor is spot-starting or forward-starting
(Corb, 2012). Floors are considered to be spot-starting if they settle within “spot lag”
business days after the valuation date. Those that settle later are considered to be
forward-starting. The first floorlet is omitted if floors are spot-starting, while it is included
if they are forward-starting (Tuckman, 2012).
Data Types: logical

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model),
specified as the comma-separated pair consisting of 'Shift' and a scalar positive
decimal value. Set this parameter to a positive shift in decimals to add a positive shift to
the forward rate and strike, which effectively sets a negative lower bound for the forward
rate and strike. For example, a Shift value of 0.01 is equal to a 1% shift.
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Data Types: double

Output Arguments
FloorletVols — Stripped floorlet volatilities
vector in decimals

Stripped floorlet volatilities, returned as a NFloorletVols-by-1 vector in decimals.

Note floorvolstrip may output NaNs for some floorlet volatilities. This could be the
case if no volatility matches the floorlet price implied by the user-supplied floor data.

FloorletPaymentDates — Payment dates
vector in date numbers

Payment dates (in date numbers), returned as a NFloorletVols-by-1 vector
corresponding to FloorletVols.

FloorStrikes — Floor strikes
decimals

Floor strikes, returned as a NFloorletVols-by-1 vector of strikes in decimals for floors
maturing on corresponding FloorletPaymentDates.

Limitations
When bootstrapping the floorlet volatilities from ATM floors, the floorlet volatilities
stripped from the shorter maturity floors are reused in the longer maturity floors without
adjusting for the difference in strike. floorvolstrip follows the simplified approach
described in Gatarek, 2006.
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Definitions

ATM
A cap or floor is at-the-money (ATM) if its strike is equal to the forward swap rate.

This is the fixed rate of a swap that makes the present value of the floating leg equal to
that of the fixed leg. In comparison, a caplet or floorlet is ATM if its strike is equal to the
forward rate (not the forward swap rate). In general (except over a single period), the
forward rate is not necessarily equal to the forward swap rate. So, to be precise, the
individual caplets in an ATM cap have slightly different moneyness and are actually only
approximately ATM (Alexander, 2003). In addition, note that swap rate changes with swap
maturity. Similarly, the ATM cap strike also changes with cap maturity, so the ATM cap
strikes need to be computed for each cap maturity before stripping the caplet volatilities.
As a result, when stripping the caplet volatilities from the ATM caps with increasing
maturities, the ATM strikes of the consecutive caps are different.

References
[1] Alexander, C. “Common Correlation and Calibrating the Lognormal Forward Rate

Model.” Wilmott Magazine, 2003.

[2] Corb, H. “Interest Rate Swaps and Other Derivatives.” Columbia Business School
Publishing, 2012.

[3] Gatarek, D.P., Bachert, and R. Maksymiuk. The LIBOR Market Model in Practice.
Wiley, 2006.

[4] Tuckman, B., Serrat, A. Fixed Income Securities: Tools for Today’s Markets. Wiley
Finance, 2012.

See Also
capvolstrip | floorbyblk | floorbynormal | intenvset | interp1

Topics
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-27
“Work with Negative Interest Rates” on page 2-22
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External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2016a
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gapbybls
Determine price of gap digital options using Black-Scholes model

Syntax
Price =
gapbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,StrikeThr
eshold)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors with values of

'call' or 'put'.
Strike NINST-by-1 vector of payoff strike price values.
StrikeThreshold NINST-by-1 vector of strike values that determine if the option

pays off.

Description
Price =
gapbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,StrikeThr
eshold) computes gap option prices using the Black-Scholes option pricing model.

Price is a NINST-by-1 vector of expected option prices.
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Examples

Compute Gap Option Prices Using the Black-Scholes Option Pricing Model

This example shows how to compute gap option prices using the Black-Scholes option
pricing model. Consider a gap call and put options on a nondividend paying stock with a
strike of 57 and expiring on January 1, 2008. On July 1, 2008 the stock is trading at 50.
Using this data, compute the price of the option if the risk-free rate is 9%, the strike
threshold is 50, and the volatility is 20%.

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Compounding = -1; 
Rates = 0.09;
% calculate the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);
% define the StockSpec
AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);
% define the call and put options
OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;
% calculate the price
Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)

Pgap = 2×1

   -0.0053
    4.4866

See Also
assetbybls | cashbybls | gapsensbybls | supersharebybls
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Topics
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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gapsensbybls
Determine price or sensitivities of gap digital options using Black-Scholes model

Syntax
PriceSens =
gapsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Strik
eThreshold)
PriceSens =
gapsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Strik
eThreshold,OutSpec)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors with values of

'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
StrikeThreshold NINST-by-1 vector of strike values that determine if the option

pays off.
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OutSpec (Optional) All optional inputs are specified as matching
parameter name-value pairs. The parameter name is specified
as a character vector, followed by the corresponding parameter
value. You can specify parameter name-value pairs may in any
order. Names are case-insensitive and partial matches are
allowed provided no ambiguities exist. Valid parameter names
are:

• NOUT-by-1 or 1-by-NOUT cell array of character vectors
indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lambda';
'Rho'} specifies that the output should be Price, Lambda,
and Rho, in that order.

To invoke from a function: [Price, Lambda, Rho] =
gapsensbybls(..., 'OutSpec', {'Price',
'Lambda', 'Rho'})

OutSpec = {'All'} specifies that the output should be
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in
that order. This is the same as specifying OutSpec as
OutSpec = {'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description
PriceSens =
gapsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Strik
eThreshold) computes gap option prices using the Black-Scholes option pricing model.

PriceSens =
gapsensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,Strik
eThreshold,OutSpec) includes an OutSpec argument defined as parameter/value
pairs, and computes gap option prices or sensitivities using the Black-Scholes option
pricing model.
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PriceSens is a NINST-by-1 vector of expected option prices or sensitivities.

Examples

Compute Gap Option Prices and Sensitivities Using the Black-Scholes Option
Pricing Model

This example shows how to compute gap option prices and sensitivities using the Black-
Scholes option pricing model. Consider a gap call and put options on a nondividend
paying stock with a strike of 57 and expiring on January 1, 2008. On July 1, 2008 the
stock is trading at 50. Using this data, compute the price and sensitivity of the option if
the risk-free rate is 9%, the strike threshold is 50, and the volatility is 20%.

Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Compounding = -1; 
Rates = 0.09;
%create the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', 1);
% define the StockSpec
AssetPrice = 50;
Sigma = .2;
StockSpec = stockspec(Sigma, AssetPrice);
% define the call and put options
OptSpec = {'call'; 'put'};
Strike = 57;
StrikeThreshold = 50;
% compute the price
Pgap = gapbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, StrikeThreshold)

Pgap = 2×1

   -0.0053
    4.4866

% compute the gamma and delta
OutSpec = {'gamma'; 'delta'};
[Gamma ,Delta] = gapsensbybls(RateSpec, StockSpec, Settle, Maturity,... 
OptSpec, Strike, StrikeThreshold, 'OutSpec', OutSpec)
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Gamma = 2×1

    0.0724
    0.0724

Delta = 2×1

    0.2852
   -0.7148

See Also
gapbybls

Topics
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a

 gapsensbybls

11-747



hedgeopt
Allocate optimal hedge for target costs or sensitivities

Syntax
[PortSens,PortCost,PortHolds] =
hedgeopt(Sensitivities,Price,CurrentHolds,FixedInd,NumCosts,TargetCo
st,TargetSens,ConSet)

Arguments
Sensitivities Number of instruments (NINST) by number of sensitivities

(NSENS) matrix of dollar sensitivities of each instrument. Each
row represents a different instrument. Each column represents
a different sensitivity.

Price NINST-by-1 vector of portfolio instrument unit prices.
CurrentHolds NINST-by-1 vector of contracts allocated to each instrument.
FixedInd (Optional) Number of fixed instruments (NFIXED)-by-1 vector of

indices of instruments to hold fixed. For example, to hold the
first and third instruments of a 10 instrument portfolio
unchanged, set FixedInd = [1 3]. Default = [], no
instruments held fixed.

NumCosts (Optional) Number of points generated along the cost frontier
when a vector of target costs (TargetCost) is not specified.
The default is 10 equally spaced points between the point of
minimum cost and the point of minimum exposure. When
specifying TargetCost, enter NumCosts as an empty matrix
[].
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TargetCost (Optional) Vector of target cost values along the cost frontier. If
TargetCost is empty, or not entered, hedgeopt evaluates
NumCosts equally spaced target costs between the minimum
cost and minimum exposure. When specified, the elements of
TargetCost should be positive numbers that represent the
maximum amount of money the owner is willing to spend to
rebalance the portfolio.

TargetSens (Optional) 1-by-NSENS vector containing the target sensitivity
values of the portfolio. When specifying TargetSens, enter
NumCosts and TargetCost as empty matrices [].

ConSet (Optional) Number of constraints (NCONS) by number of
instruments (NINST) matrix of additional conditions on the
portfolio reallocations. An eligible NINST-by-1 vector of
contract holdings, PortWts, satisfies all the inequalities
A*PortWts <= b, where A = ConSet(:,1:end-1) and b =
ConSet(:,end).

Notes The user-specified constraints included in ConSet may be created with the
functions pcalims or portcons. However, the portcons default PortHolds positivity
constraints are typically inappropriate for hedging problems since short-selling is usually
required.

NPOINTS, the number of rows in PortSens and PortHolds and the length of PortCost,
is inferred from the inputs. When the target sensitivities, TargetSens, is entered,
NPOINTS = 1; otherwise NPOINTS = NumCosts, or is equal to the length of the
TargetCost vector.

Not all problems are solvable (for example, the solution space may be infeasible or
unbounded, or the solution may fail to converge). When a valid solution is not found, the
corresponding rows of PortSens, PortHolds, and the elements of PortCost are
padded with NaNs as placeholders.

Description
[PortSens,PortCost,PortHolds] =
hedgeopt(Sensitivities,Price,CurrentHolds,FixedInd,NumCosts,TargetCo
st,TargetSens,ConSet) allocates an optimal hedge by one of two criteria:
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• Minimize portfolio sensitivities (exposure) for a given set of target costs.
• Minimize the cost of hedging a portfolio given a set of target sensitivities.

Hedging involves the fundamental tradeoff between portfolio insurance and the cost of
insurance coverage. This function lets investors modify portfolio allocations among
instruments to achieve either of the criteria. The chosen criterion is inferred from the
input argument list. The problem is cast as a constrained linear least-squares problem.

PortSens is a number of points (NPOINTS-by-NSENS) matrix of portfolio sensitivities.
When a perfect hedge exists, PortSens is zeros. Otherwise, the best hedge possible is
chosen.

PortCost is a 1-by-NPOINTS vector of total portfolio costs.

PortHolds is an NPOINTS-by-NINST matrix of contracts allocated to each instrument.
These are the reallocated portfolios.

See Also
hedgeslf | lsqlin | pcalims | portcons | portopt

Topics
“Portfolio Creation” on page 1-8
“Hedging with hedgeopt” on page 4-5
“Instrument Constructors” on page 1-20
“Hedging” on page 4-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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hedgeslf
Self-financing hedge

Syntax
[PortSens,PortValue,PortHolds] =
hedgeslf(Sensitivities,Price,CurrentHolds,FixedInd,ConSet)

Arguments
Sensitivities Number of instruments (NINST) by number of sensitivities

(NSENS) matrix of dollar sensitivities of each instrument. Each
row represents a different instrument. Each column represents
a different sensitivity.

Price NINST-by-1 vector of instrument unit prices.
CurrentHolds NINST-by-1 vector of contracts allocated in each instrument.
FixedInd (Optional) Empty or number of fixed instruments (NFIXED-by-1)

vector of indices of instruments to hold fixed. The default is
FixedInd = 1; the holdings in the first instrument are held
fixed. If NFIXED instruments will not be changed, enter all their
locations in the portfolio in a vector. If no instruments are to be
held fixed, enter FixedInd = [].

ConSet (Optional) Number of constraints (NCONS)-by-NINST matrix of
additional conditions on the portfolio reallocations. An eligible
NINST-by-1 vector of contract holdings, PortHolds, satisfies
all the inequalities for A*PortHolds <= b, where A =
ConSet(:,1:end-1) and b = ConSet(:,end).

Description
[PortSens,PortValue,PortHolds] =
hedgeslf(Sensitivities,Price,CurrentHolds,FixedInd,ConSet) allocates a
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self-financing hedge among a collection of instruments. hedgeslf finds the reallocation
in a portfolio of financial instruments that hedges the portfolio against market moves and
that is closest to being self-financing (maintaining constant portfolio value). By default the
first instrument entered is hedged with the other instruments.

PortSens is a 1-by-NSENS vector of portfolio dollar sensitivities. When a perfect hedge
exists, PortSens is zeros. Otherwise, the best possible hedge is chosen.

PortValue is the total portfolio value (scalar). When a perfectly self-financing hedge
exists, PortValue is equal to dot(Price, CurrentWts) of the initial portfolio.

PortHolds is an NINST-by-1 vector of contracts allocated to each instrument. This is the
reallocated portfolio.

Notes

• The constraints PortHolds(FixedInd) = CurrentHolds(FixedInd) are
appended to any constraints passed in ConSet. Pass FixedInd = [] to specify all
constraints through ConSet.

• The default constraints generated by portcons are inappropriate, since they require
the sum of all holdings to be positive and equal to one.

• hedgeself first tries to find the allocations of the portfolio that make it closest to
being self-financing, while reducing the sensitivities to 0. If no solution is found, it
finds the allocations that minimize the sensitivities. If the resulting portfolio is self-
financing, PortValue is equal to the value of the original portfolio.

Examples
Example 1. Perfect sensitivity cannot be reached.

Sens = [0.44  0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0)

PortSens =

    0.0000
    0.3200
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PortValue =

    0.7600

PortHolds =

    1.0000
   -0.4400

Example 2. Constraints are in conflict.
Sens = [0.44  0.32; 1.0 0.0];
Price = [1.2; 1.0];
W0 = [1; 1];
ConSet = pcalims([2 2])

% O.K. if nothing fixed.

[PortSens, PortValue, PortHolds]= hedgeslf(Sens, Price, W0,... 
[], ConSet)

PortSens =

    2.8800
    0.6400

PortValue =

    4.4000

PortHolds =

     2
     2

% W0(1) is not greater than 2.

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,... 
1, ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints implied by ConSet and 
by fixing the weight of instruments(s): 1

Example 3. Constraints are impossible to meet.
Sens = [0.44  0.32; 1.0 0.0];
Price = [1.2; 1.0];
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W0 = [1; 1];
ConSet = pcalims([2 2],[1 1]);

[PortSens, PortValue, PortHolds] = hedgeslf(Sens, Price, W0,... 
[],ConSet)

??? Error using ==> hedgeslf
Overly restrictive allocation constraints specified in ConSet

See Also
hedgeopt | lsqlin | portcons

Topics
“Portfolio Creation” on page 1-8
“Self-Financing Hedges with hedgeslf” on page 4-12
“Instrument Constructors” on page 1-20
“Hedging” on page 4-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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hjmprice
Instrument prices from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = hjmprice(HJMTree,InstSet)
[Price,PriceTree] = hjmprice( ___ ,Options)

Description
[Price,PriceTree] = hjmprice(HJMTree,InstSet) computes arbitrage-free
prices for instruments using an interest-rate tree created with hjmtree. All instruments
contained in a financial instrument variable, InstSet, are priced.

hjmprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd to construct defined types.

[Price,PriceTree] = hjmprice( ___ ,Options) adds an optional input argument
for Options.

Examples

Price the Cap and Bond Instruments Contained in an Instrument Set

Load the HJM tree and instruments from the data file deriv.mat.
load deriv.mat; 
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HJMSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30       
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Use hjmprice to price the instruments.

[Price, PriceTree] = hjmprice(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In checktree (line 289)
  In hjmprice (line 85) 

Price =

   98.7159
   97.5280
    6.2831

PriceTree = 

    FinObj: 'HJMPriceTree'
     PBush: {[3x1 double]  [3x1x2 double]  [3x2x2 double]  [3x4x2 double]  [3x8 double]}
    AIBush: {[3x1 double]  [3x1x2 double]  [3x2x2 double]  [3x4x2 double]  [3x8 double]}
      tObs: [0 1 2 3 4]

You can use treeviewer to see the prices of these three instruments along the price
tree.

treeviewer
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Price Multi-Stepped Coupon Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
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             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create a portfolio of stepped coupon bonds with different maturities.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}
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Compute the price of the stepped coupon bonds.

PHJM = hjmprice(HJMT, ISet)

PHJM = 4×1

  100.6763
  100.7368
  100.9266
  101.0115

Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create an instrument portfolio of three stepped callable bonds and three stepped vanilla
bonds and display the instrument portfolio.
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Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year

% Bonds with embedded option 
ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);
                    
% Vanilla bonds 
ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RS,HJMTimeSpec)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
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     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Price the instrument set using hjmprice.

PHJM = hjmprice(HJMT, ISet)

PHJM = 6×1

  100.3682
  100.1557
   99.9232
  100.7368
  100.9266
  101.0115

The first three rows correspond to the price of the stepped callable bonds and the last
three rows correspond to the price of the stepped vanilla bonds.

Compute the Price of a Portfolio of Instruments

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
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         EndDates: [4x1 double]
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create an instrument portfolio with two range notes and a floating rate note with the
following data and display the results:

Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Second Range Note
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

% Create an InstSet
InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
 

The data to build the tree is as follows:

Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
HJMTS = hjmtimespec(ValuationDate, MaTree);
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HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVS, RS, HJMTS)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734504 734869 735235 735600]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

Price the portfolio.

Price = hjmprice(HJMT, InstSet)

Price = 3×1

   91.1555
   90.6656
  105.5147

Create a Float-Float Swap and Price with hjmprice

Use instswap to create a float-float swap and price the swap with hjmprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = hjmvolspec('Constant', .2);
TimeSpec = hjmtimespec(today,cfdates(today,datemnth(today,60),1));
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);
hjmprice(HJMTree,IS)

ans = -4.3220
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Price Multiple Swaps with hjmprice

Use instswap to create multiple swaps and price the swaps with hjmprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = hjmvolspec('Constant', .2);
TimeSpec = hjmtimespec(today,cfdates(today,datemnth(today,60),1));
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);
hjmprice(HJMTree,IS)

ans = 3×1

    4.3220
   -4.3220
   -0.2701

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
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Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

Related single-type pricing functions are:

• bondbyhjm — Price a bond from an HJM tree.
• capbyhjm — Price a cap from an HJM tree.
• cfbyhjm — Price an arbitrary set of cash flows from an HJM tree.
• fixedbyhjm — Price a fixed-rate note from an HJM tree.
• floatbyhjm — Price a floating-rate note from an HJM tree.
• floorbyhjm — Price a floor from an HJM tree.
• optbndbyhjm — Price a bond option from an HJM tree.
• optembndbyhjm — Price a bond with embedded option by an HJM tree.
• optfloatbybdt — Price a floating-rate note with an option from an HJM tree.
• optemfloatbybdt — Price a floating-rate note with an embedded option from an

HJM tree.
• rangefloatbyhjm — Price range floating note using an HJM tree.
• swapbyhjm — Price a swap from an HJM tree.
• swaptionbyhjm — Price a swaption from an HJM tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
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• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
hjmsens | hjmtree | hjmvolspec | instadd | intenvprice | intenvsens

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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hjmsens
Instrument prices and sensitivities from Heath-Jarrow-Morton interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = hjmsens(HJMTree,InstSet)
[Delta,Gamma,Vega,Price] = hjmsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = hjmsens(HJMTree,InstSet) computes instrument
sensitivities and prices for instruments using an interest-rate tree created with the
hjmtree function. All sensitivities are returned as dollar sensitivities. To find the per-
dollar sensitivities, divide by the respective instrument price.

hjmsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = hjmsens( ___ ,Options) adds an optional input
argument for Options.

Examples

Compute Instrument Sensitivities Using an HJM Interest-Rate Tree

Load the tree and instruments from the deriv.mat data file. Compute Delta and Gamma
for the cap and bond instruments contained in the instrument set.

load deriv.mat; 
HJMSubSet = instselect(HJMInstSet,'Type', {'Bond', 'Cap'}); 
instdisp(HJMSubSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
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2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.03   01-Jan-2000    01-Jan-2004    1        NaN   NaN       3% Cap 30      
 

Compute the Delta and Gamma for the cap and bond instruments.

[Delta, Gamma] = hjmsens(HJMTree, HJMSubSet)

Warning: Not all cash flows are aligned with the tree. Result will be approximated.

Delta = 3×1

 -272.6462
 -347.4315
  294.9700

Gamma = 3×1
103 ×

    1.0299
    1.6227
    6.8526

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
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Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in
interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate,
returned as a NINST-by-1 vector of deltas. Delta is computed by finite differences in calls
to hjmtree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in
interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate,
returned as a NINST-by-1 vector of gammas. Gamma is computed by finite differences in
calls to hjmtree.

Note Gamma is calculated based on yield shifts of 100 basis points.

Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as

a NINST-by-1 vector of vegas. Volatility is s t T,( )  of the interest rate. Vega is computed
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by finite differences in calls to hjmtree. For information on the volatility process, see
hjmvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

See Also
hjmprice | hjmtree | hjmvolspec | instadd

Topics
“Computing Instrument Sensitivities” on page 2-108
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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hjmtimespec
Specify time structure for Heath-Jarrow-Morton interest-rate tree

Syntax
TimeSpec = hjmtimespec(ValuationDate,Maturity)
TimeSpec = hjmtimespec( ___ ,Compounding)

Description
TimeSpec = hjmtimespec(ValuationDate,Maturity) sets the number of levels
and node times for a hjmtree and determines the mapping between dates and time for
rate quoting.

TimeSpec = hjmtimespec( ___ ,Compounding) adds the optional argument
Compounding.

Examples

Set the Number of Levels and Node Times for an HJM Tree

This example shows how to specify an eight-period tree with semiannual nodes (every six
months) and use exponential compounding to report rates.

Compounding = -1;
ValuationDate = '15-Jan-1999';
Maturity = datemnth(ValuationDate, 6*(1:8)');
TimeSpec = hjmtimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 730135
         Maturity: [8x1 double]
      Compounding: -1
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            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector

Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial
date numbers or date character vectors. Cash flows with these maturities fall on tree
nodes. Maturity should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when
annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized,
specified as a scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate,
and T is the time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a
number of days elapsed computed by basis.

• If Compounding = −1:

Disc = exp(-T*Z), where T is time in years.
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Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for hjmtree
structure

Specification for the time layout for hjmtree, returned as a structure. The state
observation dates are [ValuationDate; Maturity(1:end-1)]. Because a forward
rate is stored at the last observation, the tree can value cash flows out to Maturity(end).

See Also
hjmtree | hjmvolspec

Topics
“Specifying the Time Structure (TimeSpec)” on page 2-85
“Creating Trees” on page 2-87
“Examining Trees” on page 2-88
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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hjmtree
Build Heath-Jarrow-Morton interest-rate tree

Syntax
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec)

Description
HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec) creates a structure containing
time and forward-rate information on a bushy tree.

Examples

Create a HJMTree

Using the data provided, create a HJM volatility specification (using hjmvolspec), rate
specification (using intenvset), and tree time layout specification (using
hjmtimespec). Then use these specifications to create a HJM tree using hjmtree.

Compounding = 1;
ValuationDate = '01-01-2000';
StartDate = ['01-01-2000'; '01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'];
EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005'];
Rates = [.1; .11; .12; .125; .13];
Volatility = [.2; .19; .18; .17; .16];
CurveTerm = [1; 2; 3; 4; 5]; 

HJMVolSpec = hjmvolspec('Stationary', Volatility , CurveTerm);

RateSpec = intenvset('Compounding', Compounding,...
                     'ValuationDate', ValuationDate,...
                     'StartDates', StartDate,...
                     'EndDates', EndDates,...
                     'Rates', Rates);
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HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [730486 730852 731217 731582 731947]
        TFwd: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [4]}
      CFlowT: {[5x1 double]  [4x1 double]  [3x1 double]  [2x1 double]  [5]}
     FwdTree: {1x5 cell}

Use treeviewer to observe the tree you have created.

treeviewer(HJMTree)
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Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec output obtained from
hjmvolspec. VolSpec sets the number of factors and the rules for computing the

volatility s t T,( )  for each factor.
Data Types: struct
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RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from
hjmtimespec. The TimeSpec defines the observation dates of the HJM tree and the
Compounding rule for date to time mapping and price-yield formulas.
Data Types: struct

Output Arguments
HJMTree — Time and interest-rate information of a bushy tree
structure

Time and interest-rate information of a bushy tree, returned as a structure.

See Also
hjmprice | hjmtimespec | hjmvolspec | intenvset

Topics
“Creating Trees” on page 2-87
“Examining Trees” on page 2-88
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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hjmvolspec
Specify Heath-Jarrow-Morton interest-rate volatility process

Syntax
VolSpec = hjmvolspec(Factor,Sigma_0)
VolSpec = hjmvolspec(Factor,CurveVol,CurveTerm)
VolSpec = hjmvolspec(Factor,Sigma_0,Lambda)
VolSpec = hjmvolspec(Factor,Sigma_0,CurveDecay,CurveTerm)
VolSpec = hjmvolspec(Factor,CurveProp,CurveTerm,MaxSpot)

Description
VolSpec = hjmvolspec(Factor,Sigma_0) creates a Constant volatility (Ho-Lee)
structure for hjmtree by specifying the Factor as 'Constant'.

VolSpec = hjmvolspec(Factor,CurveVol,CurveTerm) creates a Stationary
volatility structure for hjmtree by specifying the Factor as 'Stationary'.

VolSpec = hjmvolspec(Factor,Sigma_0,Lambda) creates an Exponential volatility
structure for hjmtree by specifying the Factor as 'Exponential'.

VolSpec = hjmvolspec(Factor,Sigma_0,CurveDecay,CurveTerm) creates a
Vasicek, Hull-White volatility structure for hjmtree by specifying the Factor as
'Vasicek'.

VolSpec = hjmvolspec(Factor,CurveProp,CurveTerm,MaxSpot) creates a
Nearly proportional stationary volatility structure for hjmtree by specifying the Factor
as 'Proportional'.

Examples
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Compute the VolSpec Structure to Specify a Proportional Volatility Model for
HJMTree

This example shows how to compute the VolSpec structure to specify the volatility model
for hjmtree when volatility is single-factor proportional.

CurveProp = [0.11765; 0.08825; 0.06865];
CurveTerm = [1; 2; 3];
VolSpec = hjmvolspec('Proportional', CurveProp, CurveTerm, 1e6)

VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Proportional'}
      FactorArgs: {{1x3 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

Compute the VolSpec Structure to Specify an Exponential Volatility Model for
HJMTree

This example shows how to compute the VolSpec structure to specify the volatility model
for hjmtree when volatility is two-factor exponential and constant.

VolSpec = hjmvolspec('Exponential', 0.1, 1, 'Constant', 0.2)

VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Exponential'  'Constant'}
      FactorArgs: {{1x2 cell}  {1x1 cell}}
      SigmaShift: 0
      NumFactors: 2
       NumBranch: 3
         PBranch: [0.2500 0.2500 0.5000]
     Fact2Branch: [2x3 double]
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Input Arguments
Factor — Volatility factor
character vector with value of 'Constant', 'Stationary', 'Exponential',
'Vasicek', or 'Proportional'

Volatility factor, specified as a character vector with one of the following values:

• 'Constant'

s t T,( )  = Sigma_0
• 'Stationary'

s t T,( )  = Vol(T- t) = Vol(Term)
• 'Exponential'

s t T,( )  = Sigma_0*exp(-Lambda*(T-t))
• 'Vasicek'

s t T,( )  = Sigma_0*exp(-Decay(T-t))
• 'Proportional'

s t T,( )  = Prop(T-t)*max(SpotRate(t),MaxSpot)

Note You can specify more than one Factor by concatenating Factor names and their
associated parameters.

Data Types: char

Sigma_0 — Base volatility over a unit time
numeric

Base volatility over a unit, specified as a scalar numeric value.
Data Types: double
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Lambda — Decay factor
numeric

Decay factor, specified as a scalar numeric value.
Data Types: double

CurveVol — Number of curve Vol values at sample points
numeric vector

Number of curve Vol values at sample points, specified as a NCURVES-by1 vector.
Data Types: double

CurveTerm — Number of curve Term values at sample points
numeric vector

Number of curve Term values at sample points, specified as a NCURVES-by-1 vector.
Data Types: double

CurveDecay — Number of curve Decay values at sample points
numeric vector

Number of curve Decay values at sample points, specified as a NPOINTS-by-1 vector.
Data Types: double

CurveProp — Number of curve Prop values at sample points
numeric vector

Number of curve Prop values at sample points, specified as a NCURVES-by-1 vector.
Data Types: double

MaxSpot — Maximum spot rate
numeric

Maximum spot rate, specified as a scalar numeric value.
Data Types: double
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Output Arguments
VolSpec — Specification for the volatility model for bktree
structure

Structure specifying the volatility model for bktree. hjmvolspec defines an HJM
forward-rate volatility process based on the specified input Factor.

Definitions

Volatility Process

The volatility process is s t T,( ) , where t is the observation time and T is the starting time
of a forward rate.

In a stationary process, the volatility term is T–t. Multiple factors can be specified
sequentially.

The time values T, t, and Term are in coupon interval units specified by the Compounding
input of hjmtimespec. For instance if Compounding = 2, Term = 1 is a semiannual
period (six months).

See Also
hjmtimespec | hjmtree

Topics
“Specifying the Volatility Model (VolSpec)” on page 2-82
“Creating Trees” on page 2-87
“Examining Trees” on page 2-88
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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HullWhite1F
Create Hull-White one-factor model

Description
The Hull-White one-factor model is specified using the zero curve, alpha, and sigma
parameters.

Specifically, the HullWhite1F model is defined using the following equations:

dr t a t r dt t dW= - +[ ( ) ( ) ] ( )q s

where:

dr is the change in the short-term interest rate over a small interval.

r is the short-term interest rate.

Θ(t) is a function of time determining the average direction in which r moves, chosen such
that movements in r are consistent with today's zero coupon yield curve.

α is the mean reversion rate.

dt is a small change in time.

σ is the annual standard deviation of the short rate.

W is the Brownian motion.

Creation

Syntax
HW1F = HullWhite1F(ZeroCurve,Alpha,Sigma)
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Description
HW1F = HullWhite1F(ZeroCurve,Alpha,Sigma) creates a HullWhite1F (HW1F)
object using the required arguments to set the Properties on page 11-784.

Properties
ZeroCurve — Zero curve
IRDataCurve object | RateSpec

Zero curve, specified as an output from IRDataCurve or a RateSpec that is obtained
from intenvset. This is the zero curve used to evolve the path of future interest rates.
Data Types: object | struct

Alpha — Mean reversion
numeric

Mean reversion, specified either as a scalar or function handle which takes time as input
and returns a scalar mean reversion value.
Data Types: double

Sigma — Volatility
numeric

Volatility, specified either as a scalar or function handle which takes time as input and
returns a scalar mean volatility.
Data Types: double

Object Functions
simTermStructs Simulate term structures for Hull-White one-factor model

Examples
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Create a Hull-White One-Factor Model Using an IRDataCurve

Create a Hull-White one-factor model using an IRDataCurve.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
    
alpha = .1;
sigma = .01;
 
HW1F = HullWhite1F(irdc,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Use the simTermStructs method with the HullWhite1F model to simulate term
structures.

SimPaths = simTermStructs(HW1F, 10,'nTrials',100);

Create a Hull-White One-Factor Model Using a RateSpec

Create a Hull-White one-factor model using a RateSpec.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);

alpha = .1;
sigma = .01;
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HW1F = HullWhite1F(RateSpec,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Use the simTermStructs method with the HullWhite1F model to simulate term
structures.

SimPaths = simTermStructs(HW1F, 10,'nTrials',100);

Simulate the Price of a Bond Using a Hull-White One-Factor Model Until the
Bond's Maturity

Define the zero curve data.

Settle = datenum('4-Apr-2016');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
ZeroDates = datemnth(Settle,ZeroTimes*12);
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, 'Rates', ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [8x1 double]
            Rates: [8x1 double]
         EndTimes: [8x1 double]
       StartTimes: [8x1 double]
         EndDates: [8x1 double]
       StartDates: 736424
    ValuationDate: 736424
            Basis: 0
     EndMonthRule: 1

Define the bond parameters.
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Maturity = datemnth(Settle,12*5);
CouponRate = 0;

Define the Hull-White parameters.

alpha = .1;
sigma = .01;
HW1F = HullWhite1F(RateSpec,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Define the simulation parameters.

nTrials = 100;
nPeriods = 12*5;
deltaTime = 1/12;
SimZeroCurvePaths = simTermStructs(HW1F, nPeriods,'nTrials',nTrials,'deltaTime',deltaTime);
SimDates = datemnth(Settle,1:nPeriods);

Preallocate and initialize for the simulation.

SimBondPrice = zeros(nPeriods+1,nTrials);
SimBondPrice(1,:,:) = bondbyzero(RateSpec,CouponRate,Settle,Maturity);
SimBondPrice(end,:,:) = 100;

Compute the bond values for each simulation date and path, note that you can vectorize
over the trial dimension.

for periodidx=1:nPeriods-1
    simRateSpec = intenvset('StartDate',SimDates(periodidx),'EndDates',...
        datemnth(SimDates(periodidx),ZeroTimes*12),'Rates',squeeze(SimZeroCurvePaths(periodidx+1,:,:)));
    SimBondPrice(periodidx+1,:) = bondbyzero(simRateSpec,CouponRate,SimDates(periodidx),Maturity);
end

plot([Settle SimDates],SimBondPrice)
datetick
ylabel('Bond Price')
xlabel('Simulation Dates')
title('Simulated Bond Price')
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Simulate the Total Return of a Bond Portfolio Until Maturity

Define the zero curve data.

Settle = datenum('4-Apr-2016');
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [-0.01 -0.009 -0.0075 -0.003 -0.002 -0.001 0.002 0.0075]';
ZeroDates = datemnth(Settle,ZeroTimes*12);
RateSpec = intenvset('StartDates', Settle,'EndDates', ZeroDates, 'Rates', ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: 2
             Disc: [8x1 double]
            Rates: [8x1 double]
         EndTimes: [8x1 double]
       StartTimes: [8x1 double]
         EndDates: [8x1 double]
       StartDates: 736424
    ValuationDate: 736424
            Basis: 0
     EndMonthRule: 1

Define the bond parameters for the five bonds in the portfolio.

Maturity = datemnth(Settle,12*5);  % All bonds have the same maturity
CouponRate = [0.035;0.04;0.02;0.015;0.042];  % Different coupon rates for the bonds
nBonds = length(CouponRate);

Define the Hull-White parameters.

alpha = .1;
sigma = .01;
HW1F = HullWhite1F(RateSpec,alpha,sigma)

HW1F = 
  HullWhite1F with properties:

    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Define the simulation parameters.

nTrials = 1000;
nPeriods = 12*5;
deltaTime = 1/12;
SimZeroCurvePaths = simTermStructs(HW1F, nPeriods,'nTrials',nTrials,'deltaTime',deltaTime);
SimDates = datemnth(Settle,1:nPeriods);

Preallocate and initialize for the simulation.

SimBondPrice = zeros(nPeriods+1,nBonds,nTrials);
SimBondPrice(1,:,:) = repmat(bondbyzero(RateSpec,CouponRate,Settle,Maturity)',[1 1 nTrials]);
SimBondPrice(end,:,:) = 100;
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[BondCF,BondCFDates,~,CFlowFlags] = cfamounts(CouponRate,Settle,Maturity);
BondCF(CFlowFlags == 4) = BondCF(CFlowFlags == 4) - 100;
SimBondCF = zeros(nPeriods+1,nBonds,nTrials);

Compute bond values for each simulation date and path. Note that you can vectorize over
the trial dimension.

for periodidx=1:nPeriods
    if periodidx < nPeriods
        simRateSpec = intenvset('StartDate',SimDates(periodidx),'EndDates',...
            datemnth(SimDates(periodidx),ZeroTimes*12),'Rates',squeeze(SimZeroCurvePaths(periodidx+1,:,:)));
        SimBondPrice(periodidx+1,:,:) = bondbyzero(simRateSpec,CouponRate,SimDates(periodidx),Maturity);
    end
    
    simidx = SimDates(periodidx) == BondCFDates;
    SimCF = zeros(1,nBonds);
    SimCF(any(simidx,2)) = BondCF(simidx);
    ReinvestRate = 1 + SimZeroCurvePaths(periodidx+1,1,:);
    SimBondCF(periodidx+1,:,:) = bsxfun(@times,bsxfun(@plus,SimBondCF(periodidx,:,:),SimCF),ReinvestRate);
end

Compute the total return series.

TotalCF = SimBondPrice + SimBondCF;

Assume the bond portfolio is equally weighted and plot the simulated bond portfolio
returns.

TotalCF = squeeze(sum(TotalCF,2));

TotRetSeries = bsxfun(@rdivide,TotalCF(2:end,:),TotalCF(1,:)) - 1;
plot(SimDates,TotRetSeries)
datetick
ylabel('Bond Portfolio Returns')
xlabel('Simulation Dates')
title('Simulated Bond Portfolio Returns')
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Definitions

Hull-White One-Factor Model
The Hull-White model is a single-factor, no-arbitrage yield curve model in which the short-
term rate of interest is the random factor or state variable.

No-arbitrage means that the model parameters are consistent with the bond prices
implied in the zero coupon yield curve.
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References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer

Finance, 2006.

[2] Hull, J. Options, Futures, and Other Derivatives. Prentice-Hall, 2011.

See Also
LiborMarketModel | LinearGaussian2F | hwcalbycap | hwcalbyfloor |
simTermStructs

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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simTermStructs
Simulate term structures for Hull-White one-factor model

Syntax
[ZeroRates,ForwardRates] = simTermStructs(HW1F,nPeriods)
[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value)

Description
[ZeroRates,ForwardRates] = simTermStructs(HW1F,nPeriods) simulates
future zero curve paths using a specified HullWhite1F object.

[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Simulate Term Structures for the HullWhite1F Model

Create a HW1F object.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

alpha = .1;
sigma = .01;
 
HW1F = HullWhite1F(irdc,alpha,sigma)

HW1F = 
  HullWhite1F with properties:
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    ZeroCurve: [1x1 IRDataCurve]
        Alpha: @(t,V)inAlpha
        Sigma: @(t,V)inSigma

Simulate the term structures for the specified HW1F object.

SimPaths = simTermStructs(HW1F, 10,'nTrials',100);

Input Arguments
HW1F — HullWhite1F object
object

HullWhite1F object, specified using the HW1F object created using HullWhite1F.
Data Types: object

nPeriods — Number of simulation periods
numeric

Number of simulation periods, specified as a numeric value. For example, to simulate 12
years with an annual spacing, specify 12 as the nPeriods input and 1 as the optional
deltaTime input (note that the default value for deltaTime is 1).
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [ZeroRates,ForwardRates] =
simTermStructs(HW1F,NPeriods,'nTrials',100,'deltaTime',dt)

deltaTime — Time step between nPeriods
1 (default) | numeric
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Time step between nPeriods measured in years, specified as the comma-separated pair
consisting of 'deltaTime' and a scalar numeric value. For example, to simulate 12 years
with an annual spacing, specify 12 as the nPeriods input and 1 as the optional
deltaTime input (note that the default value for deltaTime is 1).
Data Types: double

nTrials — Number of simulated trials
1 (default) | positive integer

Number of simulated trials (sample paths), specified as the comma-separated pair
consisting of 'nTrials' and a positive scalar integer value of nPeriods observations
each. If you do not specify a value for this argument, the default is 1, indicating a single
path of correlated state variables.
Data Types: double

antithetic — Flag indicating whether antithetic sampling is used to generate
Gaussian random variates
false (default) | positive integer

Flag indicating whether antithetic sampling is used to generate the Gaussian random
variates that drive the zero-drift, unit-variance rate Brownian vector dW(t), specified as
the comma-separated pair consisting of 'antithetic' and a Boolean scalar flag. For
details, see simBySolution.
Data Types: logical

Z — Direct specification of dependent random noise process
Gaussian variates generated by simBySolution function (default) | numeric

Direct specification of the dependent random noise process, specified as the comma-
separated pair consisting of 'Z' and a numeric value. The Z value is used to generate the
zero-drift, unit-variance rate Brownian vector dW(t) that drives the simulation. For
details, see simBySolution for the HWV model. If you do not specify a value for Z,
simBySolution generates Gaussian variates.
Data Types: double

Tenor — Maturities to compute at each time step
tenor of HullWhite1F object zero curve (default) | numeric vector

Maturities to compute at each time step, specified as the comma-separated pair
consisting of 'Tenor' and a numeric vector.
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Tenor enables you to choose a different set of rates to output than the underlying rates.
For example, you may want to simulate quarterly data but only report annual rates; this
can be done by specifying the optional input Tenor.
Data Types: double

Output Arguments
ZeroRates — Simulated zero-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials
matrix.

ForwardRates — Simulated forward-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials
matrix. The ForwardRates output is computed using the simulated short rates and by
using the model definition to recover the entire yield curve at each simulation date.

See Also
HullWhite1F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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hwcalbycap
Calibrate Hull-White tree using caps

Syntax
[Alpha,Sigma,OptimOut] = hwcalbycap(RateSpec,MarketStrike
MarketMaturity,MarketVolatility)
[Alpha,Sigma,OptimOut = hwcalbycap(RateSpec,MarketStrike
MarketMaturity,MarkeyVolatility,Strike,Settle,Maturity)
[Alpha,Sigma,OptimOut] = hwcalbycap( ___ ,Name,Value)

Description
[Alpha,Sigma,OptimOut] = hwcalbycap(RateSpec,MarketStrike
MarketMaturity,MarketVolatility) calibrates the Alpha (mean reversion) and
Sigma (volatility) using cap market data and the Hull-White model using the entire cap
surface.

The Hull-White calibration functions (hwcalbycap and hwcalbyfloor) support three
models: Black (default), Bachelier or Normal, and Shifted Black. For more information,
see the optional arguments for Shift and Model.

[Alpha,Sigma,OptimOut = hwcalbycap(RateSpec,MarketStrike
MarketMaturity,MarkeyVolatility,Strike,Settle,Maturity) estimates the
Alpha (mean reversion) and Sigma (volatility) using cap market data and the Hull-White
model to price a cap at a particular maturity/volatility using the additional optional input
arguments for Strike, Settle, and Maturity.

Strike, Settle, and Maturity arguments are specified to calibrate to a specific point
on the market volatility surface. If omitted, the calibration is performed across all the
market instruments

For an example of calibrating using the Hull-White model with Strike, Settle, and
Maturity input arguments, see “Calibrating Hull-White Model Using Market Data” on
page 2-111.
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[Alpha,Sigma,OptimOut] = hwcalbycap( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Calibrate Hull-White Model from Market Data Using the Entire Cap Volatility
Surface

This example shows how to use hwcalbycap input arguments for MarketStrike,
MarketMaturity, and MarketVolatility to calibrate the HW model using the entire
cap volatility surface.

Cap market volatility data covering two strikes over 12 maturity dates.
Reset = 4;
MarketStrike = [0.0590; 0.0790];

MarketMaturity = {'21-Mar-2008'; '21-Jun-2008'; '21-Sep-2008'; '21-Dec-2008';
    '21-Mar-2009'; '21-Jun-2009'; '21-Sep-2009'; '21-Dec-2009';
    '21-Mar-2010'; '21-Jun-2010'; '21-Sep-2010'; '21-Dec-2010'};
MarketMaturity = datenum(MarketMaturity);

MarketVolaltility = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802...
    0.1735 0.1757 0.1755 0.1755;
    0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794...
    0.1733 0.1751 0.1750 0.1745];

Plot market volatility surface.
[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);
figure;
surf(AllMaturities,AllStrikes,MarketVolaltility)
datetick
xlabel('Maturity')
ylabel('Strike')
zlabel('Volatility')
title('Market Volatility Data')
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Set interest rate term structure and create a RateSpec.
Settle = '21-Jan-2008';
Compounding = 4;
Basis = 0;
Rates= [0.0627; 0.0657; 0.0691; 0.0717; 0.0739; 0.0755; 0.0765; 0.0772;
    0.0779; 0.0783; 0.0786; 0.0789];
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008';...
    '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';....
    '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010'};
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
    'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding,...
    'Basis',Basis)

RateSpec = 

           FinObj: 'RateSpec'
      Compounding: 4
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 733428
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    ValuationDate: 733428
            Basis: 0
     EndMonthRule: 1

Calibrate Hull-White model from market data.
o = optimoptions('lsqnonlin','TolFun',1e-5,'Display','off');

[Alpha, Sigma] = hwcalbycap(RateSpec, MarketStrike, MarketMaturity,...
    MarketVolaltility, 'Reset', Reset,'Basis', Basis, 'OptimOptions', o)

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 3.
 
> In hwcalbycapfloor>optimizeOverCapSurface at 232
  In hwcalbycapfloor at 79
  In hwcalbycap at 81 

Alpha =

    0.0943

Sigma =

    0.0146

Compare with Black prices.
BlkPrices = capbyblk(RateSpec,AllStrikes(:), Settle, AllMaturities(:),...
    MarketVolaltility(:),'Reset',Reset,'Basis',Basis);

BlkPrices =

    0.0604
         0
    0.2729
    0.0006
    0.6498
    0.0412
    1.1121
    0.1426
    1.6426
    0.3131
    2.1869
    0.4998
    2.7056
    0.6894
    3.2124
    0.8815
    3.7311
    1.0686
    4.2246
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    1.2790
    4.7027
    1.4810
    5.1877
    1.6919

Setup Hull-White tree using calibrated parameters, alpha, and sigma.
VolDates    = EndDates;
VolCurve    = Sigma*ones(numel(EndDates),1);
AlphaDates  = EndDates;
AlphaCurve  = Alpha*ones(numel(EndDates),1);
HWVolSpec   = hwvolspec(Settle, VolDates, VolCurve, AlphaDates, AlphaCurve);

HWTimeSpec  = hwtimespec(Settle, EndDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000')

HWTree = 

      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.6593 1.6612 2.6593 3.6612 4.6593 5.6612 6.6593 7.6612 8.6593 9.6612 10.6593]
        dObs: [733428 733488 733580 733672 733763 733853 733945 734037 734128 734218 734310 734402]
      CFlowT: {1x12 cell}
       Probs: {1x11 cell}
     Connect: {1x11 cell}
     FwdTree: {1x12 cell}

Compute Hull-White prices based on the calibrated tree.
HWPrices = capbyhw(HWTree, AllStrikes(:), Settle, AllMaturities(:), Reset, Basis)

HWPrices =

    0.0601
         0
    0.2788
         0
    0.6580
    0.0518
    1.1254
    0.1485
    1.6591
    0.3123
    2.2076
    0.5022
    2.7319
    0.6883
    3.2459
    0.8774
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    3.7771
    1.0900
    4.2769
    1.2875
    4.7645
    1.4845
    5.2572
    1.6921

Plot Black prices against the calibrated Hull-White tree prices.
figure;
plot(AllMaturities(:), BlkPrices, 'or', AllMaturities(:), HWPrices, '*b');
datetick('x', 2)
xlabel('Maturity');
ylabel('Price');
title('Black and Calibrated (HW) Prices');
legend('Black Price', 'Calibrated HW Tree Price','Location', 'NorthWest');
grid on
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Calibrating Caplets Using the Normal (Bachelier) Model

This example shows how to use hwcalbycap to calibrate market data with the Normal
(Bachelier) model to price caplets. Use the Normal (Bachelier) model to perform
calibrations when working with negative interest rates, strikes, and normal implied
volatilities.

Consider a cap with these parameters:

Settle = 'Dec-30-2016';
Maturity = 'Dec-30-2019';
Strike = -0.001075;
Reset = 2;
Principal = 100;
Basis = 0;

The caplets and market data for this example are defined as:

capletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(capletDates')

ans = 6x11 char array
    '30-Jun-2017'
    '30-Dec-2017'
    '30-Jun-2018'
    '30-Dec-2018'
    '30-Jun-2019'
    '30-Dec-2019'

% Market data information
MarketStrike = [-0.0013; 0];
MarketMat =  {'30-Jun-2017';'30-Dec-2017';'30-Jun-2018'; '30-Dec-2018';'30-Jun-2019'; '30-Dec-2019'};
MarketVol = [0.184 0.2329 0.2398 0.2467 0.2906 0.3348;   % First row in table corresponding to Strike 1 
             0.217 0.2707 0.2760 0.2814 0.3160 0.3508];  % Second row in table corresponding to Strike 2

Define the RateSpec.

Rates= [-0.002210;-0.002020;-0.00182;-0.001343;-0.001075];
ValuationDate = 'Dec-30-2016';
EndDates = {'30-Jun-2017';'Dec-30-2017';'30-Jun-2018';'Dec-30-2018';'Dec-30-2019'};
Compounding = 2;
Basis = 0;
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RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Use hwcalbycap to find values for the volatility parameters Alpha and Sigma using the
Normal (Bachelier) model.

format short
o=optimoptions('lsqnonlin','TolFun',100*eps);
warning ('off','fininst:hwcalbycapfloor:NoConverge')
[Alpha, Sigma, OptimOut] = hwcalbycap(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o, 'model', 'normal')

Local minimum possible.

lsqnonlin stopped because the size of the current step is less than
the default value of the step size tolerance.

Alpha = 1.0000e-06

Sigma = 0.3384

OptimOut = struct with fields:
     resnorm: 1.5181e-04
    residual: [5x1 double]
    exitflag: 2
      output: [1x1 struct]
      lambda: [1x1 struct]
    jacobian: [5x2 double]

The OptimOut.residual field of the OptimOut structure is the optimization residual.
This value contains the difference between the Normal (Bachelier) caplets and those
calculated during the optimization. Use the OptimOut.residual value to calculate the
percentual difference (error) compared to Normal (Bachelier) caplet prices, and then
decide whether the residual is acceptable. There is almost always some residual, so
decide if it is acceptable to parameterize the market with a single value of Alpha and
Sigma.

Price the caplets using the market data and Normal (Bachelier) model to obtain the
reference caplet values. To determine the effectiveness of the optimization, calculate
reference caplet values using the Normal (Bachelier) formula and the market data. Note,
you must first interpolate the market data to obtain the caplets for calculation.
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MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');

[CapPrice, Caplets] = capbynormal(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Caplets = Caplets(2:end)'

Caplets = 5×1

    4.7392
    6.7799
    8.2609
    9.6136
   10.6455

Compare the optimized values and Normal (Bachelier) values, and display the results
graphically. After calculating the reference values for the caplets, compare the values
analytically and graphically to determine whether the calculated single values of Alpha
and Sigma provide an adequate approximation.

OptimCaplets = Caplets+OptimOut.residual;

disp('   ');

   

disp(' Bachelier   Calibrated Caplets');

 Bachelier   Calibrated Caplets

disp([Caplets        OptimCaplets])

    4.7392    4.7453
    6.7799    6.7851
    8.2609    8.2657
    9.6136    9.6112
   10.6455   10.6379

plot(MarketMatNum(2:end), Caplets, 'or', MarketMatNum(2:end), OptimCaplets, '*b');
datetick('x', 2)
xlabel('Caplet Maturity');
ylabel('Caplet Price');
ylim ([0 16]);

 hwcalbycap

11-805



title('Bachelier and Calibrated Caplets');
h = legend('Bachelier Caplets', 'Calibrated Caplets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on

Input Arguments
RateSpec — Interest-rate specification for initial rate curve
structure
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Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

MarketStrike — Market cap strike
vector

Market cap strike, specified as a NINST-by-1 vector.
Data Types: double

MarketMaturity — Market cap maturity date
vector

Market cap maturity dates, specified as a NINST-by-1 vector.
Data Types: double

MarketVolatility — Market flat volatilities
matrix

Market flat volatilities, specified as a NSTRIKES-by-NMATS matrix of market flat
volatilities, where NSTRIKES is the number of caplet strikes from MarketStrike and
NMATS is the caplet maturity dates from MarketMaturity.
Data Types: double

Strike — Rate at which cap is exercised
decimal scalar

(Optional) Rate at which the cap is exercised, specified as a decimal scalar value.
Data Types: single

Settle — Settlement date of the cap
serial date number | date character vector

(Optional) Settlement date of the cap, specified as a scalar serial date number or date
character.
Data Types: single | char

Maturity — Maturity date of the cap
serial date number | date character vector
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(optional) Maturity date of the cap, specified as scalar serial date number or date
character vector.
Data Types: single | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Alpha,Sigma,OptimOut] =
hwcalbycap(RateSpec,MarketStrike,MarketMaturity,MarketVolaltility,'R
eset',2,'Principal',100000,'Basis',3,'OptimOptions',o)

Reset — Frequency of payments per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of
'Reset' and a scalar numeric value.
Data Types: double

Principal — Notional principal amount
100 (default) | nonnegative integer

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a scalar nonnegative integer.
Data Types: single

Basis — Day-count basis used when annualizing the input forward rate
0 (actual/actual) (default) | integers of the set [0...13]

Day-count basis used when annualizing the input forward rate, specified as the comma-
separated pair consisting of 'Basis' and a scalar value. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: single

LB — Lower bounds
[0;0] (default) | numeric vector

Lower bounds, specified as the comma-separated pair consisting of 'LB' and a 2-by-1
vector of the lower bounds, defined as [LBSigma; LBAlpha], used in the search
algorithm function. For more information, see lsqnonlin.
Data Types: double

UB — Upper bounds
[ ] (unbound) (default) | numeric vector

Upper bounds, specified as the comma-separated pair consisting of 'UB' and a 2-by-1
vector of the upper bounds, defined as [UBSigma; LBAlpha], used in the search
algorithm function. For more information, see lsqnonlin.
Data Types: double

XO — Initial values
[0.5;0.5] (default) | numeric vector

Initial values, specified as the comma-separated pair consisting of 'XO' and a 2-by-1
vector of the initial values, defined as [Sigma0; Alpha0], used in the search algorithm
function. For more information, see lsqnonlin.
Data Types: double
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OptimOptions — Optimization parameters
structure

Optimization parameters, specified as the comma-separated pair consisting of
'OptimOptions' and a structure defined by using optimoptions.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified as the comma-separated pair
consisting of 'Shift' and a scalar positive decimal value. Set this parameter to a
positive shift in decimals to add a positive shift to forward rate and Strike, which
effectively sets a negative lower bound for forward rate and Strike. For example, a
Shift value of 0.01 is equal to a 1% shift.
Data Types: single

Model — Indicator for model used for calibration routine
lognormal (Black model) (default) | values are normal and lognormal

Indicator for model used for calibration routine, specified as the comma-separated pair
consisting of 'Model' and a scalar character vector with a value of normal or
lognormal.
Data Types: char

Output Arguments
Alpha — Mean reversion value obtained from calibrating the cap using market
information
scalar numeric

Mean reversion value obtained from calibrating the cap using market information,
returned as a scalar value.

Sigma — Volatility value obtained from calibrating cap using market information
scalar numeric

Volatility value obtained from calibrating the cap using market information, returned as a
scalar.
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OptimOut — Optimization results
numeric structure

Optimization results, returned as a structure.

See Also
HullWhite1F | capbyblk | hwcalbyfloor | hwtree | lsqnonlin

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2009a
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hwcalbyfloor
Calibrate Hull-White tree using floors

Syntax
[Alpha,Sigma,OptimOut] = hwcalbyfloor(RateSpec,MarketStrike
MarketMaturity,MarketVolatility)
[Alpha,Sigma,OptimOut = hwcalbyfloor(RateSpec,MarketStrike
MarketMaturity,MarkeyVolatility,Strike,Settle,Maturity)
[Alpha,Sigma,OptimOut] = hwcalbyfloor( ___ ,Name,Value)

Description
[Alpha,Sigma,OptimOut] = hwcalbyfloor(RateSpec,MarketStrike
MarketMaturity,MarketVolatility) calibrates the Alpha (mean reversion) and
Sigma (volatility) using floor market data and the Hull-White model using the entire floor
surface.

The Hull-White calibration functions (hwcalbyfloor and hwcalbycap) support three
models: Black (default), Bachelier or Normal, and Shifted Black. For more information,
see the optional arguments for Shift and Model.

[Alpha,Sigma,OptimOut = hwcalbyfloor(RateSpec,MarketStrike
MarketMaturity,MarkeyVolatility,Strike,Settle,Maturity) estimates the
Alpha (mean reversion) and Sigma (volatility) using floor market data and the Hull-White
model to price a floor at a particular maturity/volatility using the additional optional input
arguments for Strike, Settle, and Maturity.

Strike, Settle, and Maturity arguments are specified to calibrate to a specific point
on the market volatility surface. If omitted, the calibration is performed across all the
market instruments

For an example of calibrating using the Hull-White model with Strike, Settle, and
Maturity input arguments, see “Calibrating Hull-White Model Using Market Data” on
page 2-111.
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[Alpha,Sigma,OptimOut] = hwcalbyfloor( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Calibrate Hull-White Model from Market Data Using the Entire Floor Volatility
Surface

This example shows how to use hwcalbyfloor input arguments for MarketStrike,
MarketMaturity, and MarketVolatility to calibrate the HW model using the entire
floor volatility surface.

Floor market volatility data covering two strikes over 12 maturity dates.
Reset = 4;
MarketStrike = [0.0590; 0.0790];

MarketMaturity = {'21-Mar-2008'; '21-Jun-2008'; '21-Sep-2008'; '21-Dec-2008';
    '21-Mar-2009'; '21-Jun-2009'; '21-Sep-2009'; '21-Dec-2009';
    '21-Mar-2010'; '21-Jun-2010'; '21-Sep-2010'; '21-Dec-2010'};
MarketMaturity = datenum(MarketMaturity);

MarketVolaltility = [0.1533 0.1731 0.1727 0.1752 0.1809 0.1800 0.1805 0.1802...
    0.1735 0.1757 0.1755 0.1755;
    0.1526 0.1730 0.1726 0.1747 0.1808 0.1792 0.1797 0.1794...
    0.1733 0.1751 0.1750 0.1745];

Plot market volatility surface.
[AllMaturities,AllStrikes] = meshgrid(MarketMaturity,MarketStrike);
figure;
surf(AllMaturities,AllStrikes,MarketVolaltility)
datetick
xlabel('Maturity')
ylabel('Strike')
zlabel('Volatility')
title('Market Volatility Data')
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Set interest rate term structure and create a RateSpec.
Settle = '21-Jan-2008';
Compounding = 4;
Basis = 0;
Rates= [0.0627; 0.0657; 0.0691; 0.0717; 0.0739; 0.0755; 0.0765; 0.0772;
    0.0779; 0.0783; 0.0786; 0.0789];
EndDates = {'21-Mar-2008';'21-Jun-2008';'21-Sep-2008';'21-Dec-2008';...
    '21-Mar-2009';'21-Jun-2009';'21-Sep-2009';'21-Dec-2009';....
    '21-Mar-2010';'21-Jun-2010';'21-Sep-2010';'21-Dec-2010'};
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
    'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding,...
    'Basis',Basis)

RateSpec = 

           FinObj: 'RateSpec'
      Compounding: 4
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 733428
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    ValuationDate: 733428
            Basis: 0
     EndMonthRule: 1

Calibrate Hull-White model from market data.
o = optimoptions('lsqnonlin','TolFun',1e-5,'Display','off');

[Alpha, Sigma] = hwcalbyfloor(RateSpec, MarketStrike, MarketMaturity,...
    MarketVolaltility, 'Reset', Reset,'Basis', Basis, 'OptimOptions', o)

Warning: LSQNONLIN did not converge to an optimal solution. It exited with exitflag = 3.
 
> In hwcalbycapfloor>optimizeOverCapSurface at 232
  In hwcalbycapfloor at 79
  In hwcalbyfloor at 81 

Alpha =

    0.0835

Sigma =

    0.0145

Compare with Black prices.
BlkPrices = floorbyblk(RateSpec,AllStrikes(:), Settle, AllMaturities(:),...
    MarketVolaltility(:),'Reset',Reset,'Basis',Basis)

BlkPrices =

         0
    0.2659
    0.0010
    0.5426
    0.0021
    0.6841
    0.0042
    0.7947
    0.0081
    0.8970
    0.0128
    0.9947
    0.0217
    1.1145
    0.0340
    1.2448
    0.0402
    1.3415
    0.0610
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    1.4947
    0.0827
    1.6458
    0.1071
    1.7951

Setup Hull-White tree using calibrated parameters, alpha, and sigma.
VolDates    = EndDates;
VolCurve    = Sigma*ones(numel(EndDates),1);
AlphaDates  = EndDates;
AlphaCurve  = Alpha*ones(numel(EndDates),1);
HWVolSpec   = hwvolspec(Settle, VolDates, VolCurve, AlphaDates, AlphaCurve);

HWTimeSpec  = hwtimespec(Settle, EndDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec, 'Method', 'HW2000')

HWTree = 

      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.6593 1.6612 2.6593 3.6612 4.6593 5.6612 6.6593 7.6612 8.6593 9.6612 10.6593]
        dObs: [733428 733488 733580 733672 733763 733853 733945 734037 734128 734218 734310 734402]
      CFlowT: {1x12 cell}
       Probs: {1x11 cell}
     Connect: {1x11 cell}
     FwdTree: {1x12 cell}

Compute Hull-White prices based on the calibrated tree.
HWPrices = floorbyhw(HWTree, AllStrikes(:), Settle, AllMaturities(:), Reset, Basis) 

HWPrices =

         0
    0.2644
    0.0067
    0.5404
    0.0101
    0.6924
    0.0169
    0.7974
    0.0236
    0.8919
    0.0320
    0.9919
    0.0460
    1.1074
    0.0649
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    1.2340
    0.0829
    1.3558
    0.1096
    1.4957
    0.1406
    1.6418
    0.1724
    1.7877

Plot Black prices against the calibrated Hull-White tree prices.
figure;
plot(AllMaturities(:), BlkPrices, 'or', AllMaturities(:), HWPrices, '*b');
datetick('x', 2)
xlabel('Maturity');
ylabel('Price');
title('Black and Calibrated (HW) Prices');
legend('Black Price', 'Calibrated HW Tree Price','Location', 'NorthWest');
grid on
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Calibrating Floorlets Using the Normal (Bachelier) Model

This example shows how to use hwcalbyfloor to calibrate market data with the Normal
(Bachelier) model to price floorlets. Use the Normal (Bachelier) model to perform
calibrations when working with negative interest rates, strikes, and normal implied
volatilities.

Consider a floor with these parameters:

Settle = 'Dec-30-2016';
Maturity = 'Dec-30-2019';
Strike = -0.004075;
Reset = 2;
Principal = 100;
Basis = 0;

The floorlets and market data for this example are defined as:

floorletDates = cfdates(Settle, Maturity, Reset, Basis);
datestr(floorletDates')

ans = 6x11 char array
    '30-Jun-2017'
    '30-Dec-2017'
    '30-Jun-2018'
    '30-Dec-2018'
    '30-Jun-2019'
    '30-Dec-2019'

% Market data information
MarketStrike = [-0.00595; 0];
MarketMat =  {'30-Jun-2017';'30-Dec-2017';'30-Jun-2018'; '30-Dec-2018';'30-Jun-2019'; '30-Dec-2019'};
MarketVol = [0.184 0.2329 0.2398 0.2467 0.2906 0.3348;   % First row in table corresponding to Strike 1 
             0.217 0.2707 0.2760 0.2814 0.3160 0.3508];  % Second row in table corresponding to Strike 2

Define the RateSpec.

Rates= [-0.003210;-0.003020;-0.00182;-0.001343;-0.001075];
ValuationDate = 'Dec-30-2016';
EndDates = {'30-Jun-2017';'Dec-30-2017';'30-Jun-2018';'Dec-30-2018';'Dec-30-2019'};
Compounding = 2;
Basis = 0;
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RateSpec = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

Use hwcalbyfloor to find values for the volatility parameters Alpha and Sigma using
the Normal (Bachelier) model.

format short
o=optimoptions('lsqnonlin','TolFun',100*eps);
warning ('off','fininst:hwcalbycapfloor:NoConverge')
[Alpha, Sigma, OptimOut] = hwcalbyfloor(RateSpec, MarketStrike, MarketMat,...
MarketVol, Strike, Settle, Maturity, 'Reset', Reset, 'Principal', Principal,...
'Basis', Basis, 'OptimOptions', o, 'model', 'normal')

Local minimum possible.

lsqnonlin stopped because the size of the current step is less than
the default value of the step size tolerance.

Alpha = 1.0000e-06

Sigma = 0.3410

OptimOut = struct with fields:
     resnorm: 1.9233e-04
    residual: [5x1 double]
    exitflag: 2
      output: [1x1 struct]
      lambda: [1x1 struct]
    jacobian: [5x2 double]

The OptimOut.residual field of the OptimOut structure is the optimization residual.
This value contains the difference between the Normal (Bachelier) floorlets and those
calculated during the optimization. Use the OptimOut.residual value to calculate the
percentual difference (error) compared to Normal (Bachelier) floorlet prices, and then
decide whether the residual is acceptable. There is almost always some residual, so
decide if it is acceptable to parameterize the market with a single value of Alpha and
Sigma.

Price the floorlets using the market data and Normal (Bachelier) model to obtain the
reference floorlet values. To determine the effectiveness of the optimization, calculate
reference floorlet values using the Normal (Bachelier) formula and the market data. Note,
you must first interpolate the market data to obtain the floorlets for calculation.
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MarketMatNum = datenum(MarketMat);
[Mats, Strikes] = meshgrid(MarketMatNum, MarketStrike);
FlatVol = interp2(Mats, Strikes, MarketVol, datenum(Maturity), Strike, 'spline');

[FloorPrice, Floorlets] = floorbynormal(RateSpec, Strike, Settle, Maturity, FlatVol,...
'Reset', Reset, 'Basis', Basis, 'Principal', Principal); 
Floorlets = Floorlets(2:end)'

Floorlets = 5×1

    4.7637
    6.7180
    8.1833
    9.5825
   10.6090

Compare the optimized values and Normal (Bachelier) values, and display the results
graphically. After calculating the reference values for the floorlets, compare the values
analytically and graphically to determine whether the calculated single values of Alpha
and Sigma provide an adequate approximation.

OptimFloorlets = Floorlets+OptimOut.residual;

disp('   ');

   

disp(' Bachelier   Calibrated Floorlets');

 Bachelier   Calibrated Floorlets

disp([Floorlets        OptimFloorlets])

    4.7637    4.7685
    6.7180    6.7263
    8.1833    8.1878
    9.5825    9.5795
   10.6090   10.6007

plot(MarketMatNum(2:end), Floorlets, 'or', MarketMatNum(2:end), OptimFloorlets, '*b');
datetick('x', 2)
xlabel('Floorlet Maturity');
ylabel('Floorlet Price');
ylim ([0 16]);
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title('Bachelier and Calibrated Floorlets');
h = legend('Bachelier Floorlets', 'Calibrated Floorlets');
set(h, 'color', [0.9 0.9 0.9]);
set(h, 'Location', 'SouthEast');
set(gcf, 'NumberTitle', 'off')
grid on

Input Arguments
RateSpec — Interest-rate specification for initial rate curve
structure
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Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

MarketStrike — Market floor strike
vector

Market floor strike, specified as a NINST-by-1 vector.
Data Types: double

MarketMaturity — Market floor maturity date
vector

Market floor maturity dates, specified as a NINST-by-1 vector.
Data Types: double

MarketVolatility — Market flat volatilities
matrix

Market flat volatilities, specified as a NSTRIKES-by-NMATS matrix of market flat
volatilities, where NSTRIKES is the number of caplet strikes from MarketStrike and
NMATS is the caplet maturity dates from MarketMaturity.
Data Types: double

Strike — Rate at which floor is exercised
decimal scalar

(Optional) Rate at which the floor is exercised, specified as a decimal scalar value.
Data Types: single

Settle — Settlement date of the floor
serial date number | date character vector

(Optional) Settlement date of the floor, specified as a scalar serial date number or date
character.
Data Types: single | char

Maturity — Maturity date of the floor
serial date number | date character vector
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(optional) Maturity date of the floor, specified as scalar serial date number or date
character vector.
Data Types: single | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Alpha,Sigma,OptimOut] =
hwcalbyfloor(RateSpec,MarketStrike,MarketMaturity,MarketVolaltility,
'Reset',2,'Principal',100000,'Basis',3,'OptimOptions',o)

Reset — Frequency of payments per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of
'Reset' and a scalar numeric value.
Data Types: double

Principal — Notional principal amount
100 (default) | nonnegative integer

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a scalar nonnegative integer.
Data Types: single

Basis — Day-count basis used when annualizing the input forward rate
0 (actual/actual) (default) | integers of the set [0...13]

Day-count basis used when annualizing the input forward rate, specified as the comma-
separated pair consisting of 'Basis' and a scalar value. Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: single

LB — Lower bounds
[0;0] (default) | numeric vector

Lower bounds, specified as the comma-separated pair consisting of 'LB' and a 2-by-1
vector of the lower bounds, defined as [LBSigma; LBAlpha], used in the search
algorithm function. For more information, see lsqnonlin.
Data Types: double

UB — Upper bounds
[ ] (unbound) (default) | numeric vector

Upper bounds, specified as the comma-separated pair consisting of 'UB' and a 2-by-1
vector of the upper bounds, defined as [UBSigma; LBAlpha], used in the search
algorithm function. For more information, see lsqnonlin.
Data Types: double

XO — Initial values
[0.5;0.5] (default) | numeric vector

Initial values, specified as the comma-separated pair consisting of 'XO' and a 2-by-1
vector of the initial values, defined as [Sigma0; Alpha0], used in the search algorithm
function. For more information, see lsqnonlin.
Data Types: double
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OptimOptions — Optimization parameters
structure

Optimization parameters, specified as the comma-separated pair consisting of
'OptimOptions' and a structure defined by using optimoptions.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified as the comma-separated pair
consisting of 'Shift' and a scalar positive decimal value. Set this parameter to a
positive shift in decimals to add a positive shift to forward rate and Strike, which
effectively sets a negative lower bound for forward rate and Strike. For example, a
Shift value of 0.01 is equal to a 1% shift.
Data Types: single

Model — Indicator for model used for calibration routine
lognormal (Black model) (default) | values are normal and lognormal

Indicator for model used for calibration routine, specified as the comma-separated pair
consisting of 'Model' and a scalar character vector with a value of normal or
lognormal.
Data Types: char

Output Arguments
Alpha — Mean reversion value obtained from calibrating the floor using market
information
scalar numeric

Mean reversion value obtained from calibrating the floor using market information,
returned as a scalar value.

Sigma — Volatility value obtained from calibrating floor using market information
scalar numeric

Volatility value obtained from calibrating the floor using market information, returned as
a scalar.
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OptimOut — Optimization results
numeric structure

Optimization results, returned as a structure.

See Also
HullWhite1F | floorbyblk | hwcalbycap | hwtree | lsqnonlin

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2009a
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hwprice
Instrument prices from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = hwprice(HWTree,InstSet)
[Price,PriceTree] = hwprice( ___ ,Options)

Description
[Price,PriceTree] = hwprice(HWTree,InstSet) computes arbitrage-free prices
for instruments using an interest-rate tree created with hwtree. All instruments
contained in a financial instrument variable, InstSet, are priced.

hwprice handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd to construct defined types.

[Price,PriceTree] = hwprice( ___ ,Options) adds an optional input argument for
Options.

Examples

Price the Cap and Bond Instruments Contained in an Instrument Set

Load the HW tree and instruments from the data file deriv.mat.

load deriv.mat; 
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HWSubSet)

instdisp(HWSubSet)
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 20      
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2     Bond 0.04       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.06   01-Jan-2004    01-Jan-2008    1        0     100       6% Cap 10      

Price the cap and bond instruments.

[Price, PriceTree] = hwprice(HWTree, HWSubSet);

100.9188
 99.3296
  0.5837

You can use treeviewer to see the prices of these three instruments along the price
tree.
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Price Multi-Stepped Coupon Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create the RateSpec.
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RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create a portfolio of stepped coupon bonds with different maturities.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:

VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec)
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HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0350]  [1.0677 1.0494 1.0314]  [1x5 double]  [1x7 double]}

Compute the price of the stepped coupon bonds.

PHW = hwprice(HWT, ISet)

PHW = 4×1

  100.6763
  100.7368
  100.9266
  101.0115

Price a Portfolio of Stepped Callable Bonds and Stepped Vanilla Bonds

The data for the interest-rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
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             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 0
     EndMonthRule: 1

Create an instrument portfolio of three stepped callable bonds and three stepped vanilla
bonds.

Settle = '01-Jan-2010';
Maturity = {'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2011'; %Callable in one year

Bonds with embedded option.

ISet = instoptembnd(CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', 1);

Vanilla bonds.

ISet = instbond(ISet, CouponRate, Settle, Maturity, 1);

Display the instrument portfolio.

instdisp(ISet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates  Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond [Cell]     01-Jan-2010    01-Jan-2012    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
2     OptEmBond [Cell]     01-Jan-2010    01-Jan-2013    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
3     OptEmBond [Cell]     01-Jan-2010    01-Jan-2014    call    100    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100  0          
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
4     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
5     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
6     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build the tree with the following data:
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VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734139 734504 734869 735235]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0350]  [1.0677 1.0494 1.0314]  [1x5 double]  [1x7 double]}

Compute the price of the stepped callable bonds and the stepped vanilla bonds.

PHW = hwprice(HWT, ISet)

PHW = 6×1

  100.4089
  100.2043
  100.0197
  100.7368
  100.9266
  101.0115

The first three rows correspond to the price of the stepped callable bonds and the last
three rows correspond to the price of the stepped vanilla bonds.

Compute the Price of a Portfolio of Instruments

The data for the interest-rate term structure is as follows:
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Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

Create a RateSpec.

RS = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RS = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create an instrument portfolio with two range notes and a floating rate note with the
following data:

Spread = 200;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

% First Range Note
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Second Range Note
RateSched(2).Dates = {'Jan-1-2012'; 'Jan-1-2013' ; 'Jan-1-2014'};
RateSched(2).Rates  = [0.048 0.059; 0.055  0.068 ; 0.07 0.09];

Create InstSet, add a floating-rate note, and display the portfolio instruments.

InstSet = instadd('RangeFloat', Spread, Settle, Maturity, RateSched);

% Add a floating-rate note
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InstSet = instadd(InstSet, 'Float', Spread, Settle, Maturity);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
3     Float 200    01-Jan-2011    01-Jan-2014    1          0     100       1            Inf     -Inf     
 

The data to build the tree is as follows:

VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVS, RS, HWTS)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734504 734869 735235 735600]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0350]  [1.0677 1.0494 1.0314]  [1x5 double]  [1x7 double]}

Price the portfolio.

Price = hwprice(HWT, InstSet)

Price = 3×1

   99.3327
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   98.1580
  105.5147

Create a Float-Float Swap and Price with hwprice

Use instswap to create a float-float swap and price the swap with hwprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.02 .03],today,datemnth(today,60),[], [], [], [1 1]);
VolSpec = hwvolspec(today,datemnth(today,60),.01,datemnth(today,60),.1);
TimeSpec = hwtimespec(today,cfdates(today,datemnth(today,60),1));
HWTree = hwtree(VolSpec,RateSpec,TimeSpec);
hwprice(HWTree,IS)

ans =

   -4.3220

Price Multiple Swaps with hwprice

Use instswap to create multiple swaps and price the swaps with hwprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[.08 300],today,datemnth(today,60),[], [], [], [1 0]);
VolSpec = hwvolspec(today,datemnth(today,60),.01,datemnth(today,60),.1);
TimeSpec = hwtimespec(today,cfdates(today,datemnth(today,60),1));
HWTree = hwtree(VolSpec,RateSpec,TimeSpec);
hwprice(HWTree,IS)

ans =

    4.3220
   -4.3220
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   -0.2701

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

Related single-type pricing functions are:

• bondbyhw: Price a bond from a Hull-White tree.
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• capbyhw: Price a cap from a Hull-White tree.
• cfbyhw: Price an arbitrary set of cash flows from a Hull-White tree.
• fixedbyhw: Price a fixed-rate note from a Hull-White tree.
• floatbyhw: Price a floating-rate note from a Hull-White tree.
• floorbyhw: Price a floor from a Hull-White tree.
• optbndbyhw: Price a bond option from a Hull-White tree.
• optembndbyhw: Price a bond with embedded option by a Hull-White tree.
• optfloatbybdt: Price a floating-rate note with an option from a Hull-White tree.
• optemfloatbybdt: Price a floating-rate note with an embedded option from a Hull-

White tree.
• rangefloatbyhw: Price range floating note using a Hull-White tree.
• swapbyhw: Price a swap from a Hull-White tree.
• swaptionbyhw: Price a swaption from a Hull-White tree.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
hwsens | hwtree | instadd | intenvprice | intenvsens
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Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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hwsens
Instrument prices and sensitivities from Hull-White interest-rate tree

Syntax
[Delta,Gamma,Vega,Price] = hwsens(HWTree,InstSet)
[Delta,Gamma,Vega,Price] = hwsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = hwsens(HWTree,InstSet) computes instrument
sensitivities and prices for instruments using an interest-rate tree created with the
hwtree function. All sensitivities are returned as dollar sensitivities. To find the per-dollar
sensitivities, divide by the respective instrument price.

hwsens handles instrument types: 'Bond', 'CashFlow', 'OptBond', 'OptEmBond',
'OptEmBond', 'OptFloat', 'OptEmFloat', 'Fixed', 'Float', 'Cap', 'Floor',
'RangeFloat', 'Swap'. See instadd for information on instrument types.

[Delta,Gamma,Vega,Price] = hwsens( ___ ,Options) adds an optional input
argument for Options.

Examples

Compute Instrument Sensitivities Using an HW Interest-Rate Tree

Load the tree and instruments from the deriv.mat data file. Compute Delta and Gamma
for the cap and bond instruments contained in the instrument set.

load deriv.mat; 
HWSubSet = instselect(HWInstSet,'Type', {'Bond', 'Cap'}); 

instdisp(HWSubSet)
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Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2004    01-Jan-2007    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 20      
2     Bond 0.04       01-Jan-2004    01-Jan-2008    1      0     1            NaN       NaN             NaN            NaN       100  4% bond 15      
 
Index Type Strike Settle         Maturity       CapReset Basis Principal Name   Quantity
3     Cap  0.06   01-Jan-2004    01-Jan-2008    1        0     100       6% Cap 10      
 

Compute the Delta and Gamma for the cap and bond instruments.

[Delta, Gamma] = hwsens(HWTree, HWSubSet)

Delta = 3×1

 -291.2580
 -374.6368
   60.9580

Gamma = 3×1
103 ×

    0.8584
    1.4609
    5.5994

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
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Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in
interest rate
vector

Rate of change of instruments prices with respect to changes in the interest rate,
returned as a NINST-by-1 vector of deltas. Delta is computed by finite differences in calls
to hwtree.

Note Delta is calculated based on yield shifts of 100 basis points.

Gamma — Rate of change of instruments deltas with respect to changes in
interest rate
vector

Rate of change of instruments deltas with respect to changes in the interest rate,
returned as a NINST-by-1 vector of gammas. Gamma is computed by finite differences in
calls to hwtree.

Note Gamma is calculated based on yield shifts of 100 basis points.

Vega — Rate of change of instruments prices with respect to changes in volatility
vector

Rate of change of instruments prices with respect to changes in the volatility, returned as

a NINST-by-1 vector of vegas. Volatility is s t T,( )  of the interest rate. Vega is computed
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by finite differences in calls to hwtree. For information on the volatility process, see
hwvolspec.

Note Vega is calculated based on 1% shift in the volatility process.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the interest-rate tree. If an instrument cannot be
priced, a NaN is returned in that entry.

See Also
hwprice | hwtree | hwvolspec | instadd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a

 hwsens

11-843



hwtimespec
Specify time structure for Hull-White interest-rate tree

Syntax
TimeSpec = hwtimespec(ValuationDate,Maturity)
TimeSpec = hwtimespec( ___ ,Compounding)

Description
TimeSpec = hwtimespec(ValuationDate,Maturity) sets the number of levels and
node times for a hwtree and determines the mapping between dates and time for rate
quoting.

TimeSpec = hwtimespec( ___ ,Compounding) adds the optional argument
Compounding.

Examples

Set the Number of Levels and Node Times for a Hull-White Tree

This example shows how to specify a four-period tree with annual nodes and use annual
compounding to report rates.

ValuationDate = 'Jan-1-2004';
Maturity = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
Compounding = 1;
TimeSpec = hwtimespec(ValuationDate, Maturity, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HWTimeSpec'
    ValuationDate: 731947
         Maturity: [4x1 double]
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      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the tree, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

Maturity — Dates marking the cash flow dates of the tree
serial date number | date character vector

Dates marking the cash flow dates of the tree, specified as NLEVELS-by-1 vector of serial
date numbers or date character vectors. Cash flows with these maturities fall on tree
nodes. Maturity should be in increasing order.
Data Types: double | char | cell

Compounding — Rate at which the input zero rates were compounded when
annualized
1 (default) | integer with value of 1, 2, 3, 4, 6, 12, 365, or -1

(Optional) Rate at which the input zero rates were compounded when annualized,
specified as a scalar integer value.

• If Compounding = 1, 2, 3, 4, 6, 12:

Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero rate,
and T is the time in periodic units; for example, T = F is one year.

• If Compounding = 365:

Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T is a
number of days elapsed computed by basis.

• If Compounding = −1:
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Disc = exp(-T*Z), where T is time in years.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for hwtree
structure

Specification for the time layout for hwtree, returned as a structure. The state
observation dates are [ValuationDate; Maturity(1:end-1)]. Because a forward
rate is stored at the last observation, the tree can value cash flows out to Maturity(end).

See Also
hwtree | hwvolspec

Topics
“Specifying the Time Structure (TimeSpec)” on page 2-85
“Creating Trees” on page 2-87
“Examining Trees” on page 2-88
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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hwtree
Build Hull-White interest-rate tree

Syntax
HWTree = hwtree(VolSpec,RateSpec,TimeSpec)
HWTree = hwtree( ___ ,Name,Value)

Description
HWTree = hwtree(VolSpec,RateSpec,TimeSpec) builds a Hull-White interest-rate
tree.

HWTree = hwtree( ___ ,Name,Value) adds optional name-value pair arguments.

Examples

Create an HWTree

Using the data provided, create a Hull-White volatility specification (VolSpec), rate
specification (RateSpec), and tree time layout specification (TimeSpec). Then, use these
specifications to create a Hull-White tree using hwtree.

Compounding = -1;
ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
AlphaDates = '01-01-2008';
AlphaCurve = 0.1;
Rates = [0.0275; 0.0312; 0.0363; 0.0415];

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...  
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AlphaDates, AlphaCurve);

RateSpec = intenvset('Compounding', Compounding,...
                     'ValuationDate', ValuationDate,...
                     'StartDates', ValuationDate,...
                     'EndDates', VolDates,...
                     'Rates', Rates);
 
HWTimeSpec = hwtimespec(ValuationDate, VolDates, Compounding);
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.9973 1.9973 2.9973]
        dObs: [731947 732312 732677 733042]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [3.9973]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0278]  [1.0536 1.0356 1.0178]  [1x5 double]  [1x7 double]}

Use treeviewer to observe the tree you have created.

Input Arguments
VolSpec — Volatility process specification
structure

Volatility process specification, specified using the VolSpec obtained from hwvolspec.
See hwvolspec for information on the volatility process.
Data Types: struct

RateSpec — Interest-rate specification for initial rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct
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TimeSpec — Time layout specification
structure

Time layout specification, specified using the TimeSpec obtained from hwtimespec. The
TimeSpec defines the observation dates of the HW tree and the compounding rule for
date to time mapping and price-yield formulas. See hwtimespec for information on the
tree structure.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: HWTree = hwtree(VolSpec,RateSpec,TimeSpec,'Method','HW1996')

Method — Hull-White method upon which tree-node connectivity algorithm is
based
HW2000 (default) | character vector with values of HW1996 or HW2000

Hull-White method upon which the tree-node connectivity algorithm is based, specified a
character vector with a value of HW1996 or HW2000.

Note hwtree supports two tree-node connectivity algorithms. HW1996 is based on the
original paper published in the Journal of Derivatives, and HW2000 is the general version
of the algorithm, as specified in the paper published in August 2000.

Data Types: char

Output Arguments
HWTree — Hull-White interest-rate tree
structure

Hull-White interest-rate tree, returned as a structure containing time and interest rate
information of a trinomial recombining tree.
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The HWTree structure returned contains all the information necessary to propagate back
any cash flows occurring during the time span of the tree. The main fields of HWTree are:

• HWTree.tObs contains the time factor of each level of the tree.
• HWTree.dObs contains the date of each level of the tree.
• HWTree.Probs contains a cell array of 3-by-N numeric arrays with the up/mid/down

probabilities of each node of the tree except for the last level. The cells in the cell
array are ordered from root node. The arrays are 3-by-N with the first row
corresponding to an up-move, the mid row to a mid-move and so on. Each column of
the array represents a node starting from the top node of a given level.

• HWTree.Connect contains a cell array with connectivity information for each node of
the tree. The arrangement is similar to HWTree.Probs, with the exception that it has
only one row in each cell. The number represents the node in the next level to which
the middle branch connects to. The top branch connects to the value above (minus
one) and the lower branch connects to the value below (plus one).

• HWTree.FwdTree contains the forward spot rate from one node to the next. The
forward spot rate is defined as the inverse of the discount factor.

References
[1] Hull, J., and A. White. "Using Hull-White Interest Rate Trees." Journal of Derivatives.

1996.

[2] Hull, J., and A. White. "The General Hull-White Model and Super Calibration.” August
2000.

See Also
hwcalbycap | hwcalbyfloor | hwprice | hwtimespec | hwvolspec | intenvset

Topics
“Creating Trees” on page 2-87
“Examining Trees” on page 2-88
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2
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Introduced before R2006a
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hwvolspec
Specify Hull-White interest-rate volatility process

Syntax
VolSpec = hwvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,
AlphaCurve)
VolSpec = hwvolspec( ___ ,InterpMethod)

Description
VolSpec = hwvolspec(ValuationDate,VolDates,VolCurve,AlphaDates,
AlphaCurve) creates a structure specifying the volatility for hwtree.

The volatility process is such that the variance of r(t + dt) - r(t) is defined as follows: V =
(Volatility.^2 .* (1 - exp(-2*Alpha .* dt))) ./ (2 * Alpha). For more
information on using Hull-White interest rate trees, see “Hull-White (HW) and Black-
Karasinski (BK) Modeling” on page C-2.

VolSpec = hwvolspec( ___ ,InterpMethod) adds the optional argument
InterpMethod.

Examples

Create a Structure Specifying the Volatility for hwtree

This example shows how to create a Hull-White volatility specification (VolSpec) using
the following data.

ValuationDate = '01-01-2004';
StartDate = ValuationDate;
VolDates = ['12-31-2004'; '12-31-2005'; '12-31-2006'; 
'12-31-2007'];
VolCurve = 0.01;
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AlphaDates = '01-01-2008';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve,...  
AlphaDates, AlphaCurve)

HWVolSpec = struct with fields:
             FinObj: 'HWVolSpec'
      ValuationDate: 731947
           VolDates: [4x1 double]
           VolCurve: [4x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 733408
    VolInterpMethod: 'linear'

Input Arguments
ValuationDate — Observation date of the investment horizon
serial date number | character vector date

Observation date of the investment horizon, specified as a scalar date using a serial date
number or date character vector.
Data Types: double | char

VolDates — Number of points of yield volatility end dates
serial date number | date character vector

Number of points of yield volatility end dates, specified as a NPOINTS-by-1 vector of serial
date numbers or date character vectors.
Data Types: double | char | cell

VolCurve — Yield volatility values
decimal

Yield volatility values, specified as a NPOINTS-by-1 vector of decimal values. The term
structure of VolCurve is the yield volatility represented by the value of the volatility of
the yield from time t = 0 to time t + i, where i is any point within the volatility curve.
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Note The number of points in VolCurve and AlphaCurve do not have to be the same.

Data Types: double

AlphaDates — Mean reversion end dates
serial date number | date character vector

Mean reversion end dates, specified as a NPOINTS-by-1 vector of serial date numbers or
date character vectors.
Data Types: double | char | cell

AlphaCurve — Positive mean reversion values
positive decimal

Positive mean reversion values, specified as a NPOINTS-by-1 vector of positive decimal
values.

Note The number of points in VolCurve and AlphaCurve do not have to be the same.

Data Types: double

InterpMethod — Interpolation method
'linear' (default) | character vector with values supported by interp1

(Optional) Interpolation method, specified as a character vector with values supported by
interp1.
Data Types: char

Output Arguments
VolSpec — Specification for the volatility model for hwtree
structure

Structure specifying the volatility model for hwtree.
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See Also
hwcalbycap | hwcalbyfloor | interp1

Topics
“Specifying the Volatility Model (VolSpec)” on page 2-82
“Creating Trees” on page 2-87
“Examining Trees” on page 2-88
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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impvbybaw
Calculate implied volatility using Barone-Adesi and Whaley option pricing model

Syntax
Volatility = impvbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice)
Volatility = impvbybaw( ___ ,Name,Value)

Description
Volatility = impvbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice) calculates implied volatility using the Barone-Adesi and Whaley
option pricing model.

Volatility = impvbybaw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Implied Volatility for an American Option Using the Barone-Adesi
and Whaley Option Pricing Model

This example shows how to compute implied volatility using the Barone-Adesi and Whaley
option pricing model. Consider three American call options with exercise prices of $100
that expire on July 1, 2017. The underlying stock is trading at $100 on January 1, 2017
and pays a continuous dividend yield of 10%. The annualized continuously compounded
risk-free rate is 10% per annum, and the option prices are $4.063, $6.77 and $9.46. Using
this data, calculate the implied volatility of the stock using the Barone-Adesi and Whaley
option pricing model.

AssetPrice = 100;
Settle = 'Jan-1-2017';
Maturity = 'Jul-1-2017';
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Strike = 100;
DivAmount = 0.1;
Rate = 0.05;

Define the RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9753
            Rates: 0.0500
         EndTimes: 0.5000
       StartTimes: 0
         EndDates: 736877
       StartDates: 736696
    ValuationDate: 736696
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

StockSpec = stockspec(NaN, AssetPrice, {'continuous'}, DivAmount)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: NaN
         AssetPrice: 100
       DividendType: {'continuous'}
    DividendAmounts: 0.1000
    ExDividendDates: []

Define the American option.

OptSpec = {'call'};
OptionPrice = [4.063;6.77;9.46];

Compute the implied volatility for the American option.

ImpVol =  impvbybaw(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, OptionPrice)
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ImpVol = 3×1

    0.1802
    0.2808
    0.3803

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector | datetime object

Settlement date for the American option, specified as a NINST-by-1 matrix using a serial
date number, a date character vector, or a datetime object.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime object
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Maturity date for the American option, specified as a NINST-by-1 matrix using a serial
date number, a date character vector, or a datetime object.
Data Types: double | char | datetime

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors or string arrays with values 'call' or 'put'.
Data Types: char | string

Strike — American option strike price value
nonnegative scalar | nonnegative vector

American option strike price value, specified as a nonnegative scalar or NINST-by-1
matrix of strike price values. Each row is the schedule for one option.
Data Types: single | double

OptPrice — American option price
nonnegative scalar | nonnegative vector

American option prices from which the implied volatility of the underlying asset is
derived, specified as a nonnegative scalar or NINST-by-1 matrix of strike price values.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Volatility =
impvbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptionPr
ice)

Limit — Lower and upper bound of implied volatility search interval
[0.1 10] (or 10% to 1000% per annum) (default) | positive value
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Lower and upper bound of implied volatility search interval, specified as the comma-
separated pair consisting of 'Limit' and a 1-by-2 positive vector.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair
consisting of 'Tolerance' and a positive scalar.
Data Types: double

Output Arguments
Volatility — Expected implied volatility values
matrix

Expected implied volatility values, returned as a NINST-by-1 matrix. If no solution can be
found, a NaN is returned.

References
[1] Barone-Adesi, G. and Robert E. Whaley. “Efficient Analytic Approximation of American

Option Values.” The Journal of Finance. Volume 42, Issue 2 (June 1987), 301–320.

[2] Haug, E. The Complete Guide to Option Pricing Formulas. Second Edition. McGraw-
Hill Education, January 2007.

See Also
optstockbybaw | optstocksensbybaw

Topics
“Supported Equity Derivatives” on page 3-24

Introduced in R2017a
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impvbybjs
Determine implied volatility using Bjerksund-Stensland 2002 option pricing model

Syntax
Volatility = impvbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice)
Volatility = impvbybjs( ___ ,Name,Value)

Description
Volatility = impvbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice) computes implied volatility using the Bjerksund-Stensland 2002
pricing model.

Note impvbybjs computes implied volatility of American options with continuous
dividend yield using the Bjerksund-Stensland option pricing model.

Volatility = impvbybjs( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Implied Volatility Using the Bjerksund-Stensland 2002 Option
Pricing Model

This example shows how to compute implied volatility using the Bjerksund-Stensland
2002 option pricing model. Consider three American call options with exercise prices of
$100 that expire on July 1, 2008. The underlying stock is trading at $100 on January 1,
2008 and pays a continuous dividend yield of 10%. The annualized continuously
compounded risk-free rate is 10% per annum and the option prices are $4.063, $6.77 and
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$9.46. Using this data, calculate the implied volatility of the stock using the Bjerksund-
Stensland 2002 option pricing model.

AssetPrice = 100;
Settle = 'Jan-1-2008';
Maturity = 'Jul-1-2008';
Strike = 100;
DivAmount = 0.1;
Rate = 0.1;

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(NaN, AssetPrice, {'continuous'}, DivAmount);

OptSpec = {'call'};
OptionPrice = [4.063;6.77;9.46];

ImpVol =  impvbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, OptionPrice)

ImpVol = 3×1

    0.1500
    0.2501
    0.3500

The implied volatility is 15% for the first call, and 25% and 35% for the second and third
call options.

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct
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StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date
character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date
numbers or a date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of the option from which the implied volatility is derived, specified as a NINST-
by-1 cell array of character vectors with a value of 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike
price values. Each row is the schedule for one option.
Data Types: double
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OptPrice — American option price
nonnegative scalar | nonnegative vector

American option prices from which the implied volatility of the underlying asset is
derived, specified as a nonnegative scalar or NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Volatility =
impvbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice
,'Limit',[0.2 20],'Tolerance',1e-5)

Limit — Lower and upper bound of implied volatility search interval
[0.1 10] (10% to 1000% per annum) (default) | positive vector

Lower and upper bound of implied volatility search interval, specified as the comma-
separated pair consisting of 'Limit' and a 1-by-2 positive vector.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair
consisting of 'Tolerance' and a positive scalar.
Data Types: double

Output Arguments
Volatility — Expected implied volatility values
vector

Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be
found, a NaN is returned.
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References
[1] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.”

Scandinavian Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[2] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.”
Discussion paper 2002 (https://www.scribd.com/doc/215619796/Closed-form-
Valuation-of-American-Options-by-Bjerksund-and-Stensland#scribd)

See Also
optstockbybjs | optstocksensbybjs

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Bjerksund-Stensland Model” on page 3-156
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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impvbyblk
Determine implied volatility using Black option pricing model

Syntax
Volatility = impvbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice)
Volatility = impvbyblk( ___ ,Name,Value)

Description
Volatility = impvbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice) computes implied volatility using the Black option pricing model.

Volatility = impvbyblk( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Implied Volatility Using the Black Option Pricing Model

This example shows how to compute the implied volatility using the Black option pricing
model. Consider a European call and put options on a futures contract with exercise
prices of $30 for the put and $40 for the call that expire on September 1, 2008. Assume
that on May 1, 2008 the contract is trading at $35. The annualized continuously
compounded risk-free rate is 5% per annum. Find the implied volatilities of the stock, if
on that date, the call price is $1.14 and the put price is $0.82.

AssetPrice = 35;
Strike = [30; 40];
Rates = 0.05;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

11 Functions — Alphabetical List

11-866



% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(NaN, AssetPrice);

% define the options
OptSpec = {'put';'call'};

Price = [1.14;0.82];
Volatility = impvbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec,...
Strike, Price,'Method','jackel2016')

Volatility = 2×1

    0.4052
    0.3021

The implied volatility is 41% and 30%.

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
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Data Types: struct

Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date
character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date
numbers or a date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of the option from which the implied volatility is derived, specified as a NINST-
by-1 cell array of character vectors with a value of 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike
prices. Each row is the schedule for one option.
Data Types: double

OptPrice — European option price
nonnegative scalar | nonnegative vector

European option prices from which the implied volatility of the underlying asset is
derived, specified as a nonnegative scalar or NINST-by-1 vector.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Volatility =
impvbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice
,'Limit',5,'Tolerance',1e-5)

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive value

Upper bound of implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Limit argument is
ignored.

Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair
consisting of 'Tolerance' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Tolerance argument
is ignored.

Data Types: double

Method — Method for computing implied volatility
'jackel2016' (default) | character vector with values 'search' or 'jackel2016' |
string with values "search" or "jackel2016"
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Method for computing implied volatility, specified as the comma-separated pair consisting
of 'Method' and a character vector with a value of 'search' or 'jackel2016' or a
string with a value of "search" or "jackel2016".
Data Types: char | string

Output Arguments
Volatility — Expected implied volatility values
vector

Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be
found, a NaN is returned.

References
[1] Jäckel, Peter. "Let's Be Rational." Wilmott Magazine., January, 2015 (https://

onlinelibrary.wiley.com/doi/pdf/10.1002/wilm.10395).

See Also
optstockbyblk | optstocksensbyblk

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Black Model” on page 3-154
“Black Model” on page 3-149
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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impvbybls
Determine implied volatility using Black-Scholes option pricing model

Syntax
Volatility = impvbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice)
Volatility = impvbybls( ___ ,Name,Value)

Description
Volatility = impvbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike,OptPrice) computes implied volatility using the Black-Scholes option pricing
model.

Volatility = impvbybls( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Implied Volatility Using the Black-Scholes Option Pricing Model

This example shows how to compute the implied volatility using the Black-Scholes option
pricing model. Consider a European call and put options with an exercise price of $40
that expires on June 1, 2008. The underlying stock is trading at $45 on January 1, 2008
and the risk-free rate is 5% per annum. The option price is $7.10 for the call and $2.85 for
the put. Using this data, calculate the implied volatility of the European call and put using
the Black-Scholes option pricing model.

AssetPrice = 45;
Settlement = 'Jan-01-2008';
Maturity = 'June-01-2008';
Strike = 40;
Rates = 0.05;
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OptionPrice = [7.10; 2.85];
OptSpec = {'call';'put'};

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settlement, 'StartDates', Settlement,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(NaN, AssetPrice);

ImpvVol =  impvbybls(RateSpec, StockSpec, Settlement, Maturity, OptSpec,...
Strike, OptionPrice,'Method','jackel2016')

ImpvVol = 2×1

    0.3175
    0.4878

The implied volatility is 31.75% for the call and 48.78% for the put.

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct
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Settle — Settlement date
serial date number | date character vector

Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date
character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date
numbers or a date character vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of the option from which the implied volatility is derived, specified as a NINST-
by-1 cell array of character vectors with a value of 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike
prices. Each row is the schedule for one option.
Data Types: double

OptPrice — European option price
nonnegative scalar | nonnegative vector

European option prices from which the implied volatility of the underlying asset is
derived, specified as a nonnegative scalar or NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Volatility =
impvbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice
,'Limit',5,'Tolerance',1e-5)

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive value

Upper bound of implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Limit argument is
ignored.

Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair
consisting of 'Tolerance' and a positive scalar.

Note If you are using Method with a value of 'jackel2016', the Tolerance argument
is ignored.

Data Types: double

Method — Method for computing implied volatility
'jackel2016' (default) | character vector with values 'search' or 'jackel2016' |
string with values "search" or "jackel2016"

Method for computing implied volatility, specified as the comma-separated pair consisting
of 'Method' and a character vector with a value of 'search' or 'jackel2016' or a
string with a value of "search" or "jackel2016".
Data Types: char | string
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Output Arguments
Volatility — Expected implied volatility values
vector

Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be
found, a NaN is returned.

References
[1] Jäckel, Peter. "Let's Be Rational." Wilmott Magazine., January, 2015 (https://

onlinelibrary.wiley.com/doi/pdf/10.1002/wilm.10395).

See Also
optstockbybls | optstocksensbybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Black-Scholes Model” on page 3-152
“Pricing European Call Options Using Different Equity Models”
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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impvbyrgw
Determine implied volatility using Roll-Geske-Whaley option pricing model for American
call option

Syntax
Volatility = impvbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike,
OptPrice)
Volatility = impvbyrgw( ___ ,Name,Value)

Description
Volatility = impvbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike,
OptPrice) computes implied volatility using Roll-Geske-Whaley option pricing model for
American call option.

Note impvbyrgw computes implied volatility of American calls with a single cash
dividend using the Roll-Geske-Whaley option pricing model.

Volatility = impvbyrgw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Implied Volatility Using the Roll-Geske-Whaley Option Pricing Model

This example shows how to compute the implied volatility using the Roll-Geske-Whaley
option pricing model. Assume that on July 1, 2008 a stock is trading at $13 and pays a
single cash dividend of $0.25 on November 1, 2008. The American call option with a
strike price of $15 expires on July 1, 2009 and is trading at $1.346. The annualized
continuously compounded risk-free rate is 5% per annum. Calculate the implied volatility
of the stock using the Roll-Geske-Whaley option pricing model.
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AssetPrice = 13;
Strike = 15;
Rates = 0.05;
Settle = 'July-01-08';
Maturity = 'July-01-09';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
 'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(NaN, AssetPrice, {'cash'}, 0.25, {'Nov 1,2008'});

Price = [1.346];
Volatility = impvbyrgw(RateSpec, StockSpec, Settle, Maturity, Strike, Price)

Volatility = 0.3539

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector
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Settlement date, specified as a NINST-by-1 vector of serial date numbers or a date
character vectors.
Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date for the American option, specified as a NINST-by-1 vector of serial date
numbers or a date character vectors.
Data Types: double | char

Strike — Option strike price value
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or NINST-by-1 vector of strike
price values. Each row is the schedule for one option.
Data Types: double

OptPrice — American option price
nonnegative scalar | nonnegative vector

American option prices from which the implied volatility of the underlying asset is
derived, specified as a nonnegative scalar or NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Volatility =
impvbyrgw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,OptPrice
,'Limit',5,'Tolerance',1e-5)

Limit — Upper bound of implied volatility search interval
10 (1000% per annum) (default) | positive value
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Upper bound of implied volatility search interval, specified as the comma-separated pair
consisting of 'Limit' and a positive scalar.
Data Types: double

Tolerance — Implied volatility search termination tolerance
1e-6 (default) | positive scalar

Implied volatility search termination tolerance, specified as the comma-separated pair
consisting of 'Tolerance' and a positive scalar.
Data Types: double

Output Arguments
Volatility — Expected implied volatility values
vector

Expected implied volatility values, returned as a NINST-by-1 vector. If no solution can be
found, a NaN is returned.

See Also
optstockbyrgw | optstocksensbyrgw

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Roll-Geske-Whaley Model” on page 3-155
“Roll-Geske-Whaley Model” on page 3-150
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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instadd
Add types to instrument collection

Syntax
InstSet = instadd(InstSetOld,TypeString,Data1,Data2, ...)
InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis)
InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis)
InstSet =
instadd('Barrier',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,Ba
rrierType,Barrier,Rebate)
InstSet =
instadd('Bond',CouponRate,Settle,Maturity,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face)
InstSet =
instadd('CBond',CouponRate,Settle,Maturity,ConvRatio'CallStrike',Cal
lStrike,'CallExDates',CallExDates,'AmericanCall',AmericanCall,'PutSt
rike',PutStrike,
'PutExDates',PutExDates,'AmericanPut',AmericanPut,'Period',Period,'F
ace',Face,'Spread',Spread,'IssueDate',IssueDate,'FirstCouponDate',Fi
rstCouponDate,'LastCouponDate',LastCouponDate,'StartDate',StartDate)
InstSet =
instadd('OptEmBond',CouponRate,Settle,Maturity,OptSpec,Strike,Exerci
seDates,'AmericanOpt',AmericanOpt,'Period',Period,'Basis',Basis,'End
MonthRule',EndMonthRule,'Face',Face,
'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'LastCouponD
ate',LastCouponDate,'StartDate',StartDate)
InstSet =
instadd('OptBond',BondIndex,OptSpec,Strike,ExerciseDates,AmericanOpt
)
InstSet =
instadd('Cap',Strike,Settle,Maturity,Reset,Basis,Principal)
InstSet =
instadd('Compound',UOptSpec,UStrike,USettle,UExerciseDates,UAmerican
Opt,COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt)
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InstSet =
instadd('Fixed',CouponRate,Settle,Maturity,Reset,Basis,Principal,End
MonthRule)
InstSet =
instadd('Float',Spread,Settle,Maturity,Reset,Basis,Principal,EndMont
hRule,CapRate,FloorRate)
InstSet =
instadd('Floor',Strike,Settle,Maturity,Reset,Basis,Principal)
InstSet =
instadd('Lookback',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
InstSet =
instadd('OptFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
InstSet =
instadd('OptEmFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt
,Reset,Basis,EndMonthRule,Principal)
InstSet =
instadd('RangeFloat',Spread,Settle,Maturity,RateSched,Reset,Basis,Pr
incipal,EndMonthRule)
InstSet =
instadd('OptStock',OptSpec,Strike,Settle,Maturity,AmericanOpt)
InstSet =
instadd('Swap',LegRate,Settle,Maturity,LegReset,Basis,Principal,LegT
ype,EndMonthRule,StartDate)
InstSet =
instadd('Swaption',OptSpec,Strike,ExerciseDates,Spread,Settle,Maturi
ty,AmericanOpt,SwapReset,Basis,Principal)

Description
InstSet = instadd(InstSetOld,TypeString,Data1,Data2, ...) adds an
instrument to an existing collection.

InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis)
adds an arbitrary cash flow instrument. (See also instcf.)

InstSet = instadd('CashFlow',CFlowAmounts,CFlowDates,Settle,Basis)
adds an asian instrument. (See also instasian.)
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InstSet =
instadd('Barrier',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt,Ba
rrierType,Barrier,Rebate) adds a barrier instrument. (See also instbarrier.)

InstSet =
instadd('Bond',CouponRate,Settle,Maturity,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face) adds a bond
instrument. (See also instbond.)

InstSet =
instadd('CBond',CouponRate,Settle,Maturity,ConvRatio'CallStrike',Cal
lStrike,'CallExDates',CallExDates,'AmericanCall',AmericanCall,'PutSt
rike',PutStrike,
'PutExDates',PutExDates,'AmericanPut',AmericanPut,'Period',Period,'F
ace',Face,'Spread',Spread,'IssueDate',IssueDate,'FirstCouponDate',Fi
rstCouponDate,'LastCouponDate',LastCouponDate,'StartDate',StartDate)
adds a convertible bond instrument. (See also instcbond.)

InstSet =
instadd('OptEmBond',CouponRate,Settle,Maturity,OptSpec,Strike,Exerci
seDates,'AmericanOpt',AmericanOpt,'Period',Period,'Basis',Basis,'End
MonthRule',EndMonthRule,'Face',Face,
'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'LastCouponD
ate',LastCouponDate,'StartDate',StartDate) adds a bond with embedded
option instrument. (See also instoptembnd. )

InstSet =
instadd('OptBond',BondIndex,OptSpec,Strike,ExerciseDates,AmericanOpt
) adds a bond option instrument. (See also instoptbnd.)

InstSet =
instadd('Cap',Strike,Settle,Maturity,Reset,Basis,Principal) adds a cap
instrument. (See also instcap.)

InstSet =
instadd('Compound',UOptSpec,UStrike,USettle,UExerciseDates,UAmerican
Opt,COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt) adds a
compound instrument. (See also instcompound.)

InstSet =
instadd('Fixed',CouponRate,Settle,Maturity,Reset,Basis,Principal,End
MonthRule) adds a fixed-rate note instrument. (See also instfixed.)
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InstSet =
instadd('Float',Spread,Settle,Maturity,Reset,Basis,Principal,EndMont
hRule,CapRate,FloorRate) adds a floating-rate note instrument. (See also
instfloat.)

InstSet =
instadd('Floor',Strike,Settle,Maturity,Reset,Basis,Principal) adds a
floor instrument. (See also instfloor.)

InstSet =
instadd('Lookback',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
adds a lookback instrument. (See also instlookback.)

InstSet =
instadd('OptFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
adds a floating-rate option instrument. (See also instoptfloat.)

InstSet =
instadd('OptEmFloat',OptSpec,Strike,Settle,ExerciseDates,AmericanOpt
,Reset,Basis,EndMonthRule,Principal) adds a floating-rate embedded option
instrument. (See also instoptemfloat.)

InstSet =
instadd('RangeFloat',Spread,Settle,Maturity,RateSched,Reset,Basis,Pr
incipal,EndMonthRule) adds a range floating note instrument. (See also
instrangefloat.)

InstSet =
instadd('OptStock',OptSpec,Strike,Settle,Maturity,AmericanOpt) adds a
stock option instrument. (See also instoptstock.)

InstSet =
instadd('Swap',LegRate,Settle,Maturity,LegReset,Basis,Principal,LegT
ype,EndMonthRule,StartDate) adds a swap instrument. (See also instswap.)

InstSet =
instadd('Swaption',OptSpec,Strike,ExerciseDates,Spread,Settle,Maturi
ty,AmericanOpt,SwapReset,Basis,Principal) adds a swaption instrument. (See
also instswaption.)

instadd stores instruments of types 'Asian', 'Barrier', 'Bond', 'Cap',
'CashFlow', 'Compound', 'Fixed', 'Float', 'Floor', 'Lookback', 'OptBond',
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'OptStock', 'Swap', or 'Swaption'. Financial Instruments Toolbox provides pricing
and sensitivity routines for these instruments.

Input Arguments
InstSetOld

Variable containing a collection of instruments. Instruments are classified by type; each
type can have different data fields. The stored data field is a row vector or character
vector for each instrument. For more information on instrument data parameters, see the
reference entries for individual instrument types. For example, see instcap for
additional information on the cap instrument.

Output Arguments
InstSet

InstSet is an instrument set variable containing the new input data.

Examples

Create a Portfolio with Two Cap Instruments and a 4% Bond

Define the bond:

Strike = [0.06; 0.07]; 
CouponRate = 0.04; 
Settle = '06-Feb-2000'; 
Maturity = '15-Jan-2003';

Create a portfolio with two cap instruments and a 4% bond and then display the portfolio:

InstSet = instadd('Cap', Strike, Settle, Maturity); 
InstSet = instadd(InstSet, 'Bond', CouponRate, Settle, Maturity);
instdisp(InstSet)

Index Type Strike Settle         Maturity       CapReset Basis Principal
1     Cap  0.06   06-Feb-2000    15-Jan-2003    1        0     100      
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2     Cap  0.07   06-Feb-2000    15-Jan-2003    1        0     100      
 
Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
3     Bond 0.04       06-Feb-2000    15-Jan-2003    2      0     1            NaN       NaN             NaN            NaN       100 
 

See Also
instaddfield | instasian | instbarrier | instbond | instcap | instcbond |
instcf | instcompound | instdisp | instfixed | instfloat | instfloor |
instlookback | instoptbnd | instoptembnd | instoptstock | instswap |
instswaption

Topics
“Portfolio Creation” on page 1-8
“Creating Instruments or Properties” on page 1-21
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instaddfield
Add new instruments to instrument collection

Syntax
InstSet =
instaddfield('FieldName',FieldList,'Data',DataList,'Type',TypeString
)
InstSet =
instaddfield('FieldName',FieldList,'FieldClass',ClassList,'Data',Dat
aList,'Type',TypeString)
InstSetNew =
instaddfield(InstSet,'FieldName',FieldList,'Data',DataList,'Type',Ty
peString)

Arguments
FieldList Number of fields, specified as a NFIELDS-by-1 cell array of

character vectors listing the name of each data field. FieldList
cannot be named with the reserved name Type or Index.

DataList Number of instruments, specified as a NINST-by-M array or
NFIELDS-by-1 cell array of data contents for each field. Each row
in a data array corresponds to a separate instrument. Single rows
are copied to apply to all instruments to be worked on. The
number of columns is arbitrary, and data is padded along columns.

ClassList (Optional) Character vector or NFIELDS-by-1 cell array of
character vectors listing the data class of each field. The class
determines how DataList is parsed. Valid character vectors are
'dble', 'date', and 'char'. The 'FieldClass', ClassList
pair is always optional. ClassList is inferred from existing field
names or from the data if not entered.
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TypeString Character vector specifying the type of instrument added.
Instruments of different types can have different Fieldname
collections.

InstSet Variable containing a collection of instruments. Instruments are
classified by type; each type can have different Data fields. The
stored Data field is a row vector or character vector for each
instrument.

Description
InstSet =
instaddfield('FieldName',FieldList,'Data',DataList,'Type',TypeString
) to create your own types of instruments or to append new instruments to an existing
collection. Argument value pairs can be entered in any order.

InstSet =
instaddfield('FieldName',FieldList,'FieldClass',ClassList,'Data',Dat
aList,'Type',TypeString) creates an instrument variable.

InstSetNew =
instaddfield(InstSet,'FieldName',FieldList,'Data',DataList,'Type',Ty
peString) adds instruments to an existing instrument set, InstSet. The output
InstSetNew is a new instrument set containing the input data.

Examples
Build a portfolio around July options.

Strike  Call    Put  
 95     12.2    2.9 
100      9.2    4.9 
105      6.8    7.4 

Strike = (95:5:105)' 
CallP = [12.2; 9.2; 6.8] 

Enter three call options with data fields Strike, Price, and Opt.
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InstSet = instaddfield('Type','Option','FieldName',...
{'Strike','Price','Opt'}, 'Data',{ Strike, CallP, 'Call'}); 
 instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Add a futures contract and set the input parsing class.
InstSet = instaddfield(InstSet,'Type','Futures',... 
'FieldName',{'Delivery','F'},'FieldClass',{'date','dble'},... 
'Data' ,{'01-Jul-99',104.4 });  
instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Add a put option.

FN = instfields(InstSet,'Type','Option') 
InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName',FN, 'Data',{105, 7.4, 'Put'}); 
instdisp(InstSet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Index Type   Strike Price Opt 
5     Option 105     7.4  Put 

Make a placeholder for another put.

InstSet = instaddfield(InstSet,'Type','Option',...
'FieldName','Opt','Data','Put') 
instdisp(InstSet)
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Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 

Add a cash instrument.

InstSet = instaddfield(InstSet, 'Type', 'TBill',... 
'FieldName','Price','Data',99)  
instdisp(InstSet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 

Index Type  Price
7     TBill 99   

See Also
instadd | instdisp | instget | instgetcell | instsetfield

Topics
“Portfolio Creation” on page 1-8
“Creating Instruments or Properties” on page 1-21
“Instrument Constructors” on page 1-20
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instasian
Construct Asian option

Syntax
InstSet = instasian(InstSet,OptSpec,Strike,Settle,
ExerciseDates,AmericanOpt,AvgType,AvgPrice,AvgDate)
[FieldList,ClassList,TypeString] = instasian

Arguments
InstSet Instrument variable. This argument is specified only when

adding asian instruments to an existing instrument set. See
instget for more information on the InstSet variable.

OptSpec NINST-by-1 list of character vector values for 'Call' or
'Put'.

Strike NINST-by-1 vector of strike price values. Each row is the
schedule for one option.

Settle NINST-by-1 vector of Settle dates.
ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row is the schedule
for one option. For a European option, there is only one
exercise date, the option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any tree date
between or including the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation date of the stock
tree and the single listed exercise date.
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AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt = 1, the option
is an American option.

AvgType (Optional) Character vector is 'arithmetic' for arithmetic
average (default) or 'geometric' for geometric average.

AvgPrice (Optional) Scalar representing the average price of the
underlying asset at Settle. This argument is used when
AvgDate < Settle. Default is the current stock price.

AvgDate (Optional) Scalar representing the date on which the averaging
period begins. Default = Settle.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries
vectors with NaN. Only one data argument is required to create the instrument. The
others may be omitted or passed as empty matrices [].

Description
InstSet = instasian(InstSet,OptSpec,Strike,Settle,
ExerciseDates,AmericanOpt,AvgType,AvgPrice,AvgDate) specifies an Asian
option.

[FieldList,ClassList,TypeString] = instasian displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For an Asian
option instrument, TypeString = 'Asian'.

Examples
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Create an Asian Option Instrument

Load the example instrument set, deriv.mat, and set the required values for an asian
option instrument.

load deriv.mat

Create a subportfolio with barrier and lookback options.

CRRSubSet = instselect(CRRInstSet,'Type',{'Barrier', 'Lookback'});

Define the asian instrument.

OptSpec = 'put';
Strike = NaN;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2004';

Add a floating strike asian option to the instrument set.

InstSet = instasian(CRRSubSet, OptSpec, Strike, Settle, ExerciseDates);
instdisp(InstSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    105    01-Jan-2003    01-Jan-2006    1           ui          102     0      Barrier1 1       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
2     Lookback call    115    01-Jan-2003    01-Jan-2006    0           Lookback1 7       
3     Lookback call    115    01-Jan-2003    01-Jan-2007    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
4     Asian put     NaN    01-Jan-2003    01-Jan-2004    0           arithmetic NaN      NaN            NaN     
 

See Also
instadd | instdisp | instget | instgetcell | instsetfield

Topics
“Pricing Equity Derivatives Using Trees” on page 3-128
“Creating Instruments or Properties” on page 1-21
“Instrument Constructors” on page 1-20
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“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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instbarrier
Construct barrier option

Syntax
InstSet = instbarrier(OptSpec,Strike,Settle,ExerciseDates,
AmericanOptBarrierSpec,Barrier,Rebate)
InstSet = instbarrier(InstSetOld,OptSpec,Strike,Settle,
ExerciseDates,AmericanOptBarrierSpec,Barrier,Rebate)
[FieldList,ClassList,TypeString] = instbarrier

Description
InstSet = instbarrier(OptSpec,Strike,Settle,ExerciseDates,
AmericanOptBarrierSpec,Barrier,Rebate) constructs a barrier instrument.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries
vectors with NaN. Only one data argument is required to create the instrument. The
others can be omitted or passed as empty matrices [].

InstSet = instbarrier(InstSetOld,OptSpec,Strike,Settle,
ExerciseDates,AmericanOptBarrierSpec,Barrier,Rebate) adds barrier options
to an existing instrument variable InstSetOld).

[FieldList,ClassList,TypeString] = instbarrier lists field metadata for the
barrier instrument.

Examples

Create Two Barrier Option Instruments

Create an instrument set of two barrier options with the following data:

OptSpec = {'put';'call'};
Strike = 112;

 instbarrier

11-895



Settle = '01-Jan-2012';
ExerciseDates = '01-Jan-2015';
BarrierSpec = {'do';'ui'};
Barrier = [101;102];
AmericanOpt = 0;

Create the instrument set (InstSet) for the two barrier options.

InstSet = instbarrier(OptSpec, Strike, Settle, ExerciseDates,AmericanOpt, BarrierSpec, Barrier);

Display the instrument set.

instdisp(InstSet)

Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate
1     Barrier put     112    01-Jan-2012    01-Jan-2015    0           do          101     0     
2     Barrier call    112    01-Jan-2012    01-Jan-2015    0           ui          102     0     
 

Input Arguments
OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of an option as 'call' or 'put', specified as a NINST-by-1 list of character
vector values.
Data Types: char

Strike — Option strike price value
integer

Option strike price value, specified as an NINST-by-1 vector of strike values. Each row is
the schedule for one option.
Data Types: double

Settle — Settlement or trade date
serial date number | date character vector

Settlement date for the barrier option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.
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Data Types: double | char

ExerciseDates — Option exercise dates
date character vector | serial date number

Option exercise dates, specified as a date character vector or a serial date number:

• For a European option (AmericanOpt = 0), specified as a NINST-by-1 vector of
exercise dates. Each row is the schedule for one option. For a European option, there
is only one exercise date, the option expiry date.

• For an American option (AmericanOpt = 1), specified as a NINST-by-2 vector of
exercise date boundaries. For each instrument, the option can be exercised on any
tree date between or including the pair of dates on that row. If only one non-NaN date
is listed, or if ExerciseDates is NINST-by-1, the option can be exercised between the
valuation date of the stock tree and the single listed exercise date.

Data Types: double | char

AmericanOpt — Flag for American option
integer with values 0 or 1

Flag for American option, specified as an integer with values 0 or 1. If AmericanOpt =
0, NaN, or is unspecified, the option is a European option. If AmericanOpt = 1, the
option is an American option.
Data Types: logical

BarrierSpec — Barrier option type
character vector with values: 'UI', 'UO', 'DI', 'DO'

Barrier option type, specified as a character vector with the following values:

• 'UI' — Up Knock In

This option becomes effective when the price of the underlying asset passes above the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying asset goes above
the barrier level during the life of the option.

• 'UO' — Up Knock Out

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying security at the strike price as long as the underlying asset does not
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go above the barrier level during the life of the option. This option terminates when
the price of the underlying asset passes above the barrier level. Usually, with an up-
and-out option, the rebate is paid if the spot price of the underlying reaches or
exceeds the barrier level.

• 'DI' — Down Knock In

This option becomes effective when the price of the underlying stock passes below the
barrier level. It gives the option holder the right, but not the obligation, to buy/sell
(call/put) the underlying security at the strike price if the underlying security goes
below the barrier level during the life of the option. With a down-and-in option, the
rebate is paid if the spot price of the underlying does not reach the barrier level
during the life of the option.

• 'DO' — Down Knock Up

This option gives the option holder the right, but not the obligation, to buy/sell (call/
put) the underlying asset at the strike price as long as the underlying asset does not
go below the barrier level during the life of the option. This option terminates when
the price of the underlying security passes below the barrier level. Usually the option
holder receives a rebate amount if the option expires worthless.

Option Barrier Type Payoff if Barrier
Crossed

Payoff if Barrier not
Crossed

Call/Put Down Knock-out Worthless Standard Call/Put
Call/Put Down Knock-in Call/Put Worthless
Call/Put Up Knock-out Worthless Standard Call/Put
Call/Put Up Knock-in Standard Call/Put Worthless

Data Types: char

Barrier — Barrier value
integer

Barrier value, specified as a vector of values.
Data Types: double

Rebate — Rebate value
integer

(Optional) Rebate value, specified as a vector of values.
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Data Types: double

InstSetOld — Instrument variable
structure

(Optional) Instrument variable, this argument is specified only when adding barrier
instruments to an existing instrument set. See instget for more information on the
InstSet variable.
Data Types: struct

Output Arguments
InstSet — Instrument variable for barrier option
structure

Instrument variable for barrier option, returned as a structure. See instget for more
information on the InstSet variable.

FieldList — Fields in InstSet instrument
cell array of character vectors

Fields in InstSet instrument are returned as a (NFIELDS-by-1) cell array of character
vectors listing the name of each data field for this instrument type.

ClassList — Data class of each field in InstSet instrument
cell array of character vectors

Data class of each field in InstSet instrument, returned as an NFIELDS-by-1 cell array of
character vectors listing the data class of each field. The class determines how arguments
are parsed. Valid character vectors are 'dble', 'date', and 'char'.

TypeString — Type of instrument added to InstSet instrument
character vector

Type of instrument added to InstSet instrument, returned as a character vector
specifying the type of instrument added. For a barrier option instrument, TypeString =
'Barrier'.
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Definitions

Barrier Option
A barrier option has not only a strike price but also a barrier level and sometimes a
rebate.

A rebate is a fixed amount that is paid if the option cannot be exercised because the
barrier level has been reached or not reached. The payoff for this type of option depends
on whether the underlying asset crosses the predetermined trigger value (barrier level),
indicated by Barrier, during the life of the option.

See Also
barrierbybls | barrierbycrr | barrierbyeqp | barrierbyfd | barrierbyitt |
barrierbyls | barrierbystt | instadd | instdisp | instget

Topics
“Pricing Equity Derivatives Using Trees” on page 3-128
“Creating Instruments or Properties” on page 1-21
“Instrument Constructors” on page 1-20
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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instbond
Construct bond instrument

Syntax
InstSet =
instbond(CouponRate,Settle,Maturity,Period,Basis,EndMonthRule,IssueD
ate,FirstCouponDate,LastCouponDate,StartDate,Face)
InstSet =
instbond(InstSet,CouponRate,Settle,Maturity,Period,Basis,EndMonthRul
e,IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face)
[FieldList,ClassList,TypeString] = instbond

Arguments
InstSet Instrument variable. This argument is specified only when

adding bond instruments to an existing instrument set. See
instget for more information on the InstSet variable.

CouponRate Decimal annual rate indicating the annual percentage rate
used to determine the coupons payable on a bond.
CouponRate is a NINST-by-1 vector or NINST-by-1 cell
array of decimal annual rates, or decimal annual rate
schedules. For the latter case of a variable coupon
schedule, each element of the cell array is a NumDates-
by-2 cell array, where the first column is dates and the
second column is its associated rate. The date indicates the
last day that the coupon rate is valid.

Settle Settlement date. A vector of serial date numbers or date
character vectors. Settle must be earlier than Maturity.

Maturity Maturity date. A vector of serial date numbers or date
character vectors.
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Period (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 1, 2, 3, 4, 6, and 12. Default =
2.

Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies

only when Maturity is an end-of-month date for a month
having 30 or fewer days. 0 = ignore rule, meaning that a
bond's coupon payment date is always the same numerical
day of the month. 1 = set rule on (default), meaning that a
bond's coupon payment date is always the last actual day
of the month.

IssueDate (Optional) Date when a bond was issued.
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FirstCouponDate (Optional) Date when a bond makes its first coupon
payment; used when bond has an irregular first coupon
period. When FirstCouponDate and LastCouponDate
are both specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period.
In the absence of a specified FirstCouponDate, a
specified LastCouponDate determines the coupon
structure of the bond. The coupon structure of a bond is
truncated at the LastCouponDate, regardless of where it
falls, and is followed only by the bond's maturity cash flow
date. If you do not specify a LastCouponDate, the cash
flow payment dates are determined from other inputs.

StartDate (Optional) Date when a bond actually starts (that is, the
date when a bond's cash flows can be considered). To make
an instrument forward starting, specify this date as a
future date. If StartDate is not explicitly specified, the
effective start date is the Settle date.

Face (Optional) Face or par value. Face is a NINST-by-1 vector
or NINST-by-1 cell array of face values, or face value
schedules. For the latter case, each element of the cell
array is a NumDates-by-2 cell array, where the first column
is dates and the second column is its associated face value.
The date indicates the last day that the face value is valid.
Default = 100.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in
unspecified entries vectors with NaN. Only one data argument is required to create the
instrument. The others can be omitted or passed as empty matrices [].

Description
InstSet =
instbond(CouponRate,Settle,Maturity,Period,Basis,EndMonthRule,IssueD
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ate,FirstCouponDate,LastCouponDate,StartDate,Face) creates a new
instrument set containing bond instruments.

InstSet =
instbond(InstSet,CouponRate,Settle,Maturity,Period,Basis,EndMonthRul
e,IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face) adds bond
instruments to an existing instrument set.

[FieldList,ClassList,TypeString] = instbond displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a bond
instrument, TypeString = 'Bond'.

Examples

Create a Bond Instrument

Create a new instrument variable with the following information:

CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013'; 
Maturity = 'Nov-1-2014'; 
Period =1; 

InstSet = instbond(CouponRate, Settle, Maturity, ...
Period)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
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     FieldData: {{11x1 cell}}

Display the instrument set.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

See Also
hjmprice | instaddfield | instdisp | instget | intenvprice

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a

 instbond

11-905



instcap
Construct cap instrument

Syntax
InstSet = instcap(Strike,Settle,Maturity,Reset,Basis,Principal)
InstSet =
instcap(InstSet,Strike,Settle,Maturity,CapReset,Basis,Principal)
[FieldList,ClassList,TypeString] = instcap

Arguments
InstSet Instrument variable. This argument is specified only when adding

cap instruments to an existing instrument set. See instget for more
information on the InstSet variable.

Strike Rate at which the cap is exercised, as a decimal number.
Settle Settlement date. Serial date number representing the settlement

date of the cap.
Maturity Serial date number representing the maturity date of the cap.
CapReset (Optional) NINST-by-1 vector representing the frequency of

payments per year. Default = 1.
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Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Principal (Optional) NINST-by-1 of notional principal amounts or NINST-by-1

cell array where each element is a NumDates-by-2 cell array where
the first column is dates and the second column is associated
principal amount. The date indicates the last day that the principal
value is valid. Default is 100.

Description
InstSet = instcap(Strike,Settle,Maturity,Reset,Basis,Principal)
creates a new instrument set containing cap instruments.

InstSet =
instcap(InstSet,Strike,Settle,Maturity,CapReset,Basis,Principal) adds
cap instruments to an existing instrument set.

[FieldList,ClassList,TypeString] = instcap displays the classes.
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FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a cap
instrument, TypeString = 'Cap'.

Note Use the optional argument, Principal, to pass a schedule for an amortizing cap.

Examples

Create Two Cap Instruments

Create a new instrument variable with the following information:

Strike = [0.035; 0.045];
Settle= 'Jan-1-2013'; 
Maturity = 'Jan-1-2014'; 
Reset = 1;
Basis = 1;
Principal = 1000;

Create the new cap instruments.

InstSet = instcap(Strike, Settle, Maturity, Reset, Basis, Principal)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Cap'}
     FieldName: {{6x1 cell}}
    FieldClass: {{6x1 cell}}
     FieldData: {{6x1 cell}}

Display the cap instruments.

instdisp(InstSet)
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Index Type Strike Settle         Maturity       CapReset Basis Principal
1     Cap  0.035  01-Jan-2013    01-Jan-2014    1        1     1000     
2     Cap  0.045  01-Jan-2013    01-Jan-2014    1        1     1000     
 

See Also
hjmprice | instaddfield | instbond | instdisp | instfloor | instswap |
intenvprice

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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instcbond
Construct CBond instrument for convertible bond

Syntax
ISet = instcbond(CouponRate,Settle,Maturity,ConvRatio)
ISet = instcbond( ___ ,Name,Value)

ISet = instcbond(ISet,CouponRate,Settle,Maturity,ConvRatio)
ISet = instcbond( ___ ,Name,Value)

[FieldList,ClassList,TypeString] = instcbond

Description
ISet = instcbond(CouponRate,Settle,Maturity,ConvRatio) creates a CBond
instrument variable from data arrays.

ISet = instcbond( ___ ,Name,Value) creates a CBond instrument variable from
data arrays using optional name-value pair arguments.

ISet = instcbond(ISet,CouponRate,Settle,Maturity,ConvRatio) adds a
CBond to an existing instrument set.

ISet = instcbond( ___ ,Name,Value) adds a CBond instrument to an existing
instrument set using optional name-value pair arguments.

[FieldList,ClassList,TypeString] = instcbond lists the field metadata for the
CBond instrument.

Examples
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Create a CBond Instrument

Create a CBond instrument.

CouponRate = 0.03;
Settle = 'Jan-1-2014';
Maturity = 'Jan-1-2016'; 
CallStrike = 125; 
CallExDates = [datenum('Jan-1-2015') datenum('Jan-1-2016')];

ConvRatio = 1.5;
Spread = 0.045;
 
InstSet = instcbond(CouponRate,Settle,Maturity,ConvRatio,...
'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,...
'AmericanCall', 1);

Display the InstSet for the convertible bond.

instdisp(InstSet)

Index Type  CouponRate Settle         Maturity       ConvRatio Period IssueDate FirstCouponDate LastCouponDate StartDate Face Spread CallStrike CallExDates                  AmericanCall PutStrike PutExDates AmericanPut ConvDates      DefaultProbability RecoveryRate
1     CBond 0.03       01-Jan-2014    01-Jan-2016    1.5       2      NaN       NaN             NaN            NaN       100  0.045  125        01-Jan-2015   01-Jan-2016    1            NaN       NaN        0           01-Jan-2016    NaN                NaN         
 

Add a CBond Instrument to an Existing Portfolio Set

Create a bond instrument using instbond.

CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013';
Maturity = 'Nov-1-2014';
Period =1;

InstSet = instbond(CouponRate,Settle,Maturity, ...
Period);

Add a CBond instrument to the existing portfolio set.

ConvRatio = 1.5;
InstSet = instadd(InstSet,'CBond',CouponRate,Settle,Maturity,ConvRatio);
instdisp(InstSet)
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Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 
Index Type  CouponRate Settle         Maturity       ConvRatio Period IssueDate FirstCouponDate LastCouponDate StartDate Face Spread CallStrike CallExDates AmericanCall PutStrike PutExDates AmericanPut ConvDates      DefaultProbability RecoveryRate
3     CBond 0.035      01-Nov-2013    01-Nov-2014    1.5       2      NaN       NaN             NaN            NaN       100  NaN    NaN        NaN         0            NaN       NaN        0           01-Nov-2014    NaN                NaN         
4     CBond 0.04       01-Nov-2013    01-Nov-2014    1.5       2      NaN       NaN             NaN            NaN       100  NaN    NaN        NaN         0            NaN       NaN        0           01-Nov-2014    NaN                NaN         
 

[FieldList,ClassList,TypeString] = instcbond

FieldList = 20x1 cell array
    {'CouponRate'        }
    {'Settle'            }
    {'Maturity'          }
    {'ConvRatio'         }
    {'Period'            }
    {'IssueDate'         }
    {'FirstCouponDate'   }
    {'LastCouponDate'    }
    {'StartDate'         }
    {'Face'              }
    {'Spread'            }
    {'CallStrike'        }
    {'CallExDates'       }
    {'AmericanCall'      }
    {'PutStrike'         }
    {'PutExDates'        }
    {'AmericanPut'       }
    {'ConvDates'         }
    {'DefaultProbability'}
    {'RecoveryRate'      }

ClassList = 20x1 cell array
    {'cell'}
    {'date'}
    {'date'}
    {'dble'}
    {'dble'}
    {'date'}
    {'date'}
    {'date'}
    {'date'}
    {'cell'}
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    {'dble'}
    {'dble'}
    {'date'}
    {'dble'}
    {'dble'}
    {'date'}
    {'dble'}
    {'date'}
    {'dble'}
    {'dble'}

TypeString = 
'CBond'

Input Arguments
CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 positive decimal annual rate or an NINST-
by-1 cell array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as an NINST-by-1 scalar using a serial nonnegative date
number or date character vector.

Note The Settle date for every convertible bond is set to the ValuationDate of the
stock tree. The bond argument, Settle, is ignored.

Data Types: double | char

Maturity — Maturity date
scalar for serial nonnegative date number | scalar for date character vector
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Maturity date, specified as an NINST-by-1 scalar using a serial nonnegative date number
or date character vector.
Data Types: double | char

ConvRatio — Number of shares convertible to one bond
nonnegative scalar

Number of shares convertible to one bond, specified as an NINST-by-1 nonnegative scalar.
Data Types: double

ISet — Variable containing a collection of instruments
structure

Variable containing a collection of instruments, specified as a structure. Use thus
argument to add a CBond (convertible bond) to an existing instrument set (ISet).
Instruments within ISet are broken down by type, and each type can have different data
fields. For more information on theISet variable, see instget.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: InstSet =
instcbond(CouponRate,Settle,Maturity,ConvRatio,'Spread',Spread,'Call
ExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall', 1)

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

IssueDate — Bond issue date
scalar for serial date number | scalar for date character vector
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Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 scalar using a serial date number or date character vector.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
scalar for serial date number | scalar for date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 scalar using a serial date number or date
character vector.
Data Types: double | char

LastCouponDate — Irregular last coupon date
scalar for serial date number | scalar for date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 scalar using a serial date number or date
character vector.
Data Types: double | char

Face — Face value
100 (default) | scalar of nonnegative value | cell array of nonnegative values

Face value, specified as the comma-separated pair consisting of 'Face' and a NINST-
by-1 scalar of nonnegative face values or an NINST-by-1 cell array, where each element is
a NumDates-by-2 cell array. The first column of the NumDates-by-2 cell array is dates and
the second column is the associated face value. The date indicates the last day that the
face value is valid.
Data Types: cell | double

Spread — Number of basis points over the reference rate
0 (default) | vector

Number of basis points over the reference rate, specified as the comma-separated pair
consisting of 'Spread' and a NINST-by-1 vector.
Data Types: double

CallStrike — Call strike price for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers
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Call strike price for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallStrike' and one of the following values:

• For a European call option — NINST-by-1 vector of nonnegative integers
• For a Bermuda call option — NINST-by-NSTRIKES matrix of strike price values, where

each row is the schedule for one call option. If a call option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• For an American call option — NINST-by-1 vector of strike price values for each call
option.

Data Types: single | double

CallExDates — Call exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Call exercise date for European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'CallExDates' and one of the following values:

• For a European option — NINST-by-1 vector of serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each
row is the schedule for one call option. For a European option, there is only one
CallExDate on the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the call option can be exercised on any tree date
between or including the pair of dates on that row. If CallExDates is NINST-by-1, the
call option can be exercised between the ValuationDate of the stock tree and the
single listed CallExDate.

Data Types: double | char | cell

AmericanCall — Call option type indicator
0 if AmericanCall is NaN or not entered (default) | scalar | vector of positive
integers[0,1]

Call option type, specified as the comma-separated pair consisting of 'AmericanCall'
and a NINST-by-1 positive integer scalar flags with values 0 or 1.

• For a European or Bermuda option — AmericanCall is 0 for each European or
Bermuda option.
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• For an American option — AmericanCall is 1 for each American option. The
AmericanCall argument is required to invoke American exercise rules.

Data Types: single | double

PutStrike — Put strike values for European, Bermuda, or American option
scalar | vector of positive integers[0,1]

Put strike values for a European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutStrike' and one of the following values:

• For a European put option — NINST-by-1 vector of nonnegative integers
• For a Bermuda put option — NINST-by-NSTRIKES matrix of strike price values, where

each row is the schedule for one put option. If a put option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• For an American put option — NINST-by-1 vector of strike price values for each put
option.

Data Types: single | double

PutExDates — Put exercise date for European, Bermuda, or American option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Put exercise date for a European, Bermuda, or American option, specified as the comma-
separated pair consisting of 'PutExDates' and one of the following values:

• For a European option — NINST-by-1 vector serial date numbers or date character
vectors.

• For a Bermuda option — NINST-by-NSTRIKES matrix of exercise dates, where each
row is the schedule for one put option. For a European option, there is only one
PutExDate on the option expiry date.

• For an American option — NINST-by-1 or NINST-by-2 matrix of exercise date
boundaries. For each instrument, the put option can be exercised on any tree date
between or including the pair of dates on that row. If PutExDates is NINST-by-1, the
put option can be exercised between the ValuationDate of the stock tree and the
single listed PutExDate.

Data Types: double | char | cell
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AmericanPut — Put option type indicator
0 if AmericanPut is NaN or not entered (default) | scalar | vector of positive
integers[0,1]

Put option type, specified as the comma-separated pair consisting of 'AmericanPut' and
a NINST-by-1 positive integer scalar flags with values 0 or 1.

• For a European or Bermuda option — AmericanPut is 0 for each European or
Bermuda option.

• For an American option — AmericanPut is 1 for each American option. The
AmericanPut argument is required to invoke American exercise rules.

Data Types: single | double

ConvDates — Convertible dates
MaturityDate (default) | scalar for serial date number | scalar for date character vector

Convertible dates, specified as the comma-separated pair consisting of 'ConvDates' and
a NINST-by-1 or NINST-by-2 matrix of serial nonnegative date numbers or date character
vectors. If ConvDates is not specified, the bond is always convertible until maturity.

For each instrument, the bond can be converted on any tree date between or including
the pair of dates on that row.

If ConvDates is NINST-by-1, the bond can be converted between the ValuationDate of
the stock tree and the single listed ConvDates.
Data Types: single | double | char

Output Arguments
ISet — Variable containing a collection of instruments
character vector | row vector

Variable containing a collection of instruments, returned as a row vector or character
vector for each instrument. Instruments are broken down by type and each type can have
different data fields. For more information on theISet variable, see instget.

FieldList — Name of each data field for instrument type
cell array of character vectors
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Name of each data field for instrument type, returned as an NFIELDS-by-1 cell array of
character vectors.

ClassList — Data class of each field
cell array of character vectors with valid values of 'dble', 'date', and 'char'

Data class of each field, returned as an NFIELDS-by-1 cell array of character vectors with
valid character vector values of 'dble', 'date', and 'char'.

TypeString — Type of instrument added
character vector

Type of instrument added, returned as character vector. When adding a CBond, the
TypeString = 'CBond'.

See Also
cbondbycrr | cbondbyeqp | crrprice | crrsens | eqpprice | eqpsens | instadd |
instdisp

Topics
“Convertible Bond” on page 2-3

Introduced in R2015a
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instcf
Construct cash flow instrument

Syntax
InstSet = instcf(CFlowAmounts,CFlowDates,Settle,Basis)
InstSet = instcf(InstSet,CFlowAmounts,CFlowDates,Settle,Basis)
[FieldList,ClassList,TypeString] = instcf

Arguments
InstSet Instrument variable. This argument is specified only when

adding cash flow instruments to an existing instrument set. See
instget for more information on the InstSet variable.

CFlowAmounts Number of instruments (NINST) by maximum number of cash
flows (MOSTCFS) matrix of cash flow amounts. Each row is a list
of cash flow values for one instrument. If an instrument has
fewer than MOSTCFS cash flows, the end of the row is padded
with NaNs.

CFlowDates NINST-by-MOSTCFS matrix of cash flow dates. Each entry
contains the date of the corresponding cash flow in
CFlowAmounts.

Settle Settlement date on which the cash flows are priced.
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Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Only one data argument is required to create an instrument. Other arguments can be
omitted or passed as empty matrices []. Dates can be input as serial date numbers or
date character vectors.

Description
InstSet = instcf(CFlowAmounts,CFlowDates,Settle,Basis) creates a new
cash flow instrument set from data arrays.

InstSet = instcf(InstSet,CFlowAmounts,CFlowDates,Settle,Basis) adds
instruments of type CashFlow to an instrument set.

[FieldList,ClassList,TypeString] = instcf lists field metadata for an
instrument of type CashFlow.
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FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString specifies the type of instrument added; for example,

TypeString = 'CashFlow'

.

See Also
instadd | instdisp | instget | intenvprice

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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instcompound
Construct compound option

Syntax
InstSet =
instcompound(UOptSpec,UStrike,USettle,UExerciseDates,UAmericanOpt,CO
ptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt)
InstSet =
instcompound(InstSet,UOptSpec,UStrike,USettle,UExerciseDates,UAmeric
anOpt,COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt)
[FieldList,ClassList,TypeString] = instcompound

Arguments
InstSet Instrument variable. This argument is specified only when

adding compound instruments to an existing instrument set.
See instget for more information on the InstSet variable.

UOptSpec Character vector with value of 'Call' or 'Put'.
UStrike 1-by-1 vector of strike price values.
USettle 1-by-1 vector of Settle dates.
UExerciseDates For a European option (UAmericanOpt = 0):

1-by-1 vector of exercise dates. For a European option, there
is only one exercise date, the option expiry date.

For an American option (UAmericanOpt = 1):

1-by-2 vector of exercise date boundaries. The option can be
exercised on any tree date. If only one non-NaN date is listed,
or if ExerciseDates is 1-by-1, the option can be exercised
between the valuation date of the stock tree and the single
listed exercise date.
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UAmericanOpt If UAmericanOpt = 0, NaN, or is unspecified, the option is
a European option. If UAmericanOpt = 1, the option is an
American option.

COptSpec NINST-by-1 list of character vector values for 'Call' or
'Put' of the compound option.

CStrike NINST-by-1 vector of strike price values. Each row is the
schedule for one option.

CSettle 1-by-1 vector containing the settlement or trade date.
CExerciseDates For a European option (CAmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row is the
schedule for one option. For a European option, there is only
one exercise date, the option expiry date.

For an American option (CAmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any tree date
between or including the pair of dates on that row. If only
one non-NaN date is listed, or if ExerciseDates is NINST-
by-1, the option can be exercised between the valuation date
of the stock tree and the single listed exercise date.

CAmericanOpt If CAmericanOpt = 0, NaN, or is unspecified, the option is
a European option. If CAmericanOpt = 1, the option is an
American option.

Description
InstSet =
instcompound(UOptSpec,UStrike,USettle,UExerciseDates,UAmericanOpt,CO
ptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt) creates a new
instrument set for a compound option.

InstSet =
instcompound(InstSet,UOptSpec,UStrike,USettle,UExerciseDates,UAmeric
anOpt,COptSpec,CStrike,CSettle,CExerciseDates,CAmericanOpt) adds a
compound option to an existing instrument set.
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[FieldList,ClassList,TypeString] = instcompound displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a
compound option instrument, TypeString = 'Compound'.

Examples

Create a Compound Option Instrument

Define a compound option instrument with the following data:

UOptSpec = 'Call';
UStrike = 130;
USettle = '01-Jan-2012';
UExerciseDates = '01-Jan-2015';
UAmericanOpt = 0;
COptSpec = 'Put';
CStrike = 5;
CSettle = '01-Jan-2012';
CExerciseDates = '01-Jan-2014';
CAmericanOpt = 0;

InstSet = instcompound(UOptSpec, UStrike, USettle,UExerciseDates, ...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates, CAmericanOpt)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Compound'}
     FieldName: {{10x1 cell}}
    FieldClass: {{10x1 cell}}
     FieldData: {{10x1 cell}}
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InstSet = instcompound(UOptSpec, UStrike, USettle,UExerciseDates, ...
UAmericanOpt, COptSpec, CStrike, CSettle,CExerciseDates)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Compound'}
     FieldName: {{10x1 cell}}
    FieldClass: {{10x1 cell}}
     FieldData: {{10x1 cell}}

Display the instrument set.

instdisp(InstSet)

Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt
1     Compound Call     130     01-Jan-2012    01-Jan-2015    0            Put      5       01-Jan-2012    01-Jan-2014    0           
 

See Also
instadd | instdisp | instget

Topics
“Creating Instruments or Properties” on page 1-21
“Pricing Equity Derivatives Using Trees” on page 3-128
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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instdelete
Complement of instrument set by matching conditions

Syntax
ISubSet = instdelete(InstSet,'FieldName',FieldList,'Data',DataList,'Index',IndexSet,'Type',TypeList)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

FieldList Number of fields, specified as a NFIELDS-by-1 cell array of character
vectors listing the name of each data field to match with data values.

DataList Number of values, specified as a NVALUES-by-M array or NFIELDS-
by-1 cell array of acceptable data values for each field. Each row lists
a data row value to search for in the corresponding FieldList. The
number of columns is arbitrary and matching ignores trailing NaNs
or spaces.

IndexSet (Optional) Number of instruments, specified as a NINST-by-1 vector
restricting positions of instruments to check for matches. The default
is all indices available in the instrument variable.

TypeList (Optional) Number of types, specified as a NTYPES-by-1 cell array of
character vectors restricting instruments to match one of TypeList
types. The default is all types in the instrument variable.

Note Argument value pairs can be entered in any order. The InstSet variable must be
the first argument. 'FieldName' and 'Data' arguments must appear together or not at
all.
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Description
The output argument ISubSet contains instruments not matching the input criteria.
Instruments are deleted from ISubSet if all the Field, Index, and Type conditions are
met. An instrument meets an individual Field condition if the stored FieldName data
matches any of the rows listed in the DataList for that FieldName. See instfind for
more examples on matching criteria.

Examples
Retrieve the instrument set variable ExampleInst from the data file
InstSetExamples.mat. The variable contains three types of instruments: Option,
Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000  
   
Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000     
6     Option  95     2.9  Put      0     

Index Type  Price  Maturity       Contracts
7     TBill 99     01-Jul-1999    6      

Create a new variable, ISet, with all options deleted.

ISet = instdelete(ExampleInst, 'Type','Option');
instdisp(ISet) 

Index Type    Delivery       F     Contracts
1     Futures 01-Jul-1999    104.4 -1000 
    
Index Type  Price  Maturity       Contracts
2     TBill 99     01-Jul-1999    6      
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See Also
instaddfield | instfind | instget | instselect

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instdisp
Display instruments

Syntax
CharTable = instdisp(InstSet)

Arguments
InstSet Variable containing a collection of instruments. See instaddfield

for examples on constructing the variable.

Description
CharTable = instdisp(InstSet) creates a character array displaying the contents
of an instrument collection, InstSet. If instdisp is called without output arguments,
the table is displayed in the Command Window.

Note When using instdisp, a value of NaN in one of the columns for an instrument
indicates that the default value for that parameter will be used in the instrument’s pricing
function.

CharTable is a character array with a table of instruments in InstSet. For each
instrument row, the Index and Type are printed along with the field contents. Field
headers are printed at the tops of the columns.

Examples
Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.
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load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000   
  
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0    
 
Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Create a swap instrument and use instdisp to display the instrument. Notice that value
of NaN in two columns for this instrument indicates that the default values for LegReset
and LegType parameters will be used in the swap instrument’s pricing function.

LegRate1 = [0.065, 0];
Settle1 = datenum('jan-1-2007');
Maturity1 = datenum('jan-1-2012');

ISet = instswap(LegRate1, Settle1, Maturity1);
instdisp(ISet)

Index Type LegRate    Settle        Maturity     LegReset Basis Principal LegType EndMonthRule
1     Swap [0.065  0] 01-Jan-2007   01-Jan-2012  [NaN]    0     100       [NaN]   1          

See Also
datestr | instaddfield | instcbond | instget | num2str

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instfields
List field names

Syntax
FieldList = instfields(InstSet,'Type',TypeList)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

TypeList (Optional) Number of types, specified as a NTYPES-by-1 cell array of
character vectors listing the instrument types to query.

Description
FieldList = instfields(InstSet,'Type',TypeList) retrieves the list of fields
stored in an instrument variable.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field corresponding to the listed types.

Examples
Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
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2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F      Contracts
4     Futures 01-Jul-1999    104.4  -1000     

Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0    
 
Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Get the fields listed for type 'Option'.
[FieldList, ClassList] = instfields(ExampleInst, 'Type',... 
'Option') 

FieldList = 

    'Strike'
    'Price'
    'Opt'
    'Contracts'

ClassList = 

    'dble'
    'dble'
    'char'
    'dble'

Get the fields listed for types 'Option' and 'TBill'.
FieldList = instfields(ExampleInst, 'Type', {'Option', 'TBill'}) 

FieldList = 

    'Strike'
    'Opt'
    'Price'
    'Maturity'
    'Contracts'

Get all the fields listed in any type in the variable.

FieldList = instfields(ExampleInst) 
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FieldList = 

    'Delivery'
    'F'
    'Strike'
    'Opt'
    'Price'
    'Maturity'
    'Contracts'

See Also
instdisp | instlength | insttypes

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instfind
Search instruments for matching conditions

Syntax
IndexMatch =
instfind(InstSet,'FieldName',FieldList,'Data',DataList,'Index',Index
Set,'Type',TypeList)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

FieldList Number of fields, specified as a NFIELDS-by-1 cell array of
character vectors listing the name of each data field to match with
data values.

DataList Number of values, specified as a NVALUES-by-M array or NFIELDS-
by-1 cell array of acceptable data values for each field. Each row
lists a data row value to search for in the corresponding
FieldList. The number of columns is arbitrary, and matching
ignores trailing NaNs or spaces.

IndexSet (Optional) Number of instruments, specified as a NINST-by-1
vector restricting positions of instruments to check for matches.
The default is all indices available in the instrument variable.

TypeList (Optional) Number of types, specified as a NTYPES-by-1 cell array
of character vectors restricting instruments to match one of
TypeList types. The default is all types in the instrument
variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first
argument. 'FieldName' and 'Data' arguments must appear together or not at all.
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Description
IndexMatch =
instfind(InstSet,'FieldName',FieldList,'Data',DataList,'Index',Index
Set,'Type',TypeList) returns indices of instruments matching Type, Field, or
Index values.

IndexMatch is an NINST-by-1 vector of positions of instruments matching the input
criteria. Instruments are returned in IndexMatch if all the Field, Index, and Type
conditions are met. An instrument meets an individual Field condition if the stored
FieldName data matches any of the rows listed in the DataList for that FieldName.

Examples
Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike   Price Opt  Contracts
5     Option 105      7.4   Put  -1000     
6     Option  95      2.9   Put      0     

Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6      

Make a vector, Opt95, containing the indexes within ExampleInst of the options struck
at 95.
Opt95 = instfind(ExampleInst, 'FieldName','Strike','Data','95') 

Opt95 =
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     1
     6    

Locate the futures and Treasury bill instruments within ExampleInst.

Types = instfind(ExampleInst,'Type',{'Futures';'TBill'})

Types =

     4
     7

See Also
instaddfield | instget | instgetcell | instselect

Topics
“Portfolio Creation” on page 1-8
“Searching or Subsetting a Portfolio” on page 1-23
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instfixed
Construct fixed-rate instrument

Syntax
InstSet =
instfixed(CouponRate,Settle,Maturity,FixedReset,Basis,Principal,EndM
onthRule)
InstSet =
instfixed(InstSet,CouponRate,Settle,Maturity,FixedReset,Basis,Princi
pal,EndMonthRule)
[FieldList,ClassList,TypeString] = instfixed

Arguments
InstSet Instrument variable. This argument is specified only when adding

fixed-rate note instruments to an existing instrument set. See
instget for more information on the InstSet variable.

CouponRate Decimal annual rate.
Settle Settlement date. Date character vector or serial date number

representing the settlement date of the fixed-rate note.
Maturity Date character vector or serial date number representing the

maturity date of the fixed-rate note.
FixedReset (Optional) NINST-by-1 vector representing the frequency of

payments per year. Default = 1.
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Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Principal (Optional) NINST-by-1 of notional principal amounts or NINST-by-1

cell array where each element is a NumDates-by-2 cell array where
the first column is dates and the second column is associated
principal amount. The date indicates the last day that the principal
value is valid. Default is 100.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule.
Default = 1.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in
unspecified entries vectors with NaN. Only one data argument is required to create the
instrument. The others may be omitted or passed as empty matrices [].
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Description
InstSet =
instfixed(CouponRate,Settle,Maturity,FixedReset,Basis,Principal,EndM
onthRule) creates a new instrument set containing fixed-rate instruments.

InstSet =
instfixed(InstSet,CouponRate,Settle,Maturity,FixedReset,Basis,Princi
pal,EndMonthRule) adds fixed-rate instruments to an existing instrument set.

[FieldList,ClassList,TypeString] = instfixed displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a fixed-
rate instrument, TypeString = 'Fixed'.

Examples

Create a Fixed-Rate Instrument

Define the characteristics of the fixed-rate instrument.

CouponRate = .03;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
FixedReset = 4;
Basis = 1;
Principal = 1000;
EndMonthRule = 1;

Create the new cap instrument.

ISet = instfixed(CouponRate, Settle, Maturity, FixedReset, Basis, Principal,EndMonthRule)
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ISet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Fixed'}
     FieldName: {{7x1 cell}}
    FieldClass: {{7x1 cell}}
     FieldData: {{7x1 cell}}

Display the fixed-rate instrument.

instdisp(ISet)

Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal EndMonthRule
1     Fixed 0.03       15-Mar-2013    15-Mar-2018    4          1     1000      1           
 

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instswap |
intenvprice

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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instfloat
Construct floating-rate instrument

Syntax
InstSet =
instfloat(Spread,Settle,Maturity,FloatReset,Basis,Principal,EndMonth
Rule)
InstSet =
instfloat(InstSet,Spread,Settle,Maturity,FloatReset,Basis,Principal,
EndMonthRule)
InstSet =
instfloat(Spread,Settle,Maturity,FloatReset,Basis,Principal,EndMonth
Rule,CapRate,FloorRate)
InstSet =
instfloat(InstSet,Spread,Settle,Maturity,FloatReset,Basis,Principal,
EndMonthRule,CapRate,FloorRate)
[FieldList,ClassList,TypeString] = instfloat

Arguments
InstSet Instrument variable. This argument is specified only when adding

floating-rate note instruments to an existing instrument set. See
instget for more information on the InstSet variable.

Spread Number of basis points over the reference rate.
Settle Settlement date. Date character vector or serial date number

representing the settlement date of the floating-rate note.
Maturity Date character vector or serial date number representing the

maturity date of the floating-rate note.
FloatReset (Optional) NINST-by-1 vector representing the frequency of

payments per year. Default = 1.
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Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Principal (Optional) NINST-by-1 of notional principal amounts or NINST-by-1

cell array where each element is a NumDates-by-2 cell array where
the first column is dates and the second column is associated
principal amount. The date indicates the last day that the principal
value is valid. Default is 100.

EndMonthRule (Optional) NINST-by-1 vector representing the End-of-month rule.
Default = 1.

CapRate (Optional) NINST-by-1 decimal annual rate or NINST-by-1 cell array,
where each element is a NumDates-by-2 cell array, and the cell array
first column is dates, and the second column is associated cap rates.
The date indicates the last day that the cap rate is valid.

FloorRate (Optional) NINST-by-1 decimal annual rate or NINST-by-1 cell array,
where each element is a NumDates-by-2 cell array, and the cell array
first column is dates, and the second column is associated floor rates.
The date indicates the last day that the floor rate is valid.
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Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in
unspecified entries vectors with NaN. Only one data argument is required to create the
instrument. The others may be omitted or passed as empty matrices [].

Description
InstSet =
instfloat(Spread,Settle,Maturity,FloatReset,Basis,Principal,EndMonth
Rule) creates a new instrument set containing floating-rate instruments.

InstSet =
instfloat(InstSet,Spread,Settle,Maturity,FloatReset,Basis,Principal,
EndMonthRule) adds floating-rate instruments to an existing instrument set.

InstSet =
instfloat(Spread,Settle,Maturity,FloatReset,Basis,Principal,EndMonth
Rule,CapRate,FloorRate) creates a new instrument set containing capped floating-
rate instruments.

InstSet =
instfloat(InstSet,Spread,Settle,Maturity,FloatReset,Basis,Principal,
EndMonthRule,CapRate,FloorRate) adds capped floating-rate instruments to an
existing instrument set.

[FieldList,ClassList,TypeString] = instfloat displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a floating-
rate instrument, TypeString = 'Float'.

Examples

11 Functions — Alphabetical List

11-944



Create a Floating-Rate Instrument

Define the characteristics of the floating-rate instrument.

Spread = 2;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
FloatReset = 4;
Basis = 1;
Principal = 1000;
EndMonthRule = 1;
CapRate = 0.35;
FloorRate = 0.27;

Create the new floating-rate instrument.

ISet = instfloat(Spread, Settle, Maturity, FloatReset, Basis, Principal, ...
EndMonthRule, CapRate, FloorRate)

ISet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Float'}
     FieldName: {{9x1 cell}}
    FieldClass: {{9x1 cell}}
     FieldData: {{9x1 cell}}

Display the floating-rate instrument.

instdisp(ISet)

Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
1     Float 2      15-Mar-2013    15-Mar-2018    4          1     1000      1            0.35    0.27     
 

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instswap |
intenvprice

Topics
“Creating Instruments or Properties” on page 1-21
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“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2012b
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instfloor
Construct floor instrument

Syntax
InstSet =
instfloor(Strike,Settle,Maturity,FloorReset,Basis,Principal)
InstSet =
instfloor(InstSet,Strike,Settle,Maturity,FloorReset,Basis,Principal)
[FieldList,ClassList,TypeString] = instfloor

Arguments
InstSet Instrument variable. This argument is specified only when adding

floor instruments to an existing instrument set. See instget for
more information on the InstSet variable.

Strike Rate at which the floor is exercised, as a decimal number.
Settle Settlement date. A vector of serial date numbers or date character

vectors. Settle must be earlier than Maturity.
Maturity Maturity date. A vector of serial date numbers or date character

vectors.
FloorReset (Optional) NINST-by-1 vector representing the frequency of

payments per year. Default = 1.
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Basis (Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Principal (Optional) NINST-by-1 of notional principal amounts or NINST-by-1

cell array where each element is a NumDates-by-2 cell array where
the first column is dates and the second column is associated
principal amount. The date indicates the last day that the principal
value is valid. Default is 100.

Description
InstSet =
instfloor(Strike,Settle,Maturity,FloorReset,Basis,Principal) creates a
new instrument set containing floor instruments.

InstSet =
instfloor(InstSet,Strike,Settle,Maturity,FloorReset,Basis,Principal)
adds floor instruments to an existing instrument set.

[FieldList,ClassList,TypeString] = instfloor displays the classes.
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FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a floor
instrument, TypeString = 'Floor'.

Note Use the optional argument, Principal, to pass a schedule for an amortizing floor.

Examples

Create a Floor Instrument

Define the characteristics of the floor instrument.

Strike = 0.22;
Settle = datenum('15-Mar-2013');
Maturity = datenum('15-Mar-2018');
FloorReset = 4;
Basis = 1;
Principal = 1000;

Create the new floor instrument.

ISet = instfloor(Strike, Settle, Maturity, FloorReset, Basis, Principal)

ISet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Floor'}
     FieldName: {{6x1 cell}}
    FieldClass: {{6x1 cell}}
     FieldData: {{6x1 cell}}

Display the floor instrument.

instdisp(ISet)
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Index Type  Strike Settle         Maturity       FloorReset Basis Principal
1     Floor 0.22   15-Mar-2013    15-Mar-2018    4          1     1000     
 

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instswap |
intenvprice

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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instget
Data from instrument variable

Syntax
[Data_1,Data_2,...,Data_n] =
instget(InstSet,'FieldName',FieldList,'Index',IndexSet,'Type',TypeLi
st)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

FieldList (Optional) Number of fields, specified as a NFIELDS-by-1 cell array
of character vectors listing the name of each data field to match with
data values. FieldList entries can also be either 'Type' or
'Index'; these return type character vectors and index numbers
respectively. The default is all fields available for the returned set of
instruments.

IndexSet (Optional) Number of instruments, specified as a NINST-by-1 vector
of positions of instruments to work on. If TypeList is also entered,
instruments referenced must be one of TypeList types and
contained in IndexSet. The default is all indices available in the
instrument variable.

TypeList (Optional) Number of types, specified as a NTYPES-by-1 cell array of
character vectors restricting instruments to match one of TypeList
types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first
argument.
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Description
[Data_1,Data_2,...,Data_n] =
instget(InstSet,'FieldName',FieldList,'Index',IndexSet,'Type',TypeLi
st) retrieves data arrays from an instrument variable.

Data_1 is an NINST-by-M array of data contents for the first field in FieldList. Each
row corresponds to a separate instrument in IndexSet. Unavailable data is returned as
NaN or as spaces.

Data_n is an NINST-by-M array of data contents for the last field in FieldList.

Examples
Retrieve the instrument set ExampleInst from the data file. InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000   
  
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0     

Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Extract the price from all instruments.

P = instget(ExampleInst,'FieldName','Price')

P =

   12.2000
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    9.2000
    6.8000
       NaN
    7.4000
    2.9000
   99.0000

Get all the prices and the number of contracts held.
[P,C] = instget(ExampleInst, 'FieldName', {'Price', 'Contracts'}) 

P =

   12.2000
    9.2000
    6.8000
       Nan
    7.4000
    2.9000
   99.0000

C =

      0
      0
   1000
  -1000
  -1000
      0
      6

Compute a value V. Create a new variable ISet that appends V to ExampleInst.
V = P.*C 
ISet = instsetfield(ExampleInst, 'FieldName', 'Value', 'Data',... 
V); 
instdisp(ISet) 

Index Type   Strike Price Opt  Contracts Value
1     Option  95     12.2 Call    0           0 
2     Option 100      9.2 Call    0           0 
3     Option 105      6.8 Call  1000       6800 

Index Type    Delivery       F     Contracts Value 
4     Futures 01-Jul-1999    104.4 -1000     NaN

Index Type   Strike Price Opt  Contracts Value
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5     Option 105     7.4 Put  -1000      -7400 
6     Option  95     2.9 Put     0           0 

Index Type Price Maturity       Contracts Value
7     TBill 99    01-Jul-1999   6         594

Look at only the instruments that have nonzero Contracts.

Ind = find(C ~= 0) 

Ind =

     3
     4
     5
     7

Get the Type and Opt parameters from those instruments. (Only options have a stored
'Opt' field.)

[T,O] = instget(ExampleInst, 'Index', Ind, 'FieldName',... 
{'Type', 'Opt'}) 

T =

Option 
Futures
Option 
TBill   

O =

Call
    
Put 

Create a report of holdings Type, Opt, and Value.

rstring = [T, O, num2str(V(Ind))] 

rstring =

Option Call   6800
Futures        NaN
Option Put   -7400
TBill          594
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See Also
instaddfield | instdisp | instgetcell | intenvprice

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a

 instget

11-955



instgetcell
Data and context from instrument variable

Syntax
[DataList,FieldList,ClassList] =
instgetcell(InstSet,'FieldName',FieldList,'Index',IndexSet,'Type',Ty
peList)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

FieldList (Optional) Number of fields, specified as a NFIELDS-by-1 cell array
of character vectors listing the name of each data field to match with
data values. FieldList should not be either Type or Index; these
field names are reserved. The default is all fields available for the
returned set of instruments.

IndexSet (Optional) Number of instruments, specified as a NINST-by-1 vector
of positions of instruments to work on. If TypeList is also entered,
instruments referenced must be one of TypeList types and
contained in IndexSet. The default is all indices available in the
instrument variable.

TypeList (Optional) Number of types, specified as a NTYPES-by-1 cell array of
character vectors restricting instruments to match one of TypeList
types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first
argument.
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Description
[DataList,FieldList,ClassList] =
instgetcell(InstSet,'FieldName',FieldList,'Index',IndexSet,'Type',Ty
peList) retrieves data and context from an instrument variable.

DataList is an NFIELDS-by-1 cell array of data contents for each field. Each cell is an
NINST-by-M array, where each row corresponds to a separate instrument in IndexSet.
Any data which is not available is returned as NaN or as spaces.

FieldList is an NFIELDS-by-1 cell array of character vectors listing the name of each
field in DataList.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

IndexSet is an NINST-by-1 vector of positions of instruments returned in DataList.

TypeSet is an NINST-by-1 cell array of character vectors listing the type of each
instrument row returned in DataList.

Examples
Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat.
ExampleInst contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000     

Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0   
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Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

Get the prices and contracts from all instruments.
FieldList = {'Price'; 'Contracts'} 
DataList = instgetcell(ExampleInst, 'FieldName', FieldList ) 
P = DataList{1} 
C = DataList{2} 

P =

   12.2000
    9.2000
    6.8000
       NaN
    7.4000
    2.9000
   99.0000

C =

      0
      0
   1000
  -1000
  -1000
      0
      6

Get all the option data: Strike, Price, Opt, Contracts.
[DataList, FieldList, ClassList] = instgetcell(ExampleInst,... 
'Type','Option') 

DataList = 

    [5x1 double]
    [5x1 double]
    [5x4 char  ]
    [5x1 double]

FieldList = 

    'Strike'
    'Price'
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    'Opt'
    'Contracts'

ClassList = 

    'dble'
    'dble'
    'char'
    'dble'

Look at the data as a comma-separated list. Type help lists for more information on
cell array lists.

DataList{:} 

ans =

    95
   100
   105
   105
    95

ans =

   12.2100
    9.2000
    6.8000
    7.3900
    2.9000

ans =

   Call
   Call
   Call
   Put 
   Put 

ans =

     0
     0
   100
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  -100
     0

See Also
instaddfield | instdisp | instget

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instlength
Count instruments

Syntax
NInst = instlength(InstSet)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

Description
NInst = instlength(InstSet) computes NInst, the number of instruments
contained in the variable, InstSet.

See Also
instdisp | instfields | insttypes

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instlookback
Construct lookback option

Syntax
InstSet =
instlookback(OptSpec,Strike,Settle,ExerciseDates,AmericanOpt)
InstSet =
instlookback(InstSet,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt
)
[FieldList,ClassList,TypeString] = instlookback

Arguments
InstSet Instrument variable. This argument is specified only when

adding lookback instruments to an existing instrument set. See
instget for more information on the InstSet variable.

OptSpec NINST-by-1 list of character vector values for 'Call' or
'Put'.

Strike NINST-by-1 vector of strike price values. Each row is the
schedule for one option.

Settle NINST-by-1 vector of Settle dates.
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ExerciseDates For a European option (AmericanOpt = 0):

NINST-by-1 vector of exercise dates. Each row is the schedule
for one option. For a European option, there is only one
exercise date, the option expiry date.

For an American option (AmericanOpt = 1):

NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any tree date
between or including the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the valuation date of the stock
tree and the single listed exercise date.

AmericanOpt (Optional) If AmericanOpt = 0, NaN, or is unspecified, the
option is a European option. If AmericanOpt = 1, the option
is an American option.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in
unspecified entries vectors with NaN. Only one data argument is required to create the
instrument. The others may be omitted or passed as empty matrices [].

Description
InstSet =
instlookback(OptSpec,Strike,Settle,ExerciseDates,AmericanOpt) creates
an instrument set for lookback options.

InstSet =
instlookback(InstSet,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt
) adds lookback options to an existing instrument set.

[FieldList,ClassList,TypeString] = instlookback displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.
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TypeString is a character vector specifying the type of instrument added. For a
lookback option instrument, TypeString = 'Lookback'.

Examples

Create a Lookback Option Instrument

Define a floating strike lookback instrument with the following data:

OptSpec = 'call';
Strike = NaN;
Settle = '01-Jan-2012';
ExerciseDates = '01-Jan-2015';

Create the instrument set.

InstSet = instlookback(OptSpec, Strike, Settle, ExerciseDates);

Display the lookback instrument.

instdisp(InstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt
1     Lookback call    NaN    01-Jan-2012    01-Jan-2015    0          
 

See Also
instadd | instdisp | instget

Topics
“Pricing Equity Derivatives Using Trees” on page 3-128
“Creating Instruments or Properties” on page 1-21
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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instoptbnd
Construct bond option

Syntax
InstSet = instoptbnd(BondIndex,OptSpec,Strike,ExerciseDates)
InstSet = instoptbnd(InstSet,BondIndex,OptSpec,Strike,ExerciseDates)
InstSet =
instoptbnd(InstSet,BondIndex,OptSpec,Strike,ExerciseDates,AmericanOp
t)
[FieldList,ClassList,TypeString] = instoptbnd

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

BondIndex Number of instruments (NINST)-by-1 vector of indices pointing
to underlying instruments of Type 'Bond' which are also
stored in InstSet. See instbond for information on
specifying the bond data.

OptSpec NINST-by-1 list of character vector values for 'Call' or
'Put'.

Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.
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Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES)
matrix of strike price values.

Each row is the schedule for one option. If an option has fewer
than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

For an American option:

NINST-by-1 vector of strike price values for each option.
ExerciseDates NINST-by-1 (European option) or NINST-by-NSTRIKES

(Bermuda option) matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only
one exercise date, the option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying bond Settle
and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries
vectors with NaN. Only one data argument is required to create the instrument. The
others may be omitted or passed as empty matrices [].

Description
InstSet = instoptbnd(BondIndex,OptSpec,Strike,ExerciseDates) creates a
bond option, specified as a European or Bermuda option.

InstSet = instoptbnd(InstSet,BondIndex,OptSpec,Strike,ExerciseDates)
adds a bond option, specified as a European or Bermuda option, to an existing instrument
set.
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InstSet =
instoptbnd(InstSet,BondIndex,OptSpec,Strike,ExerciseDates,AmericanOp
t) specifies an American option if AmericanOpt is set to 1. If AmericanOpt is not set to
1, the function specifies a European or Bermuda option.

[FieldList,ClassList,TypeString] = instoptbnd displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a bond
option instrument, TypeString = 'OptBond'.

Examples

Create a Bond Option Instrument

Create a new instrument variable with the following information:

BondIndex = 1;
OptSpec = 'call';
Strike= 85;
ExerciseDates = 'Nov-1-2014'; 
AmericanOpt = 1;
CouponRate= [0.035;0.04];
Settle= 'Nov-1-2013'; 
Maturity = 'Nov-1-2014'; 
Period =1;

Create the instrument portfolio with two bonds.

InstSet = instbond(CouponRate, Settle, Maturity, ...
Period)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
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          Type: {'Bond'}
     FieldName: {{11x1 cell}}
    FieldClass: {{11x1 cell}}
     FieldData: {{11x1 cell}}

Create an option on the first bond

InstSet = instoptbnd(InstSet, BondIndex, OptSpec, Strike, ExerciseDates, AmericanOpt)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {2x1 cell}
     FieldName: {2x1 cell}
    FieldClass: {2x1 cell}
     FieldData: {2x1 cell}

Display the instrument set.

instdisp(InstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond 0.035      01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond 0.04       01-Nov-2013    01-Nov-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 
Index Type    UnderInd OptSpec Strike ExerciseDates  AmericanOpt
3     OptBond 1        call    85     01-Nov-2014    1          
 

See Also
hjmprice | instadd | instdisp | instget

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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instoptembnd
Construct bond with embedded option

Syntax
InstSet = instoptembnd
(CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'AmericanOp
t',AmericanOpt,'Period',Period,'Basis',Basis,'EndMonthRule',EndMonth
Rule,'Face',Face,
'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'LastCouponD
ate',LastCouponDate,'StartDate',StartDate)
InstSet = instoptembnd(InstSetOld, CouponRate,...)
[FieldList,ClassList,TypeString] = instoptembnd

Arguments
CouponRate Decimal annual rate indicating the annual percentage rate

used to determine the coupons payable on a bond.
CouponRate is a NINST-by-1 vector or NINST-by-1 cell array
of decimal annual rates, or decimal annual rate schedules. For
the latter case of a variable coupon schedule, each element of
the cell array is a NumDates-by-2 cell array, where the first
column is dates and the second column is its associated rate.
The date indicates the last day that the coupon rate is valid.

Settle NINST-by-1 vector of settlement dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 vector of character vector values for 'Call' or

'Put'.
For a European or Bermuda option
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Strike NINST-by-NSTRIKES matrix of strike price values. Each row is
the schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is
padded with NaN's.

ExerciseDates NINST-by-NSTRIKES matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only
one ExerciseDate on the option expiry date.

AmericanOpt (Optional) NINST-by-1 vector of flags. AmericanOpt is 0 for
each European or Bermuda option. The default is 0 if
AmericanOpt is NaN or not entered.

For an American option
Strike NINST-by-1 vector of strike price values for each option.
ExerciseDates NINST-by-2 vector of exercise date boundaries. For each

instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates is NINST-by-1,
the option can be exercised between the underlying bond
Settle and the single listed ExerciseDate.

AmericanOpt NINST-by-1 vector of flags. AmericanOpt is 1 for each
American option. The AmericanOpt argument is required to
invoke American exercise rules.

Period (Optional) NINST-by-1 matrix for coupons per year. The default
value is 2.
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Basis (Optional) Day-count basis of the instrument. Basis is a
vector of integers with the following possible values:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) NINST-by-1 matrix for the end-of-month rule. This

rule applies only when Maturity is an end-of-month date for a
month having 30 or fewer days. When the value is 0, the end-
of-month rule is ignored, meaning that a bond's coupon
payment date is always the same numerical day of the month.
When the value is 1, the end-of-month rule is set rule on
(default), meaning that a bond's coupon payment date is
always the last actual day of the month.

IssueDate (Optional) NINST-by-1 matrix for the bond issue date.
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FirstCouponDate (Optional) Date when a bond makes its first coupon payment;
used when bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the
coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate (Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period. In
the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date. If you do not
specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

StartDate (Optional) NINST-by-1 matrix for date when a bond actually
starts (that is, the date from which a bond's cash flows can be
considered). To make an instrument forward starting, specify
this date as a future date. If StartDate is not explicitly
specified, the effective start date is the Settle date.

Face (Optional) Face is a NINST-by-1 vector or NINST-by-1 cell
array of face values, or face value schedules. For the latter
case, each element of the cell array is a NumDates-by-2 cell
array, where the first column is dates and the second column is
its associated face value. The date indicates the last day that
the face value is valid. Default is 100.

Note Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries
vectors with NaN. Only one data argument is required to create the instrument. The
others may be omitted or passed as empty matrices [].

Description
InstSet = instoptembnd
(CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'AmericanOp
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t',AmericanOpt,'Period',Period,'Basis',Basis,'EndMonthRule',EndMonth
Rule,'Face',Face,
'IssueDate',IssueDate,'FirstCouponDate',FirstCouponDate,'LastCouponD
ate',LastCouponDate,'StartDate',StartDate) creates InstSet, a variable
containing a collection of instruments.

Note instopembnd uses optional parameter name-value pairs such that, 'Name1',
Value1, 'Name2', Value2, and so on, are a variable length list of name-value pairs.

Instruments are broken down by type and each type can have different data fields. Each
stored data field has a row vector or character vector for each instrument. See instget
for more information on the InstSet variable.

InstSet = instoptembnd(InstSetOld, CouponRate,...) adds 'OptEmBond'
instruments to an instrument variable.

[FieldList,ClassList,TypeString] = instoptembnd lists field metadata for the
'OptEmBond' instrument.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a bond
option instrument, TypeString = 'OptEmBond'.

Examples

Create a Bond With an Embedded Option

This example shows how to create a bond with an embedded option using the following
data.

Settle = 'jan-1-2007';
Maturity   = 'jan-1-2010'; 
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CouponRate = 0.07;
OptSpec = 'call'; 
Strike= 100;  
ExerciseDates= {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt=1;
Period = 1;

InstSet = instoptembnd(CouponRate, ...
Settle, Maturity, OptSpec, Strike,  ExerciseDates,'AmericanOpt', AmericanOpt, ...
'Period', Period);

% display the instrument
 instdisp(InstSet)

Index Type      CouponRate Settle         Maturity       OptSpec Strike ExerciseDates                Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face AmericanOpt
1     OptEmBond 0.07       01-Jan-2007    01-Jan-2010    call    100    01-Jan-2008   01-Jan-2010    1      0     1            NaN       NaN             NaN            NaN       100  1          
 

See Also
instadd | instdisp | instget

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2008a
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instoptfloat
Create option instrument on floating-rate note or add instrument to current portfolio

Syntax
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates)
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates,
AmericanOpt)

InstSet = instoptfloat(InstSetOld, ___ )

[FieldList,ClassList,TypeString] = instoptfloat

Description
InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates) to
specify a European option for a floating-rate note.

InstSet = instoptfloat(FloatIndex,OptSpec,Strike,ExerciseDates,
AmericanOpt) to specify an American or Bermuda option for a floating-rate note.

InstSet = instoptfloat(InstSetOld, ___ ) to add instruments to an existing
portfolio.

[FieldList,ClassList,TypeString] = instoptfloat lists the field metadata for
the 'OptFloat' instrument.

Examples

Create an Instrument Portfolio with a Call Option for a Floating-Rate Note

Define the floating-rate note:

Settle = 'Nov-1-2012';
Maturity   = 'Nov-1-2015'; 
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Spread = 50;
Reset = 1;

Create InstSet:

InstSet = instfloat(Spread, Settle, Maturity, Reset)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Float'}
     FieldName: {{9x1 cell}}
    FieldClass: {{9x1 cell}}
     FieldData: {{9x1 cell}}

Display the instrument:

instdisp(InstSet)

Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
1     Float 50     01-Nov-2012    01-Nov-2015    1          0     100       1            Inf     -Inf     
 

Add a European call option to the instrument portfolio:

OptSpec = 'call'; 
Strike = 100;  
ExerciseDates = 'Nov-1-2015';

Create InstSet:

InstSet = instoptfloat(InstSet, 1, OptSpec, Strike, ExerciseDates)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {2x1 cell}
     FieldName: {2x1 cell}
    FieldClass: {2x1 cell}
     FieldData: {2x1 cell}

Display the instrument:

instdisp(InstSet)

11 Functions — Alphabetical List

11-976



Index Type  Spread Settle         Maturity       FloatReset Basis Principal EndMonthRule CapRate FloorRate
1     Float 50     01-Nov-2012    01-Nov-2015    1          0     100       1            Inf     -Inf     
 
Index Type     UnderInd OptSpec Strike ExerciseDates  AmericanOpt
2     OptFloat 1        call    100    01-Nov-2015    0          
 

Input Arguments
FloatIndex — Indices pointing to underlying instruments
vector of nonnegative integers

Indices pointing to underlying instruments of Type 'Float' specified by a NINST-by-1
vector. The instruments of Type 'Float' are also stored in the InstSet variable. For
more information, see instfloat.
Data Types: double

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price values for European, Bermuda, or American option
nonnegative integer | vector of nonnegative integers

Option strike price values for option (European, Bermuda, or American) specified as
nonnegative integers using as NINST-by-NSTRIKES vector of strike price values.

• For a European or Bermuda option — NINST-by-NSTRIKES matrix of strike price
values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• For an American Option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double
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ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American), specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates, depending on the option type.

• For a European or Bermuda option — NINST-by-NSTRIKES matrix of exercise dates.
Each row is the schedule for one option. For a European option, there is only one
ExerciseDate on the option expiry date

• For an American option — NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between the underlying bond Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
0 if AmericanOpt is NaN or not entered (default) | scalar | vector of positive
integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values.

• For a European or Bermuda option — AmericanOpt is 0 for each European or
Bermuda option.

• For an American option — AmericanOpt is 1 for each American option. The
AmericanOpt argument is required to invoke American exercise rules.

Data Types: single | double

InstSetOld — Variable containing an existing collection of instruments
struct

Variable containing an existing collection of instruments, specified as a struct. For more
information on the InstSet variable, see instget.
Data Types: struct
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Output Arguments
InstSet — Variable containing a collection of instruments
scalar | vector

Variable containing a collection of instruments returned as a scalar or vector with the
instruments broken down by type and each type can have different data fields. Each
stored data field has a row vector or character vector for each instrument. For more
information on the InstSet variable, see instget.

FieldList — Data field for instrument type
character vector | cell array of character vectors

Data field for instrument type returned as a NFIELDS-by-1 cell array of character vectors
listing the name of each data field for this instrument type.

ClassList — Data class of each field
character vector with value: 'dble', 'date', 'char' | cell array of character vectors
with values: 'dble', 'date', 'char'

Data class of each field returned as aNFIELDS-by-1 cell array of character vectors listing
the data class of each field. The class determines how arguments are parsed.

TypeString — Type of instrument added
character vector with value 'OptFloat'

Type of instrument added returned as a character vector. The character vector for a
floating-rate option instrument is TypeString = 'OptFloat'.

See Also
instadd | instoptemfloat

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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instoptemfloat
Create embedded option instrument on floating-rate note or add instrument to current
portfolio

Syntax
InstSet = instopemtfloat(Spread,Settle,Maturity,OptSpec,Strike,
ExerciseDates)
InstSet = instopemtfloat( ___ ,Name,Value)

InstSet = instopemtfloat(InstSetOld,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates)
[FieldList,ClassList,TypeString] = instoptemfloat

Description
InstSet = instopemtfloat(Spread,Settle,Maturity,OptSpec,Strike,
ExerciseDates) creates an embedded option instrument for a floating-rate note.

InstSet = instopemtfloat( ___ ,Name,Value) adds optional name-value pair
arguments.

InstSet = instopemtfloat(InstSetOld,Spread,Settle,Maturity,OptSpec,
Strike,ExerciseDates) to add 'OptEmFloat' instruments to an instrument variable.

[FieldList,ClassList,TypeString] = instoptemfloat lists field metadata for
the 'OptEmFloat' instrument.

Examples

Create an Instrument Portfolio with a Embedded Option Floating-Rate Note

Define the embedded call option:
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Settle = 'Nov-1-2012';
Maturity   = 'Nov-1-2015'; 
Spread = 25;
OptSpec = 'call'; 
Strike= 100;  
ExerciseDates = 'Nov-1-2015'; 
Reset = 1;

Create InstSet:

InstSet = instoptemfloat(Spread, Settle, Maturity, OptSpec,...
Strike,  ExerciseDates,'FloatReset', Reset)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'OptEmFloat'}
     FieldName: {{13x1 cell}}
    FieldClass: {{13x1 cell}}
     FieldData: {{13x1 cell}}

Display the instrument:

instdisp(InstSet)

Index Type       Spread Settle         Maturity       OptSpec Strike ExerciseDates  FloatReset Basis Principal EndMonthRule CapRate FloorRate AmericanOpt
1     OptEmFloat 25     01-Nov-2012    01-Nov-2015    call    100    01-Nov-2015    1          0     100       1            Inf     -Inf      0          
 

Input Arguments
Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of HW Tree (default) | serial date number | character vector | cell array
of character vectors
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Settlement dates of floating-rate note, specified as serial date numbers or date character
vectors using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Floating-rate note maturity date
serial date number | character vector | cell array of character vectors

Floating-rate note maturity date, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Embedded option strike price values
nonnegative integer | vector of nonnegative integers

Embedded option strike price values for option specified as nonnegative integers using as
NINST-by-NSTRIKES or NINST-by-1 vector of strike price values, depending on the type of
option.

• For a European or Bermuda Option — NINST-by-NSTRIKES matrix of strike price
values where each row is the schedule for one option. If an option has fewer than
NSTRIKES exercise opportunities, the end of the row is padded with NaNs.

• For an American Option — NINST-by-1 vector of strike price values for each option.

Data Types: single | double

ExerciseDates — Exercise date for embedded option
serial date nonnegative number | vector of serial date nonnegative numbers | date
character vector | cell array of date character vectors

Exercise date for embedded option, specified as serial date nonnegative numbers or date
character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of the option
exercise dates, depending on the type of option.
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• For a European or Bermuda Option — NINST-by-NSTRIKES of exercise dates where
each row is the schedule for one option. For a European option, there is only one
ExerciseDate on the option expiry date.

• For an American Option — NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between the underlying bond Settle date
and the single listed ExerciseDate.

Data Types: double | char | cell

InstSetOld — Variable containing an existing collection of instruments
struct

Variable containing an existing collection of instruments, specified as a struct.
Instruments are classified by type; each type can have different data fields. The stored
data field is a row vector or character vector for each instrument. For more information
on instrument data parameters, see the reference entries for individual instrument types.
For example, see instfloat for additional information on the float instrument.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: InstSet =
instoptemfloat(Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates,'
FloatReset',Reset)

AmericanOpt — Embedded option type
0 if AmericanOpt is NaN or not entered (default) | scalar | vector of positive
integers[0,1]

Embedded option type, specified as the comma-separated pair consisting of
'AmericanOpt' and a NINST-by-1 positive integer scalar flags with values:

• For a European or Bermuda option — AmericanOpt is 0 for each European or
Bermuda option. The default is 0 if AmericanOpt is NaN or not entered.
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• For an American option — AmericanOpt is 1 for each American option. The
AmericanOpt argument is required to invoke American exercise rules.

Data Types: single | double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6, 12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values 1,2,4,6,12] in a NINST-by-1
vector.
Data Types: single | double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis on page Glossary-0 .
Data Types: single | double

Principal — Principal values
100 (default) | nonnegative integer | vector of nonnegative integers | cell array of
nonnegative integers

Principal values, specified as the comma-separated pair consisting of 'Principal' and a
nonnegative integer using a NINST-by-1 vector of notional principal amounts.
Data Types: single | double

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: single | double

Output Arguments
InstSet — Variable containing a collection of instruments
scalar | vector

Variable containing a collection of instruments returned as a scalar or vector with the
instruments broken down by type and each type can have different data fields. Each
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stored data field has a row vector or character vector for each instrument. For more
information on the InstSet variable, see instget.

FieldList — Name of each data field
character vector | cell array of character vectors

NFIELDS-by-1 cell array of character vectors listing the name of each data field for this
instrument type.

ClassList — Determines how arguments are parsed
character vector with value: 'dble', 'date', or 'char' | cell array of character vectors
with values: 'dble', 'date', or 'char'

NFIELDS-by-1 cell array of character vectors listing the data class of each field.

TypeString — Type of instrument added
character vector with value 'OptEmFloat'

Character vector specifying the type of instrument added where TypeString =
'OptEmFloat'.

See Also
instadd | instoptfloat

Topics
“Creating Instruments or Properties” on page 1-21
basis on page Glossary-0
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a

11 Functions — Alphabetical List

11-986



instoptstock
Construct stock option

Syntax
InstSet = instoptstock(OptSpec,Strike,Settle,ExerciseDates)
InstSet = instoptstock(InstSet,OptSpec,Strike,Settle,ExerciseDates)
InstSet =
instoptstock(InstSet,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt
)
[FieldList,ClassList,TypeString] = instoptstock

Arguments
InstSet Instrument variable. This argument is specified only when

adding stock option instruments to an existing instrument set.
See instget for more information on the InstSet variable.

OptSpec NINST-by-1 list of character vector values 'Call' or 'Put'.
Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.
Strike European option: NINST-by-1 vector of strike price values.

Bermuda option: NINST by number of strikes (NSTRIKES)
matrix of strike price values.

Each row is the schedule for one option. If an option has fewer
than NSTRIKES exercise opportunities, the end of the row is
padded with NaNs.

American option: NINST-by-1 vector of strike price values for
each option.
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Settle NINST-by-1 vector of settlement dates.
ExerciseDates NINST-by-1 (European option) or NINST-by-NSTRIKES

(Bermuda option) matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only
one exercise date, the option expiry date.

For an American option:

NINST-by-2 vector of exercise date boundaries. For each
instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one
non-NaN date is listed, or if ExerciseDates is NINST-by-1, the
option can be exercised between the underlying bond Settle
and the single listed exercise date.

Data arguments are NINST-by-1 vectors, scalar, or empty. Fill in unspecified entries
vectors with NaN. Only one data argument is required to create the instrument. The
others may be omitted or passed as empty matrices [].

Description
InstSet = instoptstock(OptSpec,Strike,Settle,ExerciseDates) creates a
stock option instrument, specified as a European or Bermuda option.

InstSet = instoptstock(InstSet,OptSpec,Strike,Settle,ExerciseDates)
adds a stock option instrument, specified as a European or Bermuda option, to an existing
instrument set.

InstSet =
instoptstock(InstSet,OptSpec,Strike,Settle,ExerciseDates,AmericanOpt
) specifies an American option if AmericanOpt is set to 1. If AmericanOpt is not set to
1, the function specifies a European or Bermuda option.

[FieldList,ClassList,TypeString] = instoptstock displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

11 Functions — Alphabetical List

11-988



ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a stock
option instrument, TypeString = 'OptStock'.

Examples

Create a Stock Option Instrument

Create an instrument set of two stock options with the following data:

OptSpec = {'put';'call'};
Strike = [95;98];
Settle = '01-May-2012';
ExerciseDates = {'01-May-2014';'01-May-2015'};
AmericanOpt = [0;1];

Create the stock option instruments.

InstSet = instoptstock(OptSpec, Strike,Settle, ExerciseDates, AmericanOpt)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'OptStock'}
     FieldName: {{5x1 cell}}
    FieldClass: {{5x1 cell}}
     FieldData: {{5x1 cell}}

Display the instrument set.

instdisp(InstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt
1     OptStock put     95     01-May-2012    01-May-2014    0          
2     OptStock call    98     01-May-2012    01-May-2015    1          
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See Also
instadd | instdisp | instget

Topics
“Pricing Equity Derivatives Using Trees” on page 3-128
“Creating Instruments or Properties” on page 1-21
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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instrangefloat
Construct range note instrument

Syntax
ISet =
instrangefloat(Spread,Settle,Maturity,RateSched,Reset,Basis,Principa
l,EndMonthRule)
ISet =
instrangefloat(ISet,Spread,Settle,Maturity,RateSched,Reset,Basis,Pri
ncipal,EndMonthRule)

Description
ISet =
instrangefloat(Spread,Settle,Maturity,RateSched,Reset,Basis,Principa
l,EndMonthRule) creates a range instrument from data arrays.

ISet =
instrangefloat(ISet,Spread,Settle,Maturity,RateSched,Reset,Basis,Pri
ncipal,EndMonthRule) adds a new range instrument to an existing instrument set.

Input Arguments
Spread

Number of basis points over the reference rate.

Settle

NINST-by-1 vector of dates representing the settle date of the floating-rate note.

Maturity

NINST-by-1 vector of dates representing the maturity date of the floating-rate note.
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RateSched

NINST-by-1 vector of structures representing the range of rates within which cash flows
are nonzero. Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range
schedule.

• RateSched.Rates —NDates-by-2 array with the first column containing the lower
bound of the range and the second column containing the upper bound of the range.
Cash flow for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Reset

(Optional) NINST-by-1 vector representing the frequency of payments per year.

Default: 1

Basis

(Optional) Day-count basis of the instrument. A vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Default: 0 (actual/actual)

Principal

(Optional) NINST-by-1 vector of the notional principal amount.

Default: 100

EndMonthRule

(Optional) NINST-by-1 vector for end-of-month rule. Values are 1 (in effect) and 0 (not in
effect).

Default: 1 (in effect)

Note Data arguments are number of instruments NINST-by-1 vectors, scalar, or empty.
Fill in unspecified entries vectors with NaN. Only one data argument is required to create
the instrument. You can omit or pass the others as empty matrices []. However, you
cannot price the instrument when using the range note pricing function if you are missing
any of the required input arguments.

Output Arguments
ISet

Variable containing a collection of instruments. Instruments are divided by type and each
type can have different data fields. Each stored data field has a row vector or character
vector for each instrument. Values are:

• FieldList — NFIELDS-by-1 cell array of character vectors listing the name of each
data field for this instrument type.

• ClassList — NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors
are'dble', 'date', and 'char'.

• TypeString — Character vector specifying the type of instrument added.
TypeString = 'RangeFloat'.

For more information, on ISet see instget.
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Examples

Create a Range Note Instrument

Create an instrument portfolio with a range note.

Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';

RateSched.Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched.Rates  = [0.045 0.055; 0.0525  0.0675; 0.06 0.08];

% Create InstSet
InstSet = instrangefloat(Spread, Settle, Maturity, RateSched);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 100    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
 

Add a second range note instrument to the portfolio. Second Range Note:

Spread2 = 200;
Settle2 = 'Jan-1-2011';
Maturity2 = 'Jan-1-2013';
RateSched2.Dates = {'Jan-1-2012'; 'Jan-1-2013'};
RateSched2.Rates  = [0.048 0.059; 0.055  0.068];

InstSet = instrangefloat(InstSet, Spread2, Settle2, Maturity2, RateSched2);

% Display the portfolio instrument
instdisp(InstSet)

Index Type       Spread Settle         Maturity       RateSched FloatReset Basis Principal EndMonthRule
1     RangeFloat 100    01-Jan-2011    01-Jan-2014    [Struct]  1          0     100       1           
2     RangeFloat 200    01-Jan-2011    01-Jan-2013    [Struct]  1          0     100       1           
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Definitions

Range Note Instrument
A range note is a structured (market-linked) security whose coupon rate is equal to the
reference rate as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type
of instrument entitles the holder to cash flows that depend on the level of some reference
interest rate and are floored to be positive. The note holder gets direct exposure to the
reference rate. In return for the drawback that no interest is paid for the time the range
is left, they offer higher coupon rates than comparable standard products, like vanilla
floating notes.

References
Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.” Stanford
Economics and Finance. 2nd Edition. 2002.

See Also
instaddfield | instbond | instcap | instdisp | instswap | intenvprice |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2012a
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instselect
Create instrument subset by matching conditions

Syntax
InstSubSet =
instselect(InstSet,'FieldName',FieldList,'Data',DataList,'Index',Ind
exSet,'Type',TypeList)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

FieldList Number of fields, specified as a NFIELDS-by-1 cell array of
character vectors listing the name of each data field to match with
data values.

DataList Number of values (NVALUES-by-M) array or NFIELDS-by-1 cell array
of acceptable data values for each field. Each row lists a data row
value to search for in the corresponding FieldList. The number of
columns is arbitrary and matching ignores trailing NaNs or spaces.

IndexSet (Optional) Number of instruments, specified as a NINST-by-1 vector
restricting positions of instruments to check for matches. The
default is all indices available in the instrument variable.

TypeList (Optional) Number of types, specified as a NTYPES-by-1 cell array of
character vectors restricting instruments to match one of TypeList
types. The default is all types in the instrument variable.

Argument value pairs can be entered in any order. The InstSet variable must be the first
argument. 'FieldName' and 'Data' arguments must appear together or not at all.
'Index' and 'Type' arguments are each optional.
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Description
InstSubSet =
instselect(InstSet,'FieldName',FieldList,'Data',DataList,'Index',Ind
exSet,'Type',TypeList) creates an instrument subset (InstSubSet) from an
existing set of instruments (InstSet).

InstSubSet is a variable containing instruments matching the input criteria.
Instruments are returned in InstSubSet if all the Field, Index, and Type conditions
are met. An instrument meets an individual Field condition if the stored FieldName
data matches any of the rows listed in the DataList for that FieldName. See instfind
for examples on matching criteria.

Examples
Retrieve the instrument set ExampleInst from the data file InstSetExamples.mat.
The variable contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     
2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000    
 
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike   Price Opt  Contracts
5     Option 105      7.4   Put  -1000     
6     Option  95      2.9   Put      0     

Index Type  Price Maturity       Contracts
7     TBill 99    01-Jul-1999    6      

Make a new portfolio containing only options struck at 95.

Opt95 = instselect(ExampleInst, 'FieldName', 'Strike',... 
'Data', '95') 

instdisp(Opt95)
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Opt95 = 

Index Type   Strike Price Opt  Contracts
1     Option  95     12.2 Call    0     
2     Option  95      2.9 Put     0      

Make a new portfolio containing only futures and Treasury bills.
FutTBill = instselect(ExampleInst,'Type',{'Futures';'TBill'})

instdisp(FutTBill) =

Index Type    Delivery       F     Contracts
1     Futures 01-Jul-1999    104.4 -1000    
 
Index Type  Price Maturity       Contracts
2     TBill 99    01-Jul-1999    6        

See Also
instaddfield | instdelete | instfind | instget | instgetcell

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instsetfield
Add or reset data for existing instruments

Syntax
InstSet =
instsetfield(InstSet,'FieldName',FieldList,'Data',DataList)
InstSet =
instsetfield(InstSet,'FieldName',FieldList,'Data',DataList,'Index',I
ndexSet,'Type',TypeList)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument. InstSet must be the first argument in the list.

FieldList Number of fields, specified as a NFIELDS-by-1 cell array of character
vectors listing the name of each data field. FieldList cannot be
named with the reserved names Type or Index.

DataList Number of instruments, specified as a NINST-by-M array or NFIELDS-
by-1 cell array of data contents for each field. Each row in a data
array corresponds to a separate instrument. Single rows are copied
to apply to all instruments to be worked on. The number of columns
is arbitrary, and data is padded along columns.

IndexSet NINST-by-1 vector of positions of instruments to work on. If
TypeList is also entered, instruments referenced must be one of
TypeList types and contained in IndexSet.

TypeList Number of types, specified as a NTYPES-by-1 cell array of character
vectors restricting instruments worked on to match one of TypeList
types.

Argument value pairs can be entered in any order.
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Description
instsetfield sets data for existing instruments in a collection variable.

InstSet =
instsetfield(InstSet,'FieldName',FieldList,'Data',DataList) resets or
adds fields to every instrument.

InstSet =
instsetfield(InstSet,'FieldName',FieldList,'Data',DataList,'Index',I
ndexSet,'Type',TypeList) resets or adds fields to a subset of instruments.

The output InstSet is a new instrument set variable containing the input data.

Examples
Retrieve the instrument set ExampleInstSF from the data file InstSetExamples.mat.
ExampleInstSF contains three types of instruments: Option, Futures, and TBill.

load InstSetExamples; 
ISet = ExampleInstSF;
instdisp(ISet)

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call

Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4

Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option NaN     NaN  Put 

Index Type  Price
7     TBill 99   

Enter data for the option in Index 6: Price 2.9 for a Strike of 95.
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ISet = instsetfield(ISet, 'Index',6,... 
'FieldName',{'Strike','Price'}, 'Data',{ 95 , 2.9 }); 
instdisp(ISet) 

Index Type   Strike Price Opt 
1     Option  95    12.2  Call
2     Option 100     9.2  Call
3     Option 105     6.8  Call
Index Type    Delivery       F    
4     Futures 01-Jul-1999    104.4
Index Type   Strike Price Opt 
5     Option 105     7.4  Put 
6     Option  95     2.9  Put 

Index Type  Price
7     TBill 99   

Create a field Maturity for the cash instrument.

MDate = datenum('7/1/99');
ISet = instsetfield(ISet, 'Type', 'TBill', 'FieldName',... 
'Maturity','FieldClass', 'date', 'Data', MDate); 
instdisp(ISet) 

Index Type  Price  Maturity      
7     TBill 99     01-Jul-1999   

Create a field Contracts for all instruments.
ISet = instsetfield(ISet, 'FieldName', 'Contracts', 'Data', 0); 
instdisp(ISet) 

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call 0        
2     Option 100     9.2  Call 0        
3     Option 105     6.8  Call 0        

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 0        

Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  0        
6     Option  95     2.9  Put  0        

Index Type  Price  Maturity     Contracts    
7     TBill 99     01-Jul-1999  0            
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Set the Contracts fields for some instruments.
ISet = instsetfield(ISet,'Index',[3; 5; 4; 7],... 
'FieldName','Contracts',  'Data', [1000; -1000; -1000; 6]); 

instdisp(ISet)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0    
2     Option 100     9.2  Call     0    
3     Option 105     6.8  Call  1000 
   
Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    

Index Type   Strike Price Opt  Contracts
5     Option 105     7.4  Put  -1000    
6     Option  95     2.9  Put      0    

Index Type  Price  Maturity     Contracts    
7     TBill 99     01-Jul-1999  6            

See Also
instaddfield | instdisp | instget | instgetcell

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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instswap
Construct swap instrument

Syntax
InstSet = instswap(LegRate,Settle,Maturity)
InstSet = instswap(InstSet,LegRate,Settle,Maturity)
InstSet =
instswap(InstSet,LegRate,Settle,Maturity,InstSet,LegReset,Basis,Prin
cipal,LegType,EndMonthRule)
InstSet =
instswap(InstSet,LegRate,Settle,Maturity,LegReset,Basis,Principal,Le
gType,EndMonthRule,StartDate)
[FieldList,ClassList,TypeString] = instswap

Arguments
InstSet Instrument variable. This argument is specified only when adding a

swap to an existing instrument set. See instget for more
information on the InstSet variable.

LegRate Leg rate, specified as a NINST-by-2 matrix, with each row defined as:

[CouponRate Spread] (fixed-float), [Spread CouponRate]
(float-fixed), [CouponRate CouponRate] (fixed-fixed), or [Spread
Spread] (float-float).

CouponRate is the decimal annual rate. Spread is the number of
basis points over the reference rate. The first column represents the
receiving leg, while the second column represents the paying leg.

Settle Settlement date. NINST-by-1 vector of serial date numbers or date
character vectors. Settle must be earlier than Maturity.

Maturity Maturity date. NINST-by-1 vector of dates representing the maturity
date for each swap.
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LegReset (Optional) NINST-by-2 matrix representing the reset frequency per
year for each swap. Default = [1 1].

Basis (Optional) Day-count basis representing the basis for each leg.
NINST-by-1 array (or NINST-by-2 if Basis is different for each leg).

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Principal (Optional) Principal accepts a NINST-by-1 vector or NINST-by-1

cell array (or NINST-by-2 if Principal is different for each leg) of
the notional principal amounts or principal value schedules. For
schedules, each element of the cell array is a NumDates-by-2 matrix
where the first column is dates and the second column is its
associated notional principal value. The date indicates the last day
that the principal value is valid. Default = 100.

LegType (Optional) NINST-by-2 matrix. Each row represents an instrument.
Each column indicates if the corresponding leg is fixed (1) or floating
(0). This matrix defines the interpretation of the values entered in
LegRate. Default is [1,0] for each instrument.

EndMonthRule (Optional) NINST-by-1 (or NINST-by-2 if EndMonthRule is different
for each leg). Default = 1.
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StartDate (Optional) NINST-by-1 vector of dates when the swaps actually start.
Default is Settle.

Data arguments are number of instruments (NINST)-by-1 vectors, scalar, or empty. Fill in
unspecified entries vectors with NaN. Only one data argument is required to create the
instrument; the others may be omitted or passed as empty matrices [].

Description
InstSet = instswap(LegRate,Settle,Maturity) creates a new instrument set
containing swap instruments.

InstSet = instswap(InstSet,LegRate,Settle,Maturity) adds swap
instruments to an existing instrument set.

InstSet =
instswap(InstSet,LegRate,Settle,Maturity,InstSet,LegReset,Basis,Prin
cipal,LegType,EndMonthRule) uses optional input arguments to create a new
instrument set containing swap instruments or adds swap instruments to an existing
instrument set.

InstSet =
instswap(InstSet,LegRate,Settle,Maturity,LegReset,Basis,Principal,Le
gType,EndMonthRule,StartDate) to create a new forward swap instrument or to add
a forward swap instrument to an existing portfolio.

[FieldList,ClassList,TypeString] = instswap displays the classes.

FieldList is a number of fields (NFIELDS-by-1) cell array of character vectors listing
the name of each data field for this instrument type.

ClassList is an NFIELDS-by-1 cell array of character vectors listing the data class of
each field. The class determines how arguments are parsed. Valid character vectors are
'dble', 'date', and 'char'.

TypeString is a character vector specifying the type of instrument added. For a swap
instrument, TypeString = 'Swap'.
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Examples

Create a Vanilla Swap Instrument

Create a vanilla swap using market data.

Use the following market data to create a swap instrument.

LegRate = [0.065, 0]

LegRate = 1×2

    0.0650         0

Settle = 'jan-1-2007';    
Maturity = 'jan-1-2012';
LegReset = [1, 1];
Basis = 0

Basis = 0

Principal = 100    

Principal = 100

LegType = [1, 0]   

LegType = 1×2

     1     0

InstSet = instswap(LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

InstSet = struct with fields:
        FinObj: 'Instruments'
    IndexTable: [1x1 struct]
          Type: {'Swap'}
     FieldName: {{9x1 cell}}
    FieldClass: {{9x1 cell}}
     FieldData: {{9x1 cell}}
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View the swap instrument using instdisp.

instdisp(InstSet)

Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType EndMonthRule StartDate
1     Swap [0.065  0] 01-Jan-2007    01-Jan-2012    [1  1]   0     100       [1  0]  1            NaN      
 

Create a Float-Float Swap and Price with intenvprice

Use instswap to create a float-float swap and price the swap with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([40 20],today,datemnth(today,60),[], [], [], [0 0]);
intenvprice(RateSpec,IS)

ans =

    0.8644

Create Float-Float, Fixed-Fixed, and Float-Fixed Swaps and Price with
intenvprice

Use instswap to create swaps and price the swaps with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[300 .07],today,datemnth(today,60),[], [], [], [0 1]);
intenvprice(RateSpec,IS)

ans = 3×1

    4.3220
   -4.3220
    4.5921
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Definitions

Amortizing Swap
In an amortizing swap, the notional principal decreases periodically because it is tied to
an underlying financial instrument with a declining (amortizing) principal balance, such
as a mortgage.

Forward Swap
Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
hjmprice | instaddfield | instbond | instcap | instdisp | instfloor |
intenvprice

Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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instswaption
Construct swaption instrument

Syntax
InstSet = instswaption(OptSpec,Strike,ExerciseDates,Spread,Settle,
Maturity)
InstSet = instswaption( ___ ,AmericanOpt,SwapReset,Basis,Principal)
InstSet = instswaption(InstSetOld, ___ )
[FieldList,ClassList,TypeString] = instswaption

Description
InstSet = instswaption(OptSpec,Strike,ExerciseDates,Spread,Settle,
Maturity) to specify a European swaption.

Fill in unspecified entries vectors with the value NaN. Only one data argument is required
to create the instruments; the others may be omitted or passed as empty matrices [].

InstSet = instswaption( ___ ,AmericanOpt,SwapReset,Basis,Principal) to
specify an American swaption.

InstSet = instswaption(InstSetOld, ___ ) to add swaption instruments to an
instrument variable.

[FieldList,ClassList,TypeString] = instswaption to list field metadata for the
swaption instrument.

Examples

Create Two Swaption Instruments

This example shows how to create two European swaption instruments using the
following data.
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OptSpec = {'Call'; 'Put'};
Strike = .05;
ExerciseDates = 'jan-1-2011';
Spread=0;
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
AmericanOpt = 0;

InstSet = instswaption(OptSpec, Strike, ExerciseDates, Spread, Settle, Maturity, ...
 AmericanOpt);

% view the European swaption instruments using instdisp
instdisp(InstSet)

Index Type     OptSpec Strike ExerciseDates  Spread Settle         Maturity       AmericanOpt SwapReset Basis Principal FloatBasis FixedBasis FloatReset FixedReset
1     Swaption Call    0.05   01-Jan-2011    0      01-Jan-2007    01-Jan-2012    0           1         0     100       NaN        NaN        NaN        NaN       
2     Swaption Put     0.05   01-Jan-2011    0      01-Jan-2007    01-Jan-2012    0           1         0     100       NaN        NaN        NaN        NaN       
 

Create Two European Swaption Instruments with Receiving and Paying Legs

This example shows how to create two European swaption instruments with receiving and
paying legs using the following data.

OptSpec = {'Call'; 'Put'};
Strike = .05;
ExerciseDates = 'jan-1-2011';
Spread=0;
Settle = 'jan-1-2007';
Maturity = 'jan-1-2012';
AmericanOpt = 0;
SwapReset = [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg
Basis = [1 3];     % 1st column represents receiving leg, 2nd column represents paying leg

InstSet = instswaption(OptSpec,Strike,ExerciseDates,AmericanOpt,Spread,Settle,Maturity, ...
SwapReset,Basis);

View the European swaption instruments using instdisp.

instdisp(InstSet)

Index Type     OptSpec Strike ExerciseDates  Spread Settle Maturity       AmericanOpt SwapReset Basis Principal FloatBasis FixedBasis FloatReset FixedReset
1     Swaption Call    0.05   01-Jan-2011    0      0      01-Jan-2007    NaN         2  4      1  3  100       NaN        NaN        NaN        NaN       
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2     Swaption Put     0.05   01-Jan-2011    0      0      01-Jan-2007    NaN         2  4      1  3  100       NaN        NaN        NaN        NaN       
 

Input Arguments
OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'. A 'call' swaption entitles the buyer to
pay the fixed rate. A 'put' swaption entitles the buyer to receive the fixed rate.
Data Types: char | cell

Strike — Strike swap rate values
vector

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a vector of date character vectors or serial date
numbers, where each row is the schedule for one option and the last element of each row
must be the same as the maturity of the tree.

• For a European option, use a NINST-by-1 vector of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDate on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise dates. For each
instrument, the option can be exercised on any coupon date between or including the
pair of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is
NINST-by-1, the option can be exercised between the underlying swap Settle and the
single listed ExerciseDate.

Data Types: double | char

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

 instswaption
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Number of basis points over the reference rate, specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settle date for each swap
serial date number | date character vector

Settle date for each swap, specified as a NINST-by-1 vector of date character vectors or
serial date numbers.
Data Types: char | double

Maturity — Maturity date for each swap
serial date number | date character vector

Maturity date for each swap, specified as a NINST-by-1 vector of date character vectors
or serial date numbers.
Data Types: char | double

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

The AmericanOpt argument is required to invoke American exercise rules.
Data Types: double

SwapReset — Reset frequency per year for each leg
1 (default) | numeric

(Optional) Reset frequency per year for each leg, specified as a NINST-by-1 vector or
NINST-by-2 matrix. If SwapReset is NINST-by-2, the first column represents the
receiving leg, while the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13
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(Optional) Day-count basis of the instrument, specified as a NINST-by-1 vector or NINST-
by-2 matrix representing the basis for each leg. If Basis is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

(Optional) Notional principal amount, specified as a NINST-by-1 vector.
Data Types: double

InstSetOld — Variable containing an existing collection of instruments
struct

Variable containing an existing collection of instruments, specified as a struct.
Instruments are classified by type; each type can have different data fields. The stored
data field is a row vector or character vector for each instrument. The InstSetOld
argument is specified only when adding swaption instruments to an existing instrument
set. For more information on the InstSet variable, see instget.
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Data Types: struct

Output Arguments
InstSet — Variable containing collection of instruments
vector

(Optional) Variable containing a collection of instruments. Instruments are broken down
by type and each type can have different data fields. Each stored data field has a row
vector or character vector for each instrument. For more information on the InstSet
variable, see instget.
Data Types: double

FieldList — Name of each data field for this instrument type
cell array of character vectors

Name of each data field for this instrument type, returned as a NFIELDS-by-1 cell array of
character vectors.
Data Types: char | cell

ClassList — Data class of each field
character vector with value: 'dble', 'date', or 'char'.

Data class of each field, returned as a NFIELDS-by-1 cell array of character vectors. Valid
character vectors are 'dble', 'date', and 'char'.
Data Types: char | cell

TypeString — Type of instrument added
character vector

Type of instrument added, returned as a character vector (for a swaption, TypeString =
'Swaption').
Data Types: char

See Also
instadd | instdisp | instget
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Topics
“Creating Instruments or Properties” on page 1-21
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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insttypes
List types

Syntax
TypeList = insttypes(InstSet)

Arguments
InstSet Variable containing a collection of instruments. Instruments are

classified by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

Description
TypeList = insttypes(InstSet) retrieves a list of types stored in an instrument
variable.

TypeList is a number of types (NTYPES)-by-1 cell array of character vectors listing the
Type of instruments contained in the variable.

Examples
Retrieve the instrument set variable ExampleInst from the data file
InstSetExamples.mat. ExampleInst contains three types of instruments: Option,
Futures, and TBill.

load InstSetExamples; 
instdisp(ExampleInst)

Index Type   Strike Price Opt  Contracts
1     Option  95    12.2  Call     0     

11 Functions — Alphabetical List

11-1016



2     Option 100     9.2  Call     0     
3     Option 105     6.8  Call  1000     

Index Type    Delivery       F     Contracts
4     Futures 01-Jul-1999    104.4 -1000    
 
Index Type   Strike Price Opt  Contracts
5     Option 105      7.4 Put  -1000     
6     Option  95      2.9 Put      0     

Index Type Price Maturity       Contracts
7     TBill 99    01-Jul-1999   6      

List all of the types included in ExampleInst.

TypeList = insttypes(ExampleInst)

TypeList = 
         'Futures'
         'Option'
         'TBill'

See Also
instdisp | instfields | instlength

Topics
“Portfolio Creation” on page 1-8
“Instrument Constructors” on page 1-20

Introduced before R2006a
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intenvget
Properties of interest-rate structure

Syntax
ParameterValue = intenvget(RateSpec,'ParameterName')

Arguments
RateSpec A structure containing the properties of an interest-rate

structure. See intenvset for information on creating
RateSpec.

'ParameterName' Character vector indicating the parameter name to be
accessed. The value of the named parameter is extracted
from the structure RateSpec. It is sufficient to type only the
leading characters that uniquely identify the parameter.
Case is ignored for parameter names.

Description
ParameterValue = intenvget(RateSpec,'ParameterName') obtains the value of
the named parameter 'ParameterName' extracted from RateSpec.

Examples
Use intenvset to set the interest-rate structure.

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'20-Jan-2000', 'EndDates', '20-Jan-2001')

Now use intenvget to extract the values from RateSpec.

[R, RateSpec] = intenvget(RateSpec, 'Rates')
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R =

    0.0500
RateSpec = 

        FinObj: 'RateSpec'
        Compounding: 2
        Disc: 0.9518
        Rates: 0.0500
        EndTimes: 2
        StartTimes: 0
        EndDates: 730871
        StartDates: 730505
        ValuationDate: 730505
        Basis: 0
        EndMonthRule: 1

See Also
intenvset

Topics
“Modeling the Interest-Rate Term Structure” on page 2-67
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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intenvprice
Price instruments from set of zero curves

Syntax
Price = intenvprice(RateSpec,InstSet)

Arguments
RateSpec A structure containing the properties of an interest-rate structure.

See intenvset for information on creating RateSpec.
InstSet Variable containing a collection of instruments. Instruments are

categorized by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

Description
Price = intenvprice(RateSpec,InstSet) computes arbitrage-free prices for
instruments against a set of zero coupon bond rate curves.

Price is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of
prices of each instrument. If an instrument cannot be priced, a NaN is returned in that
entry.

intenvprice handles the following instrument types: 'Bond', 'CashFlow', 'Fixed',
'Float', 'Swap'. See instadd for information about constructing defined types.

See single-type pricing functions to retrieve pricing information.

bondbyzero Price bonds from a set of zero curves.
cfbyzero Price arbitrary cash flow instrument from a set of zero curves.
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fixedbyzero Fixed-rate note prices from a set of zero curves.
floatbyzero Floating-rate note prices from a set of zero curves.
swapbyzero Swap prices from a set of zero curves.

Examples

Load Zero Curves and Instruments from Data File

Load the zero curves and instruments.

load deriv.mat
instdisp(ZeroInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
3     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
5     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      
 

Price the instruments.

Price = intenvprice(ZeroRateSpec, ZeroInstSet)

Price = 5×1

   98.7159
   97.5334
   98.7159
  100.5529
    3.6923
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Create a Float-Float Swap and Price with intenvprice

Use instswap to create a float-float swap and price the swap with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([400 200],today,datemnth(today,60),[], [], [], [0 0]);
intenvprice(RateSpec,IS)

ans = 8.6440

Create Float-Float, Fixed-Fixed, and Float-Fixed Swaps and Price with
intenvprice

Use instswap to create swaps and price the swaps with intenvprice.

RateSpec = intenvset('Rates',.05,'StartDate',today,'EndDate',datemnth(today,60));
IS = instswap([.03 .02],today,datemnth(today,60),[], [], [], [1 1]);
IS = instswap(IS,[200 300],today,datemnth(today,60),[], [], [], [0 0]);
IS = instswap(IS,[300 .07],today,datemnth(today,60),[], [], [], [0 1]);
intenvprice(RateSpec,IS)

ans =

    4.3220
   -4.3220
    4.5921

See Also
hjmprice | hjmsens | instadd | instswap | intenvsens | intenvset

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
“Understanding the Interest-Rate Term Structure” on page 2-55
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Introduced before R2006a
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intenvsens
Instrument price and sensitivities from set of zero curves

Syntax
[Delta,Gamma,Price] = intenvsens(RateSpec,InstSet)

Arguments
RateSpec A structure containing the properties of an interest-rate structure.

See intenvset for information on creating RateSpec.
InstSet Variable containing a collection of instruments. Instruments are

categorized by type; each type can have different data fields. The
stored data field is a row vector or character vector for each
instrument.

Description
[Delta,Gamma,Price] = intenvsens(RateSpec,InstSet) computes dollar prices
and price sensitivities for instruments that use a zero coupon bond rate structure.

Delta is a number of instruments (NINST) by number of curves (NUMCURVES) matrix of
deltas, representing the rate of change of instrument prices with respect to shifts in the
observed zero curve. Delta is computed by finite differences.

Gamma is an NINST-by-NUMCURVES matrix of gammas, representing the rate of change of
instrument deltas with respect to shifts in the observed zero curve. Gamma is computed by
finite differences.

Note Both sensitivities are returned as dollar sensitivities. To find the per-dollar
sensitivities, divide by the respective instrument price.
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Price is an NINST-by-NUMCURVES matrix of prices of each instrument. If an instrument
cannot be priced, a NaN is returned.

intenvsens handles the following instrument types: 'Bond', 'CashFlow', 'Fixed',
'Float', 'Swap'. See instadd for information about constructing defined types.

Examples
Load the tree and instruments from a data file.

load deriv.mat
instdisp(ZeroInstSet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face Name    Quantity
1     Bond 0.04       01-Jan-2000    01-Jan-2003    1      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond 100     
2     Bond 0.04       01-Jan-2000    01-Jan-2004    2      NaN   NaN          NaN       NaN             NaN            NaN       NaN  4% bond  50     
 
Index Type  CouponRate Settle         Maturity       FixedReset Basis Principal Name     Quantity
3     Fixed 0.04       01-Jan-2000    01-Jan-2003    1          NaN   NaN       4% Fixed 80      
 
Index Type  Spread Settle         Maturity       FloatReset Basis Principal Name       Quantity
4     Float 20     01-Jan-2000    01-Jan-2003    1          NaN   NaN       20BP Float 8       
 
Index Type LegRate    Settle         Maturity       LegReset Basis Principal LegType Name         Quantity
5     Swap [0.06  20] 01-Jan-2000    01-Jan-2003    [1  1]   NaN   NaN       [NaN]   6%/20BP Swap 10      
 

[Delta, Gamma] = intenvsens(ZeroRateSpec, ZeroInstSet)

Delta =

 -272.6403
 -347.4386
 -272.6403
   -1.0445
 -282.0405

Gamma =

  1.0e+003 *

    1.0298
    1.6227
    1.0298
    0.0033
    1.0596
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See Also
hjmprice | hjmsens | instadd | intenvprice | intenvset

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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intenvset
Set properties of interest-rate structure

Syntax
RateSpec = intenvset(Name,Value)
[RateSpec,RateSpecOld] = intenvset(RateSpec,Name,Value)
[RateSpec,RateSpecOld] = intenvset

Description
RateSpec = intenvset(Name,Value) creates an interest-rate term structure
(RateSpec) where the input argument list is specified as name-value pairs.

Note When creating a new RateSpec, the set of arguments passed to intenvset must
include StartDates, EndDates, and either Rates or Disc.

[RateSpec,RateSpecOld] = intenvset(RateSpec,Name,Value) creates an
interest-rate term structure (RateSpec) where the input argument list is specified as
name-value pairs along with the optional argument RateSpec. If the optional argument
RateSpec is specified, intenvset modifies the existing interest-rate term structure
RateSpec by changing the named argument to the specified values and recalculating the
arguments dependent on the new values.

[RateSpec,RateSpecOld] = intenvset creates an interest-rate term structure
RateSpec with all fields set to [ ].

Examples

Create a RateSpec for a Zero Curve

Use intenvset to create a RateSpec for a zero curve.

 intenvset
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RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'20-Jan-2000', 'EndDates', '20-Jan-2001')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9518
            Rates: 0.0500
         EndTimes: 2
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Now change the Compounding argument to 1 (annual).

RateSpec = intenvset(RateSpec, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.9518
            Rates: 0.0506
         EndTimes: 1
       StartTimes: 0
         EndDates: 730871
       StartDates: 730505
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Calling intenvset with no input or output arguments displays a list of argument names
and possible values.

intenvset

            Compounding: [ 0 | 1 | {2} | 3 | 4 | 6 | 12 | 365 | -1 ]
                   Disc: [ scalar | vector (NPOINTS x 1) ]
                  Rates: [ scalar | vector (NPOINTS x 1) ]
               EndDates: [ scalar | vector (NPOINTS x 1) ]
             StartDates: [ scalar | vector (NPOINTS x 1) ]
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          ValuationDate: [ scalar ]
                  Basis: [ {0} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 ]
           EndMonthRule: [ 0 | {1} ]

Create a RateSpec for a Forward Curve

Use intenvset to create a RateSpec for a forward curve.

RateSpec = intenvset('Rates', 0.05, 'StartDates',... 
'20-Jan-2001', 'EndDates', '20-Jan-2002', 'ValuationDate','20-Jan-2000')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9518
            Rates: 0.0500
         EndTimes: 4
       StartTimes: 2
         EndDates: 731236
       StartDates: 730871
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

Now change the Compounding argument to 1 (annual).

RateSpec = intenvset(RateSpec, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.9518
            Rates: 0.0506
         EndTimes: 2
       StartTimes: 1
         EndDates: 731236
       StartDates: 730871
    ValuationDate: 730505
            Basis: 0
     EndMonthRule: 1

 intenvset

11-1029



Create a RateSpec Using Two Curves

Define data for the interest-rate term structure and use intenvset to create a
RateSpec.

StartDates = '01-Oct-2011'; 
EndDates = ['01-Oct-2012'; '01-Oct-2013';'01-Oct-2014';'01-Oct-2015'];
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0325;0.0423;0.0437;0.0465]];
RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x2 double]
            Rates: [4x2 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734777
    ValuationDate: 734777
            Basis: 0
     EndMonthRule: 1

To look at the Rates for the two interest-rate curves:

RateSpec.Rates

ans = 4×2

    0.0356    0.0325
    0.0412    0.0423
    0.0449    0.0437
    0.0477    0.0465

Create a RateSpec to Price Multi-Stepped Coupon Bonds

Price the following multi-stepped coupon bonds using the following data:
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Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec using intenvset
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Create a portfolio of stepped coupon bonds with different maturities
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2011';'01-Jan-2012';'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2011' .042;'01-Jan-2012' .05; '01-Jan-2013' .06; '01-Jan-2014' .07}};

% Display the instrument portfolio 
ISet = instbond(CouponRate, Settle, Maturity, 1);
instdisp(ISet)

Index Type CouponRate Settle         Maturity       Period Basis EndMonthRule IssueDate FirstCouponDate LastCouponDate StartDate Face
1     Bond [Cell]     01-Jan-2010    01-Jan-2011    1      0     1            NaN       NaN             NaN            NaN       100 
2     Bond [Cell]     01-Jan-2010    01-Jan-2012    1      0     1            NaN       NaN             NaN            NaN       100 
3     Bond [Cell]     01-Jan-2010    01-Jan-2013    1      0     1            NaN       NaN             NaN            NaN       100 
4     Bond [Cell]     01-Jan-2010    01-Jan-2014    1      0     1            NaN       NaN             NaN            NaN       100 
 

Build a BDTTree to price the stepped coupon bonds. Assume the volatility to be 10%

Sigma = 0.1; 
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% Compute the price of the stepped coupon bonds
PBDT = bdtprice(BDTT, ISet)

PBDT = 4×1

  100.6763
  100.7368
  100.9266
  101.0115
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Input Arguments
RateSpec — Interest-rate specification for initial risk-free rate curve
structure

(Optional) Interest-rate specification for initial rate curve, specified by the RateSpec
obtained previously from intenvset or toRateSpec for an IRDataCurve or
toRateSpec for an IRFunctionCurve.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: RateSpec = intenvset('Rates',0.05,'StartDates','20-
Jan-2001','EndDates','20-Jan-2002','ValuationDate','20-Jan-2000')

Compounding — Rate at which the input zero rates were compounded when
annualized
2 (default) | integer with value of 0,1, 2, 3, 4, 6, 12, 365, or -1

Rate at which the input zero rates were compounded when annualized, specified as the
comma-separated pair consisting of 'Compounding' and a scalar integer value. The
Compounding argument determines the formula for the discount factors (Disc):

• Compounding = 0 for simple interest

• Disc = 1/(1 + Z * T), where T is time in years and simple interest assumes
annual times F = 1.

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding frequency, Z is the zero
rate, and T is the time in periodic units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of days in the basis year and T
is a number of days elapsed computed by basis.
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• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.

Data Types: double

Disc — Unit bond prices over investment intervals
[ ] (default) | matrix

Unit bond prices over investment intervals from StartDates (when the cash flow is
valued) to EndDates (when the cash flow is received), specified as the comma-separated
pair consisting of 'Disc' and a number of points (NPOINTS) by number of curves
(NCURVES) matrix.
Data Types: double

Rates — Interest rates
matrix of decimal values

Interest rates, specified as the comma-separated pair consisting of 'Rates' and a
number of points (NPOINTS) by number of curves (NCURVES) matrix of decimal values.
Rates can only contain negative decimal values if the resulting RateSpec is used with a
Normal (Bachelier) model, shifted Black model, or a shifted SABR model.
Data Types: double

EndDates — Maturity dates ending the interval to discount over
serial date number | date character vector

Maturity dates ending the interval to discount over, specified as the comma-separated
pair consisting of 'EndDates' and a scalar or a NPOINTS-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

StartDates — Dates starting the interval to discount over
serial date number | date character vector

Dates starting the interval to discount over, specified as the comma-separated pair
consisting of 'StartDates' and a scalar or a NPOINTS-by-1 vector of serial date
numbers or date character vectors. StartDates must be earlier than EndDates.
Data Types: double | char | cell
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ValuationDate — Observation date of the investment horizons entered in
StartDates and EndDates
min(StartDates) (default) | serial date number | character vector date

observation date of the investment horizons entered in StartDates and EndDates,
specified as the comma-separated pair consisting of 'ValuationDate' and a specified
as a scalar serial date number or date character vector.
Data Types: double | char

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
scalar integer value.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1
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End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a scalar integer with a value of 0 or 1. This rule applies only when
EndDates is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
RateSpec — Interest-rate specification for initial rate curve
structure

Interest-rate specification for initial rate curve, returned as a structure.

RateSpecOld — Properties of an interest-rate structure before the changes
introduced by the call to intenvset
structure

Properties of an interest-rate structure before the changes introduced by the call to
intenvset, returned as a structure.

See Also
intenvget | intenvprice

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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isafin
True if input argument is financial structure type or financial object class

Syntax
IsFinObj = isafin(Obj,ClassName)

Arguments
Obj Name of a financial structure.
ClassName Character vector containing the name of a financial structure class.

Description
IsFinObj = isafin(Obj,ClassName) returns True (1) if input argument is a
financial structure type or financial object class, otherwise False (0) is returned.

Examples
load deriv.mat
IsFinObj = isafin(HJMTree, 'HJMFwdTree') 

IsFinObj =

     1

See Also
classfin

Topics
“Portfolio Creation” on page 1-8
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“Instrument Constructors” on page 1-20

Introduced before R2006a
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ittprice
Price instruments using implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = ittprice(ITTTree,InstSet)
[Price,PriceTree] = ittprice( ___ ,Options)

Description
[Price,PriceTree] = ittprice(ITTTree,InstSet) price instruments using an
implied trinomial tree (ITT) created with itttree. All instruments contained in a
financial instrument variable, InstSet, are priced.

ittprice handles the following instrument types: optstock, barrier, Asian, lookback, and
compound. Use instadd to construct the defined types.

[Price,PriceTree] = ittprice( ___ ,Options) adds an optional input argument
for Options.

Examples

Price Instruments Using Implied Trinomial Tree (ITT)

Load the ITT tree and instruments from the data file deriv.mat.

load deriv.mat

Display the barrier and Asian options contained in the instrument set.

ITTSubSet = instselect(ITTInstSet,'Type', {'Barrier', 'Asian'}); 

instdisp(ITTSubSet)
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Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
1     Barrier call    85     01-Jan-2006    31-Dec-2008    1           ui          115     0      Barrier1 1       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
2     Asian call    55     01-Jan-2006    01-Jan-2008    0           arithmetic NaN      NaN     Asian1 5       
3     Asian call    55     01-Jan-2006    01-Jan-2010    0           arithmetic NaN      NaN     Asian2 7       
 

Price the barrier and Asian options contained in the instrument set.

[Price, PriceTree] = ittprice(ITTTree, ITTSubSet)

Price = 3×1

    2.4074
    3.2052
    6.6074

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x5 cell}
      tObs: [0 1 2 3 4]
      dObs: [732678 733043 733408 733773 734139]

Input Arguments
ITTTree — Implied trinomial stock tree structure
structure

Implied trinomial stock tree structure, specified by using itttree.
Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct
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Options — Derivatives pricing options structure
structure

(Optional) Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Price — Price for each instrument
vector

Price for each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the stock tree. If an instrument cannot be priced, a
NaN is returned in that entry.

For information on single-type pricing functions to retrieve state-by-state pricing tree
information, see the following:

• barrierbyitt for pricing barrier options using an ITT tree
• optstockbyitt for pricing American, European, or Bermuda options using an ITT

tree
• asianbyitt for pricing Asian options using an ITT tree
• lookbackbyitt for pricing lookback options using an ITT tree
• compoundbyitt for price compound options using an ITT tree
• cbondbyitt for pricing convertible bonds using an ITT tree

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of instrument prices and accrued interest, and a vector of observation times for
each node. Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.
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See Also
ittsens | itttree

Topics
“Computing Prices Using ITT” on page 3-133
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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ittsens
Instrument sensitivities and prices using implied trinomial tree (ITT)

Syntax
[Delta,Gamma,Vega,Price] = ittsens(ITTTree,InstSet)
[Delta,Gamma,Vega,Price] = ittsens( ___ ,Options)

Description
[Delta,Gamma,Vega,Price] = ittsens(ITTTree,InstSet) calculates instrument
sensitivities and prices using an implied trinomial tree (ITT) that is created with the
itttree function. All sensitivities are returned as dollar sensitivities. To find the per-
dollar sensitivities, divide by the respective instrument price.

ittsens handles the following instrument types: optstock, barrier, Asian, lookback, and
compound. Use instadd to construct the defined types.

[Delta,Gamma,Vega,Price] = ittsens( ___ ,Options) adds an optional input
argument for Options.

Examples

Compute Instrument Sensitivities Using an Implied Trinomial Tree (ITT)

Load the ITT tree and instruments from the data file deriv.mat and display the vanilla
options and barrier option instruments.

load deriv.mat
ITTSubSet = instselect(ITTInstSet,'Type', {'OptStock', 'Barrier'});

instdisp(ITTSubSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    95     01-Jan-2006    31-Dec-2008    1           Call1 10      
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2     OptStock put     80     01-Jan-2006    01-Jan-2010    0           Put1   4      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    85     01-Jan-2006    31-Dec-2008    1           ui          115     0      Barrier1 1       
 

Compute the Delta and Gamma sensitivities of vanilla options and barrier option
contained in the instrument set.

[Delta, Gamma] = ittsens(ITTTree, ITTSubSet)

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of the
range of those specified in StockOptSpec.

Option Type: 'call'   Maturity: 01-Jan-2007  Strike=67.2897
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=37.1528
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=27.6066
Option Type: 'put'   Maturity: 31-Dec-2008  Strike=20.5132
Option Type: 'call'   Maturity: 01-Jan-2010  Strike=164.0157
Option Type: 'put'   Maturity: 01-Jan-2010  Strike=15.2424

Delta = 3×1

    0.2387
   -0.4283
    0.3482

Gamma = 3×1

    0.0260
    0.0188
    0.0380

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
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Data Types: struct

InstSet — Instrument variable
structure

Instrument variable containing a collection of NINST instruments, specified using
instadd. Instruments are categorized by type; each type can have different data fields.
The stored data field is a row vector or character vector for each instrument.
Data Types: struct

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, created using derivset.
Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the
stock price
vector

Rate of change of instruments prices with respect to changes in the stock price, returned
as a NINST-by-1 vector of deltas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are
computed by finite differences in calls to ittprice. For the rest of the options
('OptStock', 'Barrier', 'CBond', and 'Compound'), Delta and Gamma are
computed from the ITTTree and the corresponding option price tree.

Gamma — Rate of change of instruments deltas with respect to changes in stock
price
vector

Rate of change of instruments deltas with respect to changes in the stock price, returned
as a NINST-by-1 vector of gammas.

For path-dependent options ('Lookback' and 'Asian'), Delta and Gamma are
computed by finite differences in calls to ittprice. For the rest of the options
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('OptStock', 'Barrier', 'CBond', and 'Compound'), Delta and Gamma are
computed from the ITTTree and the corresponding option price tree.

Vega — Rate of change of instruments prices with respect to changes in volatility
of the stock
vector

Rate of change of instruments prices with respect to changes in the volatility of the stock,
returned as a NINST-by-1 vector of vegas. Vega is computed by finite differences in calls
to itttree.

Price — Price of each instrument
vector

Price of each instrument, returned as a NINST-by-1 vector. The prices are computed by
backward dynamic programming on the stock tree. If an instrument cannot be priced, a
NaN is returned in that entry.

References
[1] Chriss, Neil. Black-Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996, pp

308-312.

See Also
ittprice | itttree

Topics
“Computing Prices Using ITT” on page 3-133
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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itttimespec
Specify time structure using implied trinomial tree (ITT)

Syntax
TimeSpec = itttimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = itttimespec(ValuationDate,Maturity,NumPeriods) creates the
structure specifying the time layout for an ITT tree (itttree).

Examples

Creates the Structure Specifying the Time Layout for an ITT Tree

This example shows how to specify a four-period tree with time steps of 1 year.

ValuationDate = '1-July-2006';
Maturity = '1-July-2010';
TimeSpec = itttimespec(ValuationDate, Maturity, 4)

TimeSpec = struct with fields:
           FinObj: 'ITTTimeSpec'
    ValuationDate: 732859
         Maturity: 734320
       NumPeriods: 4
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4]
             dObs: [732859 733224 733589 733954 734320]
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Input Arguments
ValuationDate — Pricing date and first observation in the tree
serial date number | character vector date

Pricing date and first observation in the itttree, specified as a scalar date using a serial
date number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the EQP stock tree
serial date number | date character vector

Date marking the depth of the itttree trinomial tree, specified as scalar serial date
number or date character vector.
Data Types: double | char

NumPeriods — Number of time steps in the ITT tree
integer

Number of time steps in the itttree trinomial tree, specified as scalar integer value.
Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for itttree
structure

Specification for the time layout for itttree, returned as a structure.

See Also
ittprice | itttree | stockspec

Topics
“Building Implied Trinomial Trees” on page 3-8
“Examining Equity Trees” on page 3-18
“Graphical Representation of Equity Derivative Trees” on page 3-140
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“Understanding Equity Trees” on page 3-2
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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itttree
Build implied trinomial stock tree

Syntax
ITTTree = itttree(StockSpec,RateSpec,TimeSpec,StockOptSpec)

Description
ITTTree = itttree(StockSpec,RateSpec,TimeSpec,StockOptSpec) builds an
implied trinomial (ITT) stock tree.

Examples

Create an ITT Tree

Assume that the interest rate is fixed at 8% annually between the valuation date of the
tree (January 1, 2006) until its maturity.

Rate = 0.08;
ValuationDate = '01-01-2006';
EndDate = '01-01-2008';

RateSpec = intenvset('StartDates', ValuationDate, 'EndDates', EndDate, ...
    'ValuationDate', ValuationDate, 'Rates', Rate, 'Compounding', -1);

To build an ITTTree, create the StockSpec, TimeSpec, and StockOptSpec structures.

Sigma = 0.20;
AssetPrice = 50;
DividendType = 'cash';
DividendAmounts = [0.50; 0.50; 0.50; 0.50];
ExDividendDates = {'03-Jan-2007'; '01-Apr-2007'; '05-July-2007';'01-Oct-2007'}

StockSpec = stockspec(Sigma, AssetPrice, DividendType, ... 
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DividendAmounts, ExDividendDates);

ValuationDate = '01-01-2006';
EndDate = '01-01-2008';
NumPeriods = 4;
 
TimeSpec = itttimespec(ValuationDate, EndDate, NumPeriods);

Build a StockOptSpec structure.

Settle =   '01/01/06';

Maturity =    ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];

Strike = [113;
   101;
   100;
    88;
   128;
   112;
   100;
    78;
   144;
   112;
   100;
    69;
   162;
   112;
   100;
    61];
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OptPrice =[                 0;
   4.807905472659144;
   1.306321897011867;
   0.048039195057173;
                   0;
   2.310953054191461;
   1.421950392866235;
   0.020414826276740;
                   0;
   5.091986935627730;
   1.346534812295291;
   0.005101325584140;
                   0;
   8.047628153217246;
   1.219653432150932;
   0.001041436654748];

OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};
    
StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec);

Use itttree to build the ITTTree structure. Note, in this example, the extrapolation
warnings are turned on. These warnings are a consequence of having to extrapolate to
find the option price of the tree nodes. In this example, the set of inputs options was too
narrow for the shift in the tree nodes introduced by the disturbance used to calculate the
sensitivities. As a consequence extrapolation for some of the nodes was needed.
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warning('on', 'fininst:itttree:Extrapolation');
ITTTree = itttree(StockSpec, RateSpec, TimeSpec, StockOptSpec)

Warning: The option set specified in StockOptSpec was too narrow for the generated tree.
This made extrapolation necessary. Below is a list of the options that were outside of
the range of those specified in StockOptSpec.

Option Type: 'call'   Maturity: 02-Jul-2006  Strike=60.7466
Option Type: 'put'   Maturity: 02-Jul-2006  Strike=50.0731
Option Type: 'put'   Maturity: 02-Jul-2006  Strike=41.3344
Option Type: 'call'   Maturity: 01-Jan-2007  Strike=73.8592
Option Type: 'call'   Maturity: 01-Jan-2007  Strike=60.8227
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=50.1492
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=41.4105
Option Type: 'put'   Maturity: 01-Jan-2007  Strike=34.2559
Option Type: 'call'   Maturity: 02-Jul-2007  Strike=88.8310
Option Type: 'call'   Maturity: 02-Jul-2007  Strike=72.9081
Option Type: 'call'   Maturity: 02-Jul-2007  Strike=59.8715
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=49.1980
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=40.4594
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=33.3047
Option Type: 'put'   Maturity: 02-Jul-2007  Strike=27.4470
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=107.2895
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=87.8412
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=71.9183
Option Type: 'call'   Maturity: 01-Jan-2008  Strike=58.8817
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=48.2083
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=39.4696
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=32.3150
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=26.4573
Option Type: 'put'   Maturity: 01-Jan-2008  Strike=21.6614

> In itttree>InterpOptPrices at 675
  In itttree at 277

ITTTree = 

          FinObj: 'ITStockTree'
       StockSpec: [1x1 struct]
    StockOptSpec: [1x1 struct]
        TimeSpec: [1x1 struct]
        RateSpec: [1x1 struct]
            tObs: [0 0.500000000000000 1 1.500000000000000 2]
            dObs: [732678 732860 733043 733225 733408]
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           STree: {1x5 cell}
           Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Input Arguments
StockSpec — Stock specification
structure

Stock specification, specified by the StockSpec obtained from stockspec. See
stockspec for information on creating a stock specification.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial risk-free rate curve, specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see
intenvset.
Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified by the TimeSpec obtained from itttimespec.
The TimeSpec defines the observation dates of the ITT tree. See itttimespec for
information on the tree structure.
Data Types: struct

StockOptSpec — Option stock specification
structure

Option stock specification, specified by the StockOptSpec obtained from
stockoptspec. See stockoptspec for information on creating a stock specification.
Data Types: struct
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Output Arguments
ITTTree — ITT trinomial tree
structure

ITT trinomial tree, returned as a structure specifying the time layout for the tree.

See Also
intenvset | ittprice | itttimespec | itttree | stockoptspec | stockspec

Topics
“Building Implied Trinomial Trees” on page 3-8
“Examining Equity Trees” on page 3-18
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Understanding Equity Trees” on page 3-2
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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LiborMarketModel
Create LIBOR Market Model

Description
The LIBOR Market Model (LMM) is an interest-rate model that differs from short rate
models in that it evolves a set of discrete forward rates.

Specifically, the lognormal LMM specifies the following diffusion equation for each
forward rate
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The LMM relates drifts of the forward rates based on no-arbitrage arguments.
Specifically, under the Spot LIBOR measure, drifts are expressed as
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where:

ri j,  represents the input argument Correlation.

s j t( )  represents the input argument VolFunc.

F tj ( )  represents the computation of the input argument for ZeroCurve.
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t
i  is the time fraction associated with the i th forward rate

q(t) is an index defined by the relation
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Creation

Syntax
LMM = LiborMarketModel(ZeroCurve,VolFunc,Correlation)
LMM = LiborMarketModel( ___ ,Name,Value)

Description
LMM = LiborMarketModel(ZeroCurve,VolFunc,Correlation) creates a
LiborMarketModel (LMM) object using the required arguments for ZeroCurve,
VolFunc, Correlation.

LMM = LiborMarketModel( ___ ,Name,Value) sets Properties on page 11-1058 using
name-value pairs. For example, LMM =
LiborMarketModel(irdc,VolFunc,Correlation,'Period',1). You can specify
multiple name-value pairs. Enclose each property name in single quotes.

Input Arguments
ZeroCurve — Zero curve used to evolve path of future interest rates
IRDataCurve object | RateSpec

11 Functions — Alphabetical List

11-1056



Zero curve used to evolve the path of future interest rates, specified as an output from
IRDataCurve or a RateSpec that is obtained from intenvset. The ZeroCurve input
sets the ZeroCurve on page 11-0  property.
Data Types: object | struct

VolFunc — Volatility function
cell array of function handles

Volatility function, specified using a NumRates-by-1 cell array of function handles and
sets the VolFunc on page 11-0  property. Each function handle must take time as an
input and, return a scalar volatility.

Note The number of rates to simulate using the simTermStructs function is
determined by the size of the VolFunc and Correlation inputs which must be
consistent. These can be any value and, together with the Period property, determines
the kinds and number of rates being simulated. For example, if the Period is set to 4
(quarterly) and VolFunc has length of 120 and Correlation has size 120-by-120, then
120 quarterly rates are simulated. In other words, 30 years of the yield curve are
simulated (0-3mos, 3mos-6mos, 6mos-9mos, and so on, all the way up to 30 years).
Therefore, if VolFunc and Correlation have size 120, the output of a call to
simTermStructs is (nPeriods+1) -by-121-by-nTrials.

Data Types: cell

Correlation — Correlation matrix
matrix

Correlation matrix, specified using a NumRates-by-NumRates correlation matrix and sets
the Correlation on page 11-0  property.

Note The number of rates to simulate using the simTermStructs function is
determined by the size of the VolFunc and Correlation inputs which must be
consistent. These can be any value and, together with the Period property, determines
the kinds and number of rates being simulated. For example, if the Period is set to 4
(quarterly) and VolFunc has length of 120 and Correlation has size 120-by-120, then
120 quarterly rates are simulated. In other words, 30 years of the yield curve are
simulated (0-3mos, 3mos-6mos, 6mos-9mos, and so on, all the way up to 30 years).
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Therefore, if VolFunc and Correlation have size 120, the output of a call to
simTermStructs is (nPeriods+1) -by-121-by-nTrials.

Data Types: double

Properties
ZeroCurve — Zero curve
IRDataCurve object | RateSpec

Zero curve, specified as an output from IRDataCurve or a RateSpec that is obtained
from intenvset.
Data Types: object | struct

VolFunc — Volatility function
cell array of function handles

Volatility function, specified using a NumRates-by-1 cell array of function handles. Each
function handle must take time as an input and, return a scalar volatility.
Data Types: cell

Correlation — Correlation matrix
matrix

Correlation matrix, specified using a NumRates-by-NumRates correlation matrix.
Data Types: double

NumFactors — Number of Brownian factors
NaN (default) | numeric

Number of Brownian factors, specified as a numeric value. The default is NaN, where the
number of factors is equal to the number of rates.
Data Types: double

Period — Period of forward rates, specifically number of rates per year
2 (default) | numeric with value 1, 2, 4, or 12
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Period of the forward rates, specifically the number of rates per year, specified as a
numeric value of 1, 2, 4, or 12. The default value is 2, meaning forward rates are spaced
at 0, .5, 1, 1.5, and so on.
Data Types: double

Object Functions
simTermStructs Simulate term structures for LIBOR Market Model

Examples

Create a LIBOR Market Model Using an IRDataCurve

Create a LMM object using an IRDataCurve.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);

LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = 20;
VolFunc(1:numRates,1) = {@(t) LMMVolFunc(LMMVolParams,t)};
  
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates)',meshgrid(1:numRates),Beta);
  
LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1)

LMM = 
  LiborMarketModel with properties:

       ZeroCurve: [1x1 IRDataCurve]
    VolFunctions: {20x1 cell}
     Correlation: [20x20 double]
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      NumFactors: NaN
          Period: 1

Simulate the term structures for the specified LMM object.

[ZeroRates, ForwardRates] = simTermStructs(LMM, 10,'nTrials',100);

Create a LIBOR Market Model Using a RateSpec

Create a LMM object using a RateSpec.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);

LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = 20;
VolFunc(1:numRates,1) = {@(t) LMMVolFunc(LMMVolParams,t)};
  
Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates)',meshgrid(1:numRates),Beta);
  
LMM = LiborMarketModel(RateSpec,VolFunc,Correlation,'Period',1)

LMM = 
  LiborMarketModel with properties:

       ZeroCurve: [1x1 IRDataCurve]
    VolFunctions: {20x1 cell}
     Correlation: [20x20 double]
      NumFactors: NaN
          Period: 1

Simulate the term structures for the specified LMM object.
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[ZeroRates, ForwardRates] = simTermStructs(LMM, 10,'nTrials',100);

Definitions

LIBOR Market Model
The LIBOR Market Model, also called the BGM Model (Brace, Gatarek, Musiela Model) is
a financial model of interest rates.

The quantities that are modeled are a set of forward rates (also called forward LIBORs)
which have the advantage of being directly observable in the market, and whose
volatilities are naturally linked to traded contracts.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer

Finance, 2006.

See Also
HullWhite1F | IRDataCurve | LinearGaussian2F | intenvset | simTermStructs

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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simTermStructs
Simulate term structures for LIBOR Market Model

Syntax
[ZeroRates,ForwardRates] = simTermStructs(LMM,nPeriods)
[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value)

Description
[ZeroRates,ForwardRates] = simTermStructs(LMM,nPeriods) simulates future
zero curve paths using a specified LiborMarketModel object.

[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Simulate Term Structures for a LIBOR Market Model

Create a LMM object.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
 
LMMVolFunc = @(a,t) (a(1)*t + a(2)).*exp(-a(3)*t) + a(4);
LMMVolParams = [.3 -.02 .7 .14];
  
numRates = 20;
VolFunc(1:numRates-1) = {@(t) LMMVolFunc(LMMVolParams,t)};
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Beta = .08;
CorrFunc = @(i,j,Beta) exp(-Beta*abs(i-j));
Correlation = CorrFunc(meshgrid(1:numRates-1)',meshgrid(1:numRates-1),Beta);
  
LMM = LiborMarketModel(irdc,VolFunc,Correlation,'Period',1)

LMM = 
  LiborMarketModel with properties:

       ZeroCurve: [1x1 IRDataCurve]
    VolFunctions: {1x19 cell}
     Correlation: [19x19 double]
      NumFactors: NaN
          Period: 1

Simulate the term structures for the specified LMM object.

[ZeroRates, ForwardRates] = simTermStructs(LMM, 20,'nTrials',100);

Input Arguments
LMM — LiborMarketModel object
object

LiborMarketModel object, specified using the LMM object created using
LiborMarketModel.
Data Types: object

nPeriods — Number of simulation periods
numeric

Number of simulation periods, specified as a numeric value. The nPeriods value is
determined by the swaption expiry and the periodicity of the rates of the model. For
example, if you were to price a swaption expiring in 5 years with a semiannual LIBOR
Market Model (LMM), then nPeriods would be 10.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [ZeroRates, ForwardRates] = simTermStructs(LMM, 20,'nTrials',
100)

nTrials — Number of simulated trials
1 (default) | positive integer

Number of simulated trials (sample paths), specified as the comma-separated pair
consisting of 'nTrials' and a positive scalar integer value of nPeriods observations
each. If you do not specify a value for this argument, the default is 1, indicating a single
path of correlated state variables.
Data Types: double

antithetic — Flag indicating whether antithetic sampling is used to generate
Gaussian random variates
false (default) | positive integer

Flag indicating whether antithetic sampling is used to generate the Gaussian random
variates that drive the zero-drift, unit-variance rate Brownian vector dW(t), specified as
the comma-separated pair consisting of 'antithetic' and a Boolean scalar flag. For
details on the Brownian vector, see simBySolution.
Data Types: logical

Z — Direct specification of dependent random noise process
generated by simBySolution function (default) | numeric

Direct specification of the dependent random noise process, specified as the comma-
separated pair consisting of 'Z' and a numeric value. The Z value is used to generate the
zero-drift, unit-variance rate Brownian vector dW(t) that drives the simulation. For
details, see simBySolution for the GBM model.
Data Types: double

Tenor — Maturities to compute at each time step
number of rates in LiborMarketModel object (default) | numeric vector
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Maturities to compute at each time step, specified as the comma-separated pair
consisting of 'Tenor' and a numeric vector.

Tenor enables you to choose a different set of rates to output than the underlying rates.
For example, you may want to simulate quarterly data but only report annual rates; this
can be done by specifying the optional input Tenor.

The default for tenor is the number of rates in the LiborMarketModel object as
specified by the Correlation and VolFunc input arguments for the
LiborMarketModel object.
Data Types: double

Output Arguments
ZeroRates — Simulated zero-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials
matrix.

ForwardRates — Simulated forward-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials
matrix.

See Also
LiborMarketModel | blackvolbyrebonato

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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LinearGaussian2F
Create two-factor additive Gaussian interest-rate model

Description
The two-factor additive Gaussian interest rate-model is specified using the zero curve, a,
b, sigma, eta, and rho parameters.

Specifically, the LinearGaussian2F model is defined using the following equations:

r t x t y t t( ) ( ) ( ) ( )= + +f

dx t a t x t dt t dW t x( ) ( ) ( ) ( ) ( ), ( )= - + =s 1 0 0

dy t b t y t dt t dW t y( ) ( ) ( ) ( ) ( ), ( )= - + =h 2 0 0

where dW t dW t dt1 2( ) ( ) = r  is a two-dimensional Brownian motion with correlation ρ, and
ϕ is a function chosen to match the initial zero curve.

Creation

Syntax
G2PP = LinearGaussian2F(ZeroCurve,a,b,sigma,eta,rho)

Description
G2PP = LinearGaussian2F(ZeroCurve,a,b,sigma,eta,rho) creates a
LinearGaussian2F (G2PP) object using the required arguments to set the Properties on
page 11-1067.
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Properties
ZeroCurve — Zero curve
IRDataCurve object | RateSpec

Zero curve, specified as an output from IRDataCurve or a RateSpec that is obtained
from intenvset. This is the zero curve used to evolve the path of future interest rates.
Data Types: object | struct

a — Mean reversion for first factor
numeric

Mean reversion for the first factor, specified either as a scalar or function handle which
takes time as input and returns a scalar mean reversion value.
Data Types: double

b — Mean reversion for second factor
numeric

Mean reversion for the second factor, specified either as a scalar or as a function handle
which takes time as input and returns a scalar mean reversion value.
Data Types: double

sigma — Volatility for first factor
numeric

Volatility for the first factor, specified either as a scalar or function handle which takes
time as input and returns a scalar mean volatility.
Data Types: double

eta — Volatility for second factor
numeric

Volatility for the second factor, specified either as a scalar or function handle which takes
time as input and returns a scalar mean volatility.
Data Types: double

rho — Scalar correlation of factors
numeric
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Scalar correlation of the factors, specified as a numeric value.
Data Types: double

Object Functions
simTermStructs Simulate term structures for two-factor additive Gaussian interest-rate

model

Examples

Create a Two-Factor Additive Gaussian Interest-Rate Model Using an
IRDataCurve

Create a two-factor additive Gaussian interest-rate model using an IRdataCurve.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
    
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)

G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000
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Use the simTermStructs method to simulate term structures based on the
LinearGaussian2F model.

 SimPaths = simTermStructs(G2PP, 10,'nTrials',100);

Create a Two-Factor Additive Gaussian Interest-Rate Model Using a RateSpec

Create a two-factor additive Gaussian interest-rate model using a RateSpec.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
RateSpec = intenvset('Rates',ZeroRates,'EndDates',CurveDates,'StartDate',Settle);
    
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
G2PP = LinearGaussian2F(RateSpec,a,b,sigma,eta,rho)

G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000

Use the simTermStructs method to simulate term structures based on the
LinearGaussian2F model.

 SimPaths = simTermStructs(G2PP, 10,'nTrials',100);
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Definitions

Two-Factor Additive Gaussian Interest-Rate Model
Short-rate model based on two factors where the short rate is the sum of the two factors
and a deterministic function.

In this case ϕ(t), which is chosen to match the initial term structure.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer

Finance, 2006.

See Also
HullWhite1F | LiborMarketModel | capbylg2f | floorbylg2f | simTermStructs |
swaptionbylg2f

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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simTermStructs
Simulate term structures for two-factor additive Gaussian interest-rate model

Syntax
[ZeroRates,ForwardRates] = simTermStructs(G2PP,nPeriods)
[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value)

Description
[ZeroRates,ForwardRates] = simTermStructs(G2PP,nPeriods) simulates
future zero curve paths using a specified LinearGaussian2F object.

[ZeroRates,ForwardRates] = simTermStructs( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Simulate Term Structures for the LinearGaussian2F Model

Create a two-factor additive Gaussian interest-rate model.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
    
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
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G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)

G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000

Use the simTermStructs method to simulate term structures based on the
LinearGaussian2F model.

 SimPaths = simTermStructs(G2PP, 10,'nTrials',100);

Simulate Term Structures for the LinearGaussian2F Model Using a Vector for
deltaTime

Create a two-factor additive Gaussian interest-rate model.

Settle = datenum('15-Dec-2007');
CurveTimes = [1:5 7 10 20]';
ZeroRates = [.01 .018 .024 .029 .033 .034 .035 .034]';
CurveDates = daysadd(Settle,360*CurveTimes,1);

irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
a = .07;
b = .5;
sigma = .01;
eta = .006;
rho = -.7;
G2PP = LinearGaussian2F(irdc,a,b,sigma,eta,rho)

G2PP = 
  LinearGaussian2F with properties:

    ZeroCurve: [1x1 IRDataCurve]
            a: @(t,V)ina
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            b: @(t,V)inb
        sigma: @(t,V)insigma
          eta: @(t,V)ineta
          rho: -0.7000

Use the simTermStructs method to simulate term structures based on the
LinearGaussian2F object, where uneven simulation tenors are specified using the
optional name-value argument deltaTime as a vector of length NPeriods.

NPeriods = 10;               
dt = rand(NPeriods,1);
SimPaths = G2PP.simTermStructs(NPeriods,'nTrials',100,'DeltaTime',dt);

Input Arguments
G2PP — LinearGaussian2F object
object

LinearGaussian2F object, specified using the G2PP object created using
LinearGaussian2F.
Data Types: object

nPeriods — Number of simulation periods
numeric

Number of simulation periods, specified as a numeric value. For example, to simulate 12
years with an annual spacing, specify 12 as the nPeriods input and 1 as the optional
deltaTime input (note that the default value for deltaTime is 1).
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [ZeroRates,ForwardRates] =
simTermStructs(G2PP,NPeriods,'nTrials',100,'deltaTime',dt)

deltaTime — Time step between nPeriods
1 (default) | numeric

Time step between nPeriods, specified as the comma-separated pair consisting of
'deltaTime' and a numeric scalar or vector. For example, to simulate 12 years with an
annual spacing, specify 12 as the nPeriods input and 1 as the optional deltaTime input
(note that the default value for deltaTime is 1).
Data Types: double

nTrials — Number of simulated trials
1 (default) | positive integer

Number of simulated trials (sample paths), specified as the comma-separated pair
consisting of 'nTrials' and a positive scalar integer value of nPeriods observations
each. If you do not specify a value for this argument, the default is 1, indicating a single
path of correlated state variables.
Data Types: double

antithetic — Flag indicating whether antithetic sampling is used to generate
Gaussian random variates
false (default) | positive integer

Flag indicating whether antithetic sampling is used to generate the Gaussian random
variates that drive the zero-drift, unit-variance rate Brownian vector dW(t), specified as
the comma-separated pair consisting of 'antithetic' and a Boolean scalar flag. For
details, see simBySolution for the HWV model.
Data Types: logical

Z — Direct specification of dependent random noise process
Gaussian variates generated by simBySolution function (default) | numeric

Direct specification of the dependent random noise process, specified as the comma-
separated pair consisting of 'Z' and a numeric value. The Z value is used to generate the
zero-drift, unit-variance rate Brownian vector dW(t) that drives the simulation. For
details, see simBySolution for the HWV model. If you do not specify a value for Z,
simBySolution generates Gaussian variates.
Data Types: double
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Tenor — Maturities to compute at each time step
tenor of LinearGaussian2F object zero curve (default) | numeric vector

Maturities to compute at each time step, specified as the comma-separated pair
consisting of 'Tenor' and a numeric vector.

Tenor enables you to choose a different set of rates to output than the underlying rates.
For example, you may want to simulate quarterly data but only report annual rates; this
can be done by specifying the optional input Tenor.
Data Types: double

Output Arguments
ZeroRates — Simulated zero-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials
matrix.

ForwardRates — Simulated forward-rate term structures
matrix

Simulated zero-rate term structures, returned as a nPeriods+1-by-nTenors-by-nTrials
matrix. The ForwardRates output is computed using the simulated short rates and by
using the model definition to recover the entire yield curve at each simulation date.

See Also
LinearGaussian2F

Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Pricing Bermudan Swaptions with Monte Carlo Simulation”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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lookbackbycrr
Price lookback option from Cox-Ross-Rubinstein binomial tree

Syntax
Price = lookbackbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbycrr( ___ ,AmericanOpt)

Description
Price = lookbackbycrr(CRRTree,OptSpec,Strike,Settle,ExerciseDates)
prices lookback options using a Cox-Ross-Rubinstein binomial tree.

Price = lookbackbycrr( ___ ,AmericanOpt) adds an optional argument for
AmericanOpt.

Examples

Price a Lookback Option Using a CRR Binomial Tree

This example shows how to price a lookback option using a CRR binomial tree by loading
the file deriv.mat, which provides CRRTree. The CRRTree structure contains the stock
specification and time information needed to price the option.

load deriv.mat;

OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';

Price = lookbackbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 7.6015
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Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure for a Cox-Ross-Rubinstein binomial tree, specified by using crrtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-
by-1 cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values. Each row is the schedule for one option.

To compute the value of a floating-strike lookback option, Strike must be specified as
NaN. Floating-strike lookback options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the
stock tree. The lookback argument, Settle, is ignored.

Data Types: double | char
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ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of
serial date numbers or cell array of character vectors, the option can be exercised
between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for lookback options at time 0
vector

Expected prices for lookback options at time 0, returned as a NINST-by-1 vector. Pricing
of lookback options is done using Hull-White (1993). Therefore, for these options there
are no unique prices on the tree nodes except for the root node.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-

Dependent Options." Journal of Derivatives. Fall 1993, pp. 21–31.
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See Also
crrtree | instlookback

Topics
“Computing Prices Using CRR” on page 3-129
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing European Call Options Using Different Equity Models”
“Lookback Option” on page 3-49
“Pricing Options Structure” on page B-2
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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lookbackbycvgsg
Calculate prices of European lookback options using Conze-Viswanathan and Goldman-
Sosin-Gatto models

Syntax
Price = lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = lookbackbycvgsg( ___ ,Name,Value)

Description
Price = lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns prices of European lookback options using Conze-Viswanathan
and Goldman-Sosin-Gatto models. lookbackbycvgsg calculates prices of European
fixed- and floating-strike lookback options. To compute the value of a floating-strike
lookback option, Strike must be specified as NaN. The Goldman-Sosin-Gatto model is
used for floating-strike lookback options. The Conze-Viswanathan model is used for fixed-
strike lookback options.

Price = lookbackbycvgsg( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of a Floating Lookback Option Using the Goldman-Sosin-Gatto
Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.042;
Compounding = -1;
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RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9589
            Rates: 0.0420
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 50;
Sigma = 0.36;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the floating lookback options.

Settle   = 'Jan-1-2013';
Maturity = 'April-1-2013'; 
OptSpec = {'put';'call'};
Strike = NaN;

Compute the price of the European floating lookback options.

Price = lookbackbycvgsg(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

    7.2581
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    6.9777

Compute the Price of a Fixed Lookback Option Using the Conze-Viswanathan
Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9560
            Rates: 0.0450
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 102;
Sigma = 0.45;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.4500
         AssetPrice: 102
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []
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Define the fixed lookback options.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = {'put';'call'};
Strike = [98;101];

Price the European fixed lookback options.

Price = lookbackbycvgsg(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 2×1

   18.3130
   30.4021

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement or trade date for the lookback option, specified as date character vectors or as
serial date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — European option expiry date
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

European option expiry date, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
lookbackbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDat
es,'AssetMinMax',AssetMinMax)
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AssetMinMax — Maximum or minimum underlying asset price
if unspecified, the lookback option is newly issued, and AssetMinMax =
StockSpec.AssetPrice (default) | nonnegative integer

Maximum or minimum underlying asset price, specified as the comma-separated pair
consisting of 'AssetMinMax' and a NINST-by-1 vector.
Data Types: single | double

Output Arguments
Price — Expected prices of lookback option
vector

Expected prices of the lookback option, returned as a NINST-by-1 vector.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ:

Prentice Hall, 2002.

See Also
intenvset | lookbackbyls | lookbacksensbycvgsg | lookbacksensbyls |
stockspec

Topics
“Lookback Option” on page 3-49
“Supported Equity Derivatives” on page 3-24

Introduced in R2014a
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lookbacksensbycvgsg
Calculate prices or sensitivities of European lookback options using Conze-Viswanathan
and Goldman-Sosin-Gatto models

Syntax
PriceSens = lookbacksensbycvgsg(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates)
PriceSens = lookbacksensbycvgsg( ___ ,Name,Value)

Description
PriceSens = lookbacksensbycvgsg(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates) returns prices or sensitivities of European lookback options
using Conze-Viswanathan and Goldman-Sosin-Gatto models. lookbacksensbycvgsg
calculates prices of European fixed- and floating-strike lookback options. To compute the
value of a floating-strike lookback option, Strike must be specified as NaN. The
Goldman-Sosin-Gatto model is used for floating-strike lookback options. The Conze-
Viswanathan model is used for fixed-strike lookback options.

PriceSens = lookbacksensbycvgsg( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Compute the Price and Delta of a Floating Lookback Option Using the Goldman-
Sosin-Gatto Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.41;
Compounding = -1;
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RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
 'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.6637
            Rates: 0.4100
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec with continuous dividend yield.

AssetPrice = 120;
Sigma = 0.3;
Yield = 0.045;
StockSpec = stockspec(Sigma, AssetPrice, 'Continuous', Yield)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 120
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the floating lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = NaN;
SMinMax = 100;

Compute the price and delta of the European floating lookback option.

OutSpec = {'price', 'delta'};
[Price, Delta] = lookbacksensbycvgsg(RateSpec, StockSpec, OptSpec, Strike,...
Settle, Maturity,'AssetMinMax', SMinMax, 'OutSpec', OutSpec)
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Price = 36.9926

Delta = 0.8659

Compute the Price and Delta of a Fixed Lookback Option Using the Conze-
Viswanathan Model

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8187
            Rates: 0.1000
         EndTimes: 2
       StartTimes: 0
         EndDates: 735965
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 103;
Sigma = 0.30;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 103
       DividendType: []
    DividendAmounts: 0
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    ExDividendDates: []

Define the fixed lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = 99;

Price and delta for the European fixed lookback option.

OutSpec = {'price', 'delta'};                                 
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec,...
Strike, Settle, Maturity,'OutSpec', OutSpec)

Price = 22.7227

Delta = 1.1349

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement or trade date for the lookback option, specified as date character vectors or as
serial date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — European option expiry date
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

European option expiry date, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of dates.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
lookbacksensbycvgsg(RateSpec,StockSpec,OptSpec,Strike,Settle,Exercis
eDates,'AssetMinMax',AssetMinMax,'OutSpec',{'All'})
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AssetMinMax — Maximum or minimum underlying asset price
if unspecified, the lookback option is newly issued, and AssetMinMax =
StockSpec.AssetPrice (default) | nonnegative integer

Maximum or minimum underlying asset price, specified as a NINST-by-1 vector.
Data Types: single | double

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity.
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities of lookback option
vector

Expected prices or sensitivities (defined by OutSpec) of the lookback option, returned as
a NINST-by-1 vector.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ,

Prentice Hall, 2002.
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See Also
intenvset | lookbackbycvgsg | lookbackbyls | lookbacksensbyls | stockspec

Topics
“Lookback Option” on page 3-49
“Supported Equity Derivatives” on page 3-24

Introduced in R2014a
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lookbackbyeqp
Price lookback option from Equal Probabilities binomial tree

Syntax
Price = lookbackbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbyeqp( ___ ,AmericanOpt)

Description
Price = lookbackbyeqp(EQPTree,OptSpec,Strike,Settle,ExerciseDates)
prices lookback options using an Equal Probabilities binomial tree.

Price = lookbackbyeqp( ___ ,AmericanOpt) adds an optional argument for
AmericanOpt.

Examples

Price a Lookback Option Using an EQP Equity Tree

This example shows how to price a lookback option using an EQP equity tree by loading
the file deriv.mat, which provides EQPTree. The EQPTree structure contains the stock
specification and time information needed to price the option.

load deriv.mat

OptSpec = 'Call';
Strike = 115;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';

Price = lookbackbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates)

Price = 8.7941
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Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure for an Equal Probabilities binomial tree, specified by using eqptree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-
by-1 cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values. Each row is the schedule for one option.

To compute the value of a floating-strike lookback option, Strike must be specified as
NaN. Floating-strike lookback options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the
stock tree. The lookback argument, Settle, is ignored.

Data Types: double | char
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ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of
serial date numbers or cell array of character vectors, the option can be exercised
between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for lookback options at time 0
vector

Expected prices for lookback options at time 0, returned as a NINST-by-1 vector. Pricing
of lookback options is done using Hull-White (1993). Therefore, for these options there
are no unique prices on the tree nodes except for the root node.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-

Dependent Options." Journal of Derivatives. Fall 1993, pp. 21–31.
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See Also
eqptree | instlookback

Topics
“Computing Prices Using EQP” on page 3-131
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing European Call Options Using Different Equity Models”
“Lookback Option” on page 3-49
“Computing Instrument Prices” on page 3-128
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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lookbackbyitt
Price lookback option using implied trinomial tree (ITT)

Syntax
Price = lookbackbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbyitt( ___ ,AmericanOpt)

Description
Price = lookbackbyitt(ITTTree,OptSpec,Strike,Settle,ExerciseDates)
prices lookback options using an implied trinomial tree (ITT).

Price = lookbackbyitt( ___ ,AmericanOpt) adds an optional argument for
AmericanOpt.

Examples

Price a Lookback Option Using an ITT Equity Tree

This example shows how to price a lookback option using an ITT equity tree by loading
the file deriv.mat, which provides the ITTTree. The ITTTree structure contains the
stock specification and time information needed to price the option.

load deriv.mat

OptSpec = 'Call';
Strike = 85;
Settle = '01-Jan-2006';
ExerciseDates = '01-Jan-2008';

Price = lookbackbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 0.5426
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Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure for an implied trinomial tree (ITT), specified by using itttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-
by-1 cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values. Each row is the schedule for one option.

To compute the value of a floating-strike lookback option, Strike must be specified as
NaN. Floating-strike lookback options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the
stock tree. The lookback argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector
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Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of
serial date numbers or cell array of character vectors, the option can be exercised
between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 integer flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for lookback options at time 0
vector

Expected prices for lookback options at time 0, returned as a NINST-by-1 vector. Pricing
of lookback options is done using Hull-White (1993). Therefore, for these options there
are no unique prices on the tree nodes except for the root node.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-

Dependent Options." Journal of Derivatives. Fall 1993, pp. 21–31.
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See Also
instlookback | itttree

Topics
“Computing Prices Using ITT” on page 3-133
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Pricing European Call Options Using Different Equity Models”
“Lookback Option” on page 3-49
“Computing Instrument Prices” on page 3-128
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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lookbackbyls
Price European or American lookback options using Monte Carlo simulations

Syntax
[Price,Paths,Times,Z] = lookbackbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates)
[Price,Paths,Times,Z] = lookbackbyls( ___ ,Name,Value)

Description
[Price,Paths,Times,Z] = lookbackbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates) returns prices of lookback options using the
Longstaff-Schwartz model for Monte Carlo simulations. lookbackbyls computes prices
of European and American lookback options.

For American options, the Longstaff-Schwartz least squares method calculates the early
exercise premium.

lookbackbyls calculates values of fixed- and floating-strike lookback options. To
compute the value of a floating-strike lookback option, Strike must be specified as NaN.

[Price,Paths,Times,Z] = lookbackbyls( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price for a Floating Lookback Option Using Monte Carlo Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.042;
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Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9589
            Rates: 0.0420
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 50;
Sigma = 0.36;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the floating lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'April-1-2013'; 
OptSpec = 'put';
Strike = NaN;

Compute the price of the European floating lookback option.

Price = lookbackbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 6.6471
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Compute the Price of a Fixed Lookback Option Using Monte Carlo Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
Rates = 0.045;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9560
            Rates: 0.0450
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 102;
Sigma = 0.45;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.4500
         AssetPrice: 102
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the fixed lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
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OptSpec = 'call';
Strike = 98;

Compute the price of the European fixed lookback option.

Price = lookbackbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity)

Price = 30.2368

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell
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Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement or trade date for the lookback option, specified as date character vectors or as
serial date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Matrix of exercise callable or puttable dates for European or
American options
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Matrix of exercise callable or puttable dates for European or American options, specified
as date character vectors or as serial date numbers as follows:

• European option — NINST-by-1 vector of exercise dates. For a European option, there
is only one exercise date which is the option expiry date.

• American option — NINST-by-2 vector of exercise date boundaries. For each
instrument, the option is exercised on any coupon date between or including the pair
of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a
NINST-by-1 vector of serial date numbers or cell array of character vectors, the option
is exercised between Settle and the single listed exercise date.

Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: Price =
lookbackbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,
Strike,Corr,'AmericanOpt',1)

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an
integer scalar flag with these values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Scalar number of independent sample paths
1000 (default) | nonnegative scalar integer

Scalar number of independent sample paths (simulation trials), specified as the comma-
separated pair consisting of 'NumTrials' and a nonnegative integer.
Data Types: single | double

NumPeriods — Scalar number of simulation periods per trial
100 (default) | nonnegative scalar integer

Scalar number of simulation periods per trial, specified as the comma-separated pair
consisting of 'NumPeriods' and a nonnegative integer. NumPeriods is considered only
when pricing European lookback options. For American lookback options, NumPeriods is
equal to the number of exercise days during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector
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Time series array of dependent random variates, specified as the comma-separated pair
consisting of 'Z' and a NumPeriods-by-1-by-NumTrials 3-D array. The Z value
generates the Brownian motion vector (that is, Wiener processes) that drives the
simulation.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected price of lookback option
scalar

Expected price of the lookback option, returned as a 1-by-1 scalar.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-
NumTrials 3-D array when Z is specified as an input argument. If the Z input argument
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is not specified, then the Z output argument contains the random variates generated
internally.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ:

Prentice Hall, 2002.

See Also
intenvset | lookbackbycvgsg | lookbacksensbycvgsg | lookbacksensbyls |
stockspec

Topics
“Lookback Option” on page 3-49
“Supported Equity Derivatives” on page 3-24

Introduced in R2014a
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lookbacksensbyls
Calculate price and sensitivities for European or American lookback options using Monte
Carlo simulations

Syntax
[PriceSens,Paths,Times,Z] = lookbacksensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates)
[PriceSens,Paths,Times,Z] = lookbacksensbyls( ___ ,Name,Value)

Description
[PriceSens,Paths,Times,Z] = lookbacksensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates) returns prices or sensitivities of lookback
options using the Longstaff-Schwartz model for Monte Carlo simulations.
lookbacksensbyls computes prices of European and American lookback options.

For American options, the Longstaff-Schwartz least squares method calculates the early
exercise premium.

lookbacksensbyls calculates values of fixed- and floating-strike lookback options. To
compute the value of a floating-strike lookback option, Strike must be specified as NaN.

[PriceSens,Paths,Times,Z] = lookbacksensbyls( ___ ,Name,Value) adds
optional name-value pair arguments.

Examples

Compute the Price and Delta of a European Floating Lookback Option Using
Monte Carlo Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2014';
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Rates = 0.41;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.6637
            Rates: 0.4100
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec with continuous dividend yield.

AssetPrice = 120;
Sigma = 0.3;
Yield = 0.045;
StockSpec = stockspec(Sigma, AssetPrice, 'Continuous', Yield)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 120
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

Define the floating lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = NaN;

Compute the price and delta of the European floating lookback option.
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OutSpec = {'price', 'delta'};
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,...
'OutSpec', OutSpec)

Price = 27.0768

Delta = 0.2256

Compute the Price and Delta of a European Fixed Lookback Option Using Monte
Carlo Simulation

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.1;
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8187
            Rates: 0.1000
         EndTimes: 2
       StartTimes: 0
         EndDates: 735965
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 103;
Sigma = 0.30;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
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         AssetPrice: 103
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the fixed lookback option.

Settle   = 'Jan-1-2013';
Maturity = 'July-1-2013'; 
OptSpec = 'call';
Strike = 99;

Compute the price and delta of the European fixed lookback option.

OutSpec = {'price', 'delta'};                                 
[Price, Delta] = lookbacksensbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, Maturity,...
'OutSpec', OutSpec)

Price = 22.7227

Delta = 1.1349

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec can handle several types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
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by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.
Data Types: single | double

Settle — Settlement or trade date
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement or trade date for the lookback option, specified as date character vectors or as
serial date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

ExerciseDates — Matrix of exercise callable or puttable dates for European or
American options
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Matrix of exercise callable or puttable dates for European or American options, specified
as date character vectors or as serial date numbers as follows:

• European option — NINST-by-1 vector of exercise dates. For a European option, there
is only one exercise date which is the option expiry date.

• American option — NINST-by-2 vector of exercise date boundaries. For each
instrument, the option is exercised on any coupon date between or including the pair
of dates on that row. If only one non-NaN date is listed, or if ExerciseDates is a
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NINST-by-1 vector of serial date numbers or cell array of character vectors, the option
is exercised between Settle and the single listed exercise date.

Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
lookbacksensbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptS
pec,Strike,Corr,'AmericanOpt',1,'OutSpec',{'All'})

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an
integer scalar flag with these values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Scalar number of independent sample paths
1000 (default) | nonnegative scalar integer

Scalar number of independent sample paths (simulation trials), specified as the comma-
separated pair consisting of 'NumTrials' and a nonnegative integer.
Data Types: single | double
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NumPeriods — Scalar number of simulation periods per trial
100 (default) | nonnegative scalar integer

Scalar number of simulation periods per trial, specified as the comma-separated pair
consisting of 'NumPeriods' and a nonnegative integer. NumPeriods is considered only
when pricing European lookback options. For American lookback options, NumPeriod is
equal to the number of exercise days during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair
consisting of 'Z' and a NumPeriods-by-1-by-NumTrials 3-D array. The Z value
generates the Brownian motion vector (that is, Wiener processes) that drives the
simulation.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity.
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}
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Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities of lookback option
scalar

Expected price or sensitivities (defined by OutSpec) of the lookback option, returned as a
1-by-1 array.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-1-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-1-by-
NumTrials 3-D array when Z is specified as an input argument. If the Z input argument
is not specified, then the Z output argument contains the random variates generated
internally.

References
[1] Hull, J. C. Options, Futures, and Other Derivatives 5th Edition. Englewood Cliffs, NJ:

Prentice Hall, 2002.
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See Also
intenvset | lookbackbycvgsg | lookbackbyls | lookbacksensbycvgsg |
stockspec

Topics
“Lookback Option” on page 3-49
“Supported Equity Derivatives” on page 3-24

Introduced in R2014a
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lookbackbystt
Price lookback options using standard trinomial tree

Syntax
Price = lookbackbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates)
Price = lookbackbystt( ___ ,AmericanOpt)

Description
Price = lookbackbystt(STTTree,OptSpec,Strike,Settle,ExerciseDates)
prices lookback options using a standard trinomial (STT) tree.

Price = lookbackbystt( ___ ,AmericanOpt) prices lookback options using a
standard trinomial (STT) tree with an optional argument for AmericanOpt.

Examples

Price a Lookback Option Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
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         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the lookback option and compute the price.

Settle = '1/1/09';
ExerciseDates = [datenum('1/1/12');datenum('1/1/13')];
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OptSpec = 'call';
Strike = [90;95];

Price= lookbackbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 2×1

   11.7296
   12.9120

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector or a NINST-
by-1 cell array of character vectors for 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
matrix of nonnegative integers

Option strike price value, specified with a nonnegative integer using a NINST-by-1 matrix
of strike price values. Each row is the schedule for one option. To compute the value of a
floating-strike lookback option, Strike should be specified as NaN. Floating-strike
lookback options are also known as average strike options.
Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector
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Settlement date or trade date for the lookback option, specified as a NINST-by-1 matrix of
settlement or trade dates using serial date numbers or date character vectors.

Note The Settle date for every lookback option is set to the ValuationDate of the
stock tree. The lookback argument, Settle, is ignored.

Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a serial date number or date character vector:

• For a European option, use aNINST-by-1 matrix of exercise dates. Each row is the
schedule for one option. For a European option, there is only one ExerciseDates on
the option expiry date.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any tree date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector of
serial date numbers or cell array of character vectors, the option can be exercised
between ValuationDate of the stock tree and the single listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices for lookback options at time 0
matrix
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Expected prices for lookback options at time 0, returned as a NINST-by-1 matrix. Pricing
of lookback options is done using Hull-White (1993). Consequently, for these options there
are no unique prices on the tree nodes with the exception of the root node.

References
[1] Hull J. and A. White. "Efficient Procedures for Valuing European and American Path-

Dependent Options." Journal of Derivatives. Fall 1993, pp. 21–31.

See Also
sttprice | sttsens | stttimespec | stttree

Topics
“Lookback Option” on page 3-49
“Supported Equity Derivatives” on page 3-24

Introduced in R2015b
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lrtimespec
Specify time structure for Leisen-Reimer binomial tree

Syntax
TimeSpec = lrtimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = lrtimespec(ValuationDate,Maturity,NumPeriods) specifies a time
structure for a Leisen-Reimer stock tree (lrtree).

Examples

Specify the Time Structure for Leisen-Reimer Binomial Tree

This example shows how to specify a 5-period tree with time steps of 1 year.

ValuationDate = '1-July-2010';
Maturity = '1-July-2015';
TimeSpec = lrtimespec(ValuationDate, Maturity, 5)

TimeSpec = struct with fields:
           FinObj: 'BinTimeSpec'
    ValuationDate: 734320
         Maturity: 736146
       NumPeriods: 5
            Basis: 0
     EndMonthRule: 1
             tObs: [0 1 2 3 4 5]
             dObs: [734320 734685 735050 735415 735780 736146]
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Input Arguments
ValuationDate — Pricing date and first observation in Leisen-Reimer stock tree
serial date number | character vector date

Pricing date and first observation in the lrtree, specified as a scalar date using a serial
date number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of the Leisen-Reimer stock tree
serial date number | date character vector

Date marking the depth of the Leisen-Reimer stock tree, specified as scalar serial date
number or date character vector.
Data Types: double | char

NumPeriods — Number of time steps in the Leisen-Reimer stock tree
odd integer value

Number of time steps in the Leisen-Reimer stock tree, specified as scalar odd integer
value.

Note Leisen-Reimer requires the number of steps to be an odd number.

Data Types: double

Output Arguments
TimeSpec — Specification for the time layout for lrtree
structure

Specification for the time layout for lrtree, returned as a structure.
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References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and

Improving Convergence.” Applied Mathematical Finance. Number 3, 1996, pp.
319–346.

See Also
lrtree | stockspec

Topics
“Building Equity Binary Trees” on page 3-3
“Understanding Equity Trees” on page 3-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2010b
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lrtree
Build Leisen-Reimer stock tree

Syntax
LRTree = lrtree(StockSpec,,RateSpec,TimeSpec,Strike)
LRTree = lrtree( ___ ,Name,Value)

Description
LRTree = lrtree(StockSpec,,RateSpec,TimeSpec,Strike) builds a Leisen-
Reimer stock tree.

LRTree = lrtree( ___ ,Name,Value) adds a name-value pair argument.

Examples

Build a Leisen-Reimer Stock Tree

This example shows how to build Leisen-Reimer stock tree. Consider a European put
option with an exercise price of $30 that expires on June 1, 2010. The underlying stock is
trading at $30 on January 1, 2010 and has a volatility of 30% per annum. The annualized
continuously compounded risk-free rate is 5% per annum. Using this data, create a
Leisen-Reimer tree with 101 steps using the PP1 method.

AssetPrice = 30;
Strike = 30;

ValuationDate = 'Jan-1-2010';
Maturity = 'June-1-2010'; 

% define StockSpec
Sigma = 0.3;
StockSpec = stockspec(Sigma, AssetPrice);
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% define RateSpec
Rates = 0.05;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% build the Leisen-Reimer (LR) tree with 101 steps
LRTimeSpec = lrtimespec(ValuationDate, Maturity, 101); 

% use the PP1 method
LRMethod  = 'PP1';

LRTree = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, ...
'method', LRMethod)

LRTree = struct with fields:
       FinObj: 'BinStockTree'
       Method: 'LR'
    Submethod: 'PP1'
       Strike: 30
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x102 double]
         dObs: [1x102 double]
        STree: {1x102 cell}
      UpProbs: [101x1 double]

Input Arguments
StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.
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stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

RateSpec — Interest-rate specification for initial risk-free rate curve
structure

Interest-rate specification for initial rate curve, specified by the RateSpec obtained from
intenvset. For information on the interest-rate specification, see intenvset.
Data Types: struct

TimeSpec — Time tree layout specification
structure

Time tree layout specification, specified using the TimeSpec output obtained from
lrtimespec.
Data Types: struct

Strike — Option strike price value
nonnegative integer

Option strike price value, specified as a scalar nonnegative integer.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: LRTree =
lrtree(StockSpec,RateSpec,LRTimeSpec,Strike,'Method','PP2')

Method — Computation method
'PP1' (default) | character vector with value 'PP1' or 'PP2'

Computation method, specified as the comma-separated pair consisting of 'Method' and
a character vector with a value of 'PP1' or 'PP2'. 'PP1' is for Peizer-Pratt method 1
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inversion and 'PP2' is for Peizer-Pratt method 2 inversion. For more information on
'PP1' and 'PP2' methods, see “Leisen-Reimer Tree (LR) Modeling” on page C-3.
Data Types: char

Output Arguments
LRTree — Stock and time information for a Leisen-Reimer tree
structure

Stock and time information for a Leisen-Reimer tree, returned as a structure.

References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and

Improving Convergence.” Applied Mathematical Finance. Number 3, 1996, pp.
319–346.

See Also
intenvset | lrtimespec | optstockbylr | optstocksensbylr | stockspec

Topics
“Building Equity Binary Trees” on page 3-3
“Understanding Equity Trees” on page 3-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2010b

 lrtree

11-1129



maxassetbystulz
Determine European rainbow option price on maximum of two risky assets using Stulz
option pricing model

Syntax
Price =
maxassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSp
ec,Strike,Corr)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.
StockSpec2 Stock specification for asset 2. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
Corr NINST-by-1 vector of correlation between the underlying asset

prices.

Description
Price =
maxassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSp
ec,Strike,Corr) computes rainbow option prices using the Stulz option pricing model.

Price is a NINST-by-1 vector of expected option prices.
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Examples

Compute Rainbow Option Prices Using the Stulz Option Pricing Model

Consider a European rainbow option that gives the holder the right to buy either
$100,000 worth of an equity index at a strike price of 1000 (asset 1) or $100,000 of a
government bond (asset 2) with a strike price of 100% of face value, whichever is worth
more at the end of 12 months. On January 15, 2008, the equity index is trading at 950,
pays a dividend of 2% annually and has a return volatility of 22%. Also on January 15,
2008, the government bond is trading at 98, pays a coupon yield of 6%, and has a return
volatility of 15%. The risk-free rate is 5%. Using this data, if the correlation between the
rates of return is -0.5, 0, and 0.5, calculate the price of the European rainbow option.

Since the asset prices in this example are in different units, it is necessary to work in
either index points (asset 1) or in dollars (asset 2). The European rainbow option allows
the holder to buy the following: 100 units of the equity index at $1000 each (for a total of
$100,000) or 1000 units of the government bonds at $100 each (for a total of $100,000).
To convert the bond price (asset 2) to index units (asset 1), you must make the following
adjustments:

• Multiply the strike price and current price of the government bond by 10 (1000/100).
• Multiply the option price by 100, considering that there are 100 equity index units in

the option.

Once these adjustments are introduced, the strike price is the same for both assets
($1000). First, create the RateSpec:

Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
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       StartTimes: 0
         EndDates: 733788
       StartDates: 733422
    ValuationDate: 733422
            Basis: 1
     EndMonthRule: 1

Create the two StockSpec definitions.

AssetPrice1 = 950;   % Asset 1 => Equity index
AssetPrice2 = 980;   % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;
Div1 = 0.02; 
Div2 = 0.06; 

StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 950
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 980
       DividendType: {'continuous'}
    DividendAmounts: 0.0600
    ExDividendDates: []

Calculate the price of the options for different correlation levels.

Strike = 1000 ; 
Corr = [-0.5; 0; 0.5];
OptSpec = 'call';
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Price = maxassetbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr)

Price = 3×1

  111.6683
  103.7715
   92.4412

These are the prices of one unit. This means that the premium is 11166.83, 10377.15, and
9244.12 (for 100 units).

See Also
intenvset | maxassetsensbystulz | minassetbystulz | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Rainbow Option” on page 3-34
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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maxassetsensbystulz
Determine European rainbow option prices or sensitivities on maximum of two risky
assets using Stulz pricing model

Syntax
PriceSens =
maxassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr)
PriceSens =
maxassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr,OutSpec)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.
StockSpec2 Stock specification for asset 2. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
Corr NINST-by-1 vector of correlation between the underlying asset

prices.
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OutSpec (Optional) All optional inputs are specified as matching
parameter name-value pairs. The parameter name is specified
as a character vector, followed by the corresponding parameter
value. You can specify parameter name-value pairs in any order.
Names are case-insensitive and partial matches are allowed
provided no ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of character vectors
indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lambda';
'Rho'} specifies that the output should be Price, Lambda,
and Rho, in that order.

To invoke from a function: [Price, Lambda, Rho] =
maxassetsensbystulz(..., 'OutSpec', {'Price',
'Lambda', 'Rho'})

OutSpec = {'All'} specifies that the output should be
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in
that order. This is the same as specifying OutSpec as
OutSpec = {'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description
PriceSens =
maxassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr) computes rainbow option prices using the Stulz option pricing
model.

PriceSens =
maxassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr,OutSpec) computes rainbow option prices or sensitivities using
the Stulz option pricing model.
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PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices or sensitivities
values.

Examples

Compute Rainbow Option Prices and Sensitivities Using the Stulz Option Pricing
Model

Consider a European rainbow option that gives the holder the right to buy either
$100,000 of an equity index at a strike price of 1000 (asset 1) or $100,000 of a
government bond (asset 2) with a strike price of 100% of face value, whichever is worth
more at the end of 12 months. On January 15, 2008, the equity index is trading at 950,
pays a dividend of 2% annually, and has a return volatility of 22%. Also on January 15,
2008, the government bond is trading at 98, pays a coupon yield of 6%, and has a return
volatility of 15%. The risk-free rate is 5%. Using this data, calculate the price and
sensitivity of the European rainbow option if the correlation between the rates of return is
-0.5, 0, and 0.5.

Since the asset prices in this example are in different units, it is necessary to work in
either index points (for asset 1) or in dollars (for asset 2). The European rainbow option
allows the holder to buy the following: 100 units of the equity index at $1000 each (for a
total of $100,000) or 1000 units of the government bonds at $100 each (for a total of
$100,000). To convert the bond price (asset 2) to index units (asset 1), you must make the
following adjustments:

• Multiply the strike price and current price of the government bond by 10 (1000/100).
• Multiply the option price by 100, considering that there are 100 equity index units in

the option.

Once these adjustments are introduced, the strike price is the same for both assets
($1000). First, create the RateSpec:

Settle = 'Jan-15-2008';
Maturity = 'Jan-15-2009';
Rates = 0.05;
Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 733788
       StartDates: 733422
    ValuationDate: 733422
            Basis: 1
     EndMonthRule: 1

Create the two StockSpec definitions.

AssetPrice1 = 950;   % Asset 1 => Equity index
AssetPrice2 = 980;   % Asset 2 => Government bond
Sigma1 = 0.22;
Sigma2 = 0.15;
Div1 = 0.02; 
Div2 = 0.06; 

StockSpec1 = stockspec(Sigma1, AssetPrice1, 'continuous', Div1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 950
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

StockSpec2 = stockspec(Sigma2, AssetPrice2, 'continuous', Div2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 980
       DividendType: {'continuous'}
    DividendAmounts: 0.0600
    ExDividendDates: []

Calculate the price and delta for different correlation levels.
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Strike = 1000 ; 
Corr = [-0.5; 0; 0.5];
OutSpec = {'price'; 'delta'};
OptSpec = 'call';
[Price, Delta] = maxassetsensbystulz(RateSpec, StockSpec1, StockSpec2,...
Settle, Maturity, OptSpec, Strike, Corr,'OutSpec', OutSpec)

Price = 3×1

  111.6683
  103.7715
   92.4412

Delta = 3×2

    0.4594    0.3698
    0.4292    0.3166
    0.4053    0.2512

The output Delta has two columns: the first column represents the Delta with respect
to the equity index (asset 1), and the second column represents the Delta with respect to
the government bond (asset 2). The value 0.4595 represents Delta with respect to one
unit of the equity index. Since there are 100 units of the equity index, the overall Delta
would be 45.94 (100 * 0.4594 ) for a correlation level of -0.5. To calculate the Delta with
respect to the government bond, remember that an adjusted price of 980 was used
instead of 98. Therefore, for example, the Delta with respect to government bond, for a
correlation of 0.5 would be 251.2 (0.2512 * 100 * 10 ).

See Also
intenvset | maxassetsensbystulz | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Rainbow Option” on page 3-34
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a

11 Functions — Alphabetical List

11-1138



minassetbystulz
Determine European rainbow option prices on minimum of two risky assets using Stulz
option pricing model

Syntax
Price =
minassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSp
ec,Strike,Corr)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.
StockSpec2 Stock specification for asset 2. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
Corr NINST-by-1 vector of correlation between the underlying asset

prices.

Description
Price =
minassetbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSp
ec,Strike,Corr) computes option prices using the Stulz option pricing model.

Price is a NINST-by-1 vector of expected option prices.
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Examples

Compute Rainbow Option Prices Using the Stulz Option Pricing Model

Consider a European rainbow put option that gives the holder the right to sell either
stock A or stock B at a strike of 50.25, whichever has the lower value on the expiration
date May 15, 2009. On November 15, 2008, stock A is trading at 49.75 with a continuous
annual dividend yield of 4.5% and has a return volatility of 11%. Stock B is trading at 51
with a continuous dividend yield of 5% and has a return volatility of 16%. The risk-free
rate is 4.5%. Using this data, if the correlation between the rates of return is -0.5, 0, and
0.5, calculate the price of the minimum of two assets that are European rainbow put
options. First, create the RateSpec:

Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9778
            Rates: 0.0450
         EndTimes: 0.5000
       StartTimes: 0
         EndDates: 733908
       StartDates: 733727
    ValuationDate: 733727
            Basis: 1
     EndMonthRule: 1

Create the two StockSpec definitions.

AssetPriceA = 49.75;
AssetPriceB = 51;
SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045; 
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DivB = 0.05; 

StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA)

StockSpecA = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1100
         AssetPrice: 49.7500
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB)

StockSpecB = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1600
         AssetPrice: 51
       DividendType: {'continuous'}
    DividendAmounts: 0.0500
    ExDividendDates: []

Compute the price of the options for different correlation levels.

Strike = 50.25;
Corr = [-0.5;0;0.5];
OptSpec = 'put';
Price = minassetbystulz(RateSpec, StockSpecA, StockSpecB, Settle,...
Maturity, OptSpec, Strike, Corr)

Price = 3×1

    3.4320
    3.1384
    2.7694

The values 3.43, 3.14, and 2.77 are the price of the European rainbow put options with a
correlation level of -0.5, 0, and 0.5 respectively.
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See Also
intenvset | maxassetsensbystulz | minassetsensbystulz | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Rainbow Option” on page 3-34
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a

11 Functions — Alphabetical List

11-1142



minassetsensbystulz
Determine European rainbow option prices or sensitivities on minimum of two risky
assets using Stulz pricing model

Syntax
PriceSens =
minassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr)
PriceSens =
minassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr,OutSpec)

Arguments
RateSpec The annualized continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec1 Stock specification for asset 1. See stockspec.
StockSpec2 Stock specification for asset 2. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors 'call' or 'put'.
Strike NINST-by-1 vector of strike price values.
Corr NINST-by-1 vector of correlation between the underlying asset

prices.
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OutSpec (Optional) All optional inputs are specified as matching
parameter name-value pairs. The parameter name is specified
as a character vector, followed by the corresponding parameter
value. You can specify parameter name-value pairs in any order.
Names are case-insensitive and partial matches are allowed
provided no ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of character vectors
indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lambda';
'Rho'} specifies that the output should be Price, Lambda,
and Rho, in that order.

To invoke from a function: [Price, Lambda, Rho] =
minassetsensbystulz(..., 'OutSpec', {'Price',
'Lambda', 'Rho'})

OutSpec = {'All'} specifies that the output should be
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in
that order. This is the same as specifying OutSpec as
OutSpec = {'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description
PriceSens =
minassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr) computes rainbow option prices using the Stulz option pricing
model.

PriceSens =
minassetsensbystulz(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,O
ptSpec,Strike,Corr,OutSpec) computes rainbow option prices or sensitivities using
the Stulz option pricing model.
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PriceSens is a NINST-by-1 or NINST-by-2 vector of expected prices or sensitivities.

Examples

Compute Rainbow Option Prices and Sensitivities Using the Stulz Option Pricing
Model

Consider a European rainbow put option that gives the holder the right to sell either
stock A or stock B at a strike of 50.25, whichever has the lower value on the expiration
date May 15, 2009. On November 15, 2008, stock A is trading at 49.75 with a continuous
annual dividend yield of 4.5% and has a return volatility of 11%. Stock B is trading at 51
with a continuous dividend yield of 5% and has a return volatility of 16%. The risk-free
rate is 4.5%. Using this data, if the correlation between the rates of return is -0.5, 0, and
0.5, calculate the price and sensitivity of the minimum of two assets that are European
rainbow put options. First, create the RateSpec:

Settle = 'Nov-15-2008';
Maturity = 'May-15-2009';
Rates = 0.045;
Basis = 1;

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9778
            Rates: 0.0450
         EndTimes: 0.5000
       StartTimes: 0
         EndDates: 733908
       StartDates: 733727
    ValuationDate: 733727
            Basis: 1
     EndMonthRule: 1

Create the two StockSpec definitions.

AssetPriceA = 49.75;
AssetPriceB = 51;
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SigmaA = 0.11;
SigmaB = 0.16;
DivA = 0.045; 
DivB = 0.05; 

StockSpecA = stockspec(SigmaA, AssetPriceA, 'continuous', DivA)

StockSpecA = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1100
         AssetPrice: 49.7500
       DividendType: {'continuous'}
    DividendAmounts: 0.0450
    ExDividendDates: []

StockSpecB = stockspec(SigmaB, AssetPriceB, 'continuous', DivB)

StockSpecB = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1600
         AssetPrice: 51
       DividendType: {'continuous'}
    DividendAmounts: 0.0500
    ExDividendDates: []

Calculate price and delta for different correlation levels.

Strike = 50.25;
Corr = [-0.5;0;0.5];
OptSpec = 'put';
OutSpec = {'Price'; 'delta'};
[P, D] = minassetsensbystulz(RateSpec, StockSpecA, StockSpecB,...
Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

P = 3×1

    3.4320
    3.1384
    2.7694

D = 3×2

   -0.4183   -0.3496
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   -0.3746   -0.3189
   -0.3304   -0.2905

The output Delta has two columns: the first column represents the Delta with respect
to the stock A (asset 1), and the second column represents the Delta with respect to the
stock B (asset 2). The value 0.4183 represents Delta with respect to the stock A for a
correlation level of -0.5. The Delta with respect to stock B, for a correlation of zero is
-0.3189.

See Also
intenvset | minassetsensbystulz | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Rainbow Option” on page 3-34
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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mkbush
Create bushy tree

Syntax
[Tree,NumStates] = mkbush(NumLevels,NumChild,NumPos,Trim,NodeVal)

Arguments
NumLevels Number of time levels of the tree.
NumChild 1-by- number of levels (NUMLEVELS) vector with number of branches

(children) of the nodes in each level.
NumPos 1-by-NUMLEVELS vector containing the length of the state vectors in

each time level.
Trim (Optional) Scalar 0 or 1. If Trim = 1, NumPos decreases by 1 when

moving from one time level to the next. Otherwise, if Trim = 0
(Default), NumPos does not decrease.

NodeVal (Optional) Initial value at each node of the tree. Default = NaN.

Description
[Tree,NumStates] = mkbush(NumLevels,NumChild,NumPos,Trim,NodeVal)
creates a bushy tree Tree with initial values NodeVal at each node. NumStates is a 1-
by-NUMLEVELS vector containing the number of state vectors in each level.

Examples
Create a tree with four time levels, two branches per node, and a vector of three elements
in each node with each element initialized to NaN.
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Tree = mkbush(4, 2, 3);
treeviewer(Tree) 

See Also
bushpath | bushshape

Topics
“Graphical Representation of Trees” on page 2-158
“Overview of Interest-Rate Tree Models” on page 2-50

Introduced before R2006a
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mktree
Create recombining binomial tree

Syntax
Tree = mktree(NumLevels,NumPos,NodeVal,IsPriceTree)

Arguments
NumLevels Number of time levels of the tree.
NumPos 1-by-NUMLEVELS vector containing the length of the state

vectors in each time level.
NodeVal (Optional) Initial value at each node of the tree. Default = NaN.
IsPriceTree (Optional) Boolean determining if a final horizontal branch is

added to the tree. Default = 0.

Description
Tree = mktree(NumLevels,NumPos,NodeVal,IsPriceTree) creates a recombining
tree Tree with initial values NodeVal at each node.

Examples
Create a recombining tree of four time levels with a vector of two elements in each node
and each element initialized to NaN.

Tree = mktree(4, 2);

See Also
treepath | treeshape

11 Functions — Alphabetical List

11-1150



Topics
“Graphical Representation of Trees” on page 2-158
“Overview of Interest-Rate Tree Models” on page 2-50

Introduced before R2006a
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mktrintree
Create recombining trinomial tree

Syntax
TrinTree = mktrintree(NumLevels,NumPos,NumStates,NodeVal)

Arguments
NumLevels Number of time levels of the tree.
NumPos 1-by-NUMLEVELS vector containing the length of the state vectors in

each time level.
NumStates 1-by-NUMLEVELS vector containing the number of state vectors in

each time level.
NodeVal (Optional) Initial value at each node of the tree. Default = NaN.

Description
TrinTree = mktrintree(NumLevels,NumPos,NumStates,NodeVal) creates a
recombining tree Tree with initial values NodeVal at each node.

Examples
Create a recombining trinomial tree of four time levels with a vector of two elements in
each node and each element initialized to NaN.

TrinTree = mktrintree(4, [2 2 2 2], [1 3 5 7]); 

See Also
trintreepath | trintreeshape
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Topics
“Graphical Representation of Trees” on page 2-158
“Overview of Interest-Rate Tree Models” on page 2-50

Introduced before R2006a
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mmktbybdt
Create money-market tree from Black-Derman-Toy interest-rate tree

Syntax
MMktTree = mmktbybdt(BDTTree)

Arguments
BDTTree Interest-rate tree structure created by bdttree.

Description
MMktTree = mmktbybdt(BDTTree) creates a money-market tree from an interest-rate
tree structure created by bdttree.

Examples
load deriv.mat;
MMktTree = mmktbybdt(BDTTree);
treeviewer(MMktTree)  
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See Also
bdttree

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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mmktbyhjm
Create money-market tree from Heath-Jarrow-Morton interest-rate tree

Syntax
MMktTree = mmktbyhjm(HJMTree)

Arguments
HJMTree Forward-rate tree structure created by hjmtree.

Description
MMktTree = mmktbyhjm(HJMTree) creates a money-market tree from a forward-rate
tree structure created by hjmtree.

Examples
load deriv.mat;
MMktTree = mmktbyhjm(HJMTree);
treeviewer(MMktTree)  
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See Also
hjmtree

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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normalvolbysabr
Implied Normal (Bachelier) volatility by SABR model

Syntax
outVol = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,
ForwardValue,Strike)
outVol = normalvolbysabr( ___ ,Name,Value)

Description
outVol = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,
ForwardValue,Strike) calculates the implied Normal (Bachelier) volatility by using
the SABR stochastic volatility model.

outVol = normalvolbysabr( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Compute the Implied Normal (Bachelier) Volatility Using the SABR Model

Define the model parameters and option data.

ForwardValue = 0.0209;
Strike = 0.02;
Alpha = 0.041;
Beta = 0.5;
Rho = -0.2;
Nu = 0.33;

Settle = datenum('15-Feb-2018');
ExerciseDate = datenum('15-Feb-2020');

Compute the Normal (Bachelier) volatility using the SABR model.
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ComputedVols = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,Strike)

ComputedVols = 0.0059

Compute the Implied Normal (Bachelier) Volatility Using the Normal SABR Model

To use the Normal SABR model, set the Beta parameter to zero. Negative interest rates
are allowed when the Normal SABR model is used in combination with Normal
(Bachelier) implied volatility.

Define the model parameters and option data.

ForwardValue = -0.00383;
Strike = -0.003;
Alpha = 0.007;
Beta = 0;  % Set the Beta parameter to zero to use the Normal SABR model
Rho = -0.18;
Nu = 0.29;

Settle = datenum('17-Jan-2018');
ExerciseDate = datenum('17-Apr-2018');

Compute the Normal (Bachelier) volatility using the Normal SABR model.

ComputedVols = normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,Strike)

ComputedVols = 0.0070

Input Arguments
Alpha — Current SABR volatility
scalar numeric

Current SABR volatility, specified as a scalar numeric.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar numeric
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SABR CEV exponent, specified as a scalar numeric.

Note Set the Beta parameter to 0 to allow a negative ForwardValue and Strike.

Data Types: double

Rho — Correlation between forward value and volatility
scalar numeric

Correlation between forward value and volatility, specified as a scalar numeric.
Data Types: double

Nu — Volatility of volatility
scalar numeric

Volatility of volatility, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector

Settlement date, specified as a scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ExerciseDate — Option exercise date
scalar for serial nonnegative date number | scalar for date character vector

Option exercise date, specified as a scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ForwardValue — Current forward value of underlying asset
scalar numeric | vector

Current forward value of the underlying asset, specified as a scalar numeric or vector of
size NumVols-by-1.
Data Types: double

11 Functions — Alphabetical List

11-1160



Strike — Option strike price value
scalar numeric | vector

Option strike price value, specified as a scalar numeric or a vector of size NumVols-by-1.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: outVol =
normalvolbysabr(Alpha,Beta,Rho,Nu,Settle,ExerciseDate,ForwardValue,S
trike,'Basis',2)

Basis — Day-count basis of instrument
0 (actual/actual) (default) | positive integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer from the set [1...13].

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Output Arguments
outVol — Normal (Bachelier) volatility computed by SABR model
scalar numeric | vector

Normal (Bachelier) volatility computed by the SABR model, returned as a scalar numeric
or vector of size NumVols-by-1.

Algorithms
The two general case algorithms for normalvolbysabr are not At-The-Money (ATM) and
ATM.

For not ATM (F ≠ K):
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The special case for normalvolbysabr where β = 0 for not ATM (F ≠ K) is:
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The special case for normalvolbysabr where β = 1, which allows negative rates, for not
ATM (F ≠ K) is:
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See Also
optsensbysabr | swaptionbyblk | swaptionbynormal

Topics
“Calibrate the SABR Model using Normal (Bachelier) Volatilities with Negative Strikes”
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-27
“Calibrate the SABR Model” on page 2-36
“Price a Swaption Using the SABR Model” on page 2-42
“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2018b
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numerix class
Create numerix object to set up Numerix CAIL environment

Description
The numerix object makes the Numerix engine directly accessible from MATLAB. To use
the capabilities of Numerix CAIL, you must have CAIL client software installed on your
local desktop.

In addition, you must add the Numerix library file to MATLAB path to use the
documentation examples:

• Add <Numerix software package installation root>/lib to <matlabroot>/toolbox/
local/librarypath.txt

or
• Place <Numerix software package installation root>/lib/NxProjava.dll in the

folder <matlabroot>/bin/win64

Construction
N = numerix(DATADIRECTORYPATH) constructs the numerix object and sets up the
Numerix CrossAsset Integration Layer (CAIL) environment given the path,
DATADIRECTORYPATH.

Properties
The following properties are from the numerix class.

Path

Defines the path for DATADIRECTORYPATH. This path is the location of the templates and
is created by the client installation of CAIL. A template defines the interface; it
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encapsulates the instructions for performing calculations, the calculation's required and
optional input parameters, and the calculation's outputs.

Attributes:

SetAccess public
GetAccess public

RepositoryPath

RepositoryPath defines the path location for the repository folder in a file system.

Attributes:

SetAccess public
GetAccess public

Repository

Repositories are collections of templates and are defined as a folder in a file system.

Attributes:

SetAccess public
GetAccess public

Context

The calculation context manages all the CAIL information.Context contains the location
of the template repository and is responsible for creating a CAIL application context in
which to perform the calculations.

Attributes:

SetAccess public
GetAccess public

LookupsPath

Defines the path for the numeric instruments data types.
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Attributes:

SetAccess public
GetAccess public

MarketsPath

Defines a path for the logical schema for naming all the market data. MarketsPath
enables you to provide a data dictionary to map business market data to CAIL to reduce
the task of inputting market data into CAIL objects directly.

Attributes:

SetAccess public
GetAccess public

FixingsPath

Defines the path for the schema for naming historical fixing data for rates and prices.

Attributes:

SetAccess public
GetAccess public

TradesPath

Defines the path to the trade instrument definitions.

Attributes:

SetAccess public
GetAccess public

Parameters

Defines the calculation parameters and market data, if available.

Attributes:
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SetAccess public
GetAccess public

Methods
parseResults Converts Numerix CAIL data to MATLAB data types

Copy Semantics
Value. To learn how value classes affect copy operations, see Copying Objects (MATLAB).

Examples

Construct a Numerix Object

Initialize Numerix CAIL environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

Construct a numerix object.

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
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        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Definitions

CrossAsset Integration Layer (CAIL)
The CrossAsset Integration Layer (CAIL) is an application programming interface (API),
which extends the data-driven approach of Numerix.

The calculation workflow of CAIL is:

1 Select a trade template for a specified deal or trade from the repository. The trade
template specifies a set of inputs, a set of outputs, and the dependencies on other
information (model, market data, calendar, and so on).

2 Provide the input parameters to the trade template and call the calculation context.
The calculation context follows the dependency path to collect the needed
information and produces the output specified by the template.
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See Also
numerixCrossAsset | parseResults

Topics
“Working with Simple Numerix Trades” on page 10-2
“Working with Advanced Numerix Trades” on page 10-5
“Use Numerix to Price Cash Deposits” on page 10-10
“Use Numerix for Interest-Rate Risk Assessment” on page 10-13
Class Attributes (MATLAB)
Property Attributes (MATLAB)

External Websites
https://www.numerix.com/cail
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Introduced in R2013b
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numerixCrossAsset class
Create numerixCrossAsset object to set up Numerix CROSSASSET environment

Description
Creating a numerixCrossAsset object initializes a Numerix CrossAsset object based on
the Numerix data-driven CROSSASSET API. To use the Numerix engine directly from
MATLAB, you must have the CROSSASSET client installed on your local desktop.

In addition, you must add the Numerix library file to MATLAB path to use the
documentation examples:

• Add <Numerix software package installation root>/lib to <matlabroot>/toolbox/
local/librarypath.txt

or
• Place <Numerix software package installation root>/lib/NxProjava.dll in the

folder <matlabroot>/bin/win64

Construction
c = numerixCrossAsset constructs the numerixCrossAsset object and sets up the
Numerix CROSSASSET environment.

Properties
Application — Application object
object

Application object, created when numerixCrossAsset object is initialized.
Example: app = Application;

Attributes:
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SetAccess private
GetAccess public

ApplicationWarning — ApplicationWarning object
object

ApplicationWarning object, created when numerixCrossAsset object is initialized.
Example: appWarnings = ApplicationWarning;

Attributes:

SetAccess private
GetAccess public

Methods
applicationCall Create and register Numerix CROSSASSET Call object
applicationData Create and register data with Numerix CROSSASSET Application Data

object
applicationMatrix Create and register Numerix CROSSASSET Application Matrix object
close Close numerixCrossAsset object
getdata Convert Numerix CROSSASSET Application object to MATLAB

structure

Examples

Construct a numerixCrossAsset Object

Construct a numerixCrossAsset object.

c = numerixCrossAsset 

 c = 

numerixCrossAsset with properties:
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Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]

Definitions

CROSSASSET
The CROSSASSET API is an application programming interface (API), which extends the
data-driven approach of Numerix.

See Also
applicationCall | applicationData | applicationMatrix | close | getdata

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call
Objects” on page 10-16
Class Attributes (MATLAB)
Property Attributes (MATLAB)

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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applicationCall
Class: numerixCrossAsset

Create and register Numerix CROSSASSET Call object

Syntax
applicationCall(C,Headers,Name,Value)

Description
applicationCall(C,Headers,Name,Value) creates and registers the Numerix
CROSSASSET Call object with additional options specified by one or more Name,Value
pair arguments. The name-value parameters conform to the Numerix Cross Asset
Integration Layer interface and are defined by N1, N2, ..., NN to the values given in V1,
V2, ..., VN.

Creating and registering the Call object calculates values in the Numerix Cross Asset
Integration Layer and returns the data in MATLAB.

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset
constructor.

Headers — Output names of the returned values from numerixCrossAsset
connection object
cell array of character vectors

Output names of the returned values from numerixCrossAsset connection object,
specified as a cell array of character vectors.
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Data Types: cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

N1 — Numerix name-value parameter
name-value parameter defined by Numerix

Numerix parameters, specified as a Name,Value argument pair.
Example: applicationCall(c,Headers,'ID','RATESPEC','OBJECT','MARKET
DATA','TYPE','YIELD','COMMENT','Comments
here','SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',
'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Data Types: char | double | logical

N2 — Numerix name-value parameters
name-value parameter defined by Numerix

Numerix parameter, specified as a Name,Value argument pair.
Example: applicationCall(c,Headers,'ID','RATESPEC','OBJECT','MARKET
DATA','TYPE','YIELD','COMMENT','Comments
here','SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',
'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Data Types: char | double | logical

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes (MATLAB).
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Examples

Create and Register a Numerix CROSSASSET Call Object

Create a datetime object.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                   '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'});

Create the corresponding vector of discount factors for a 3-month LIBOR curve.
 discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                       0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                       0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                       0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                       0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                       0.213809;0.152345];

Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Add data to the Numerix Cross Asset Application Data object.
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)

Define the Headers input and add the RateSpec Call object to the Numerix
CROSSASSET Application object using name-value pairs, where USD_3MLIBOR_CURVE
denotes the yield curve data object created previously.
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};
applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
                 'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',...
                 'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

See Also
applicationData | applicationMatrix | close | getdata | numerixCrossAsset
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Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call
Objects” on page 10-16

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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applicationData
Class: numerixCrossAsset

Create and register data with Numerix CROSSASSET Application Data object

Syntax
applicationData(C,Desc,Name,Value)
applicationData(C,Desc,T)
applicationData(C,Desc,S)

Description
applicationData(C,Desc,Name,Value) applicationData creates and registers
the data for Numerix CROSSASSET Application Data object with additional options
specified by one or more Name,Value pair arguments. The name-value parameters
conform to the Numerix Cross Asset Integration Layer interface and are defined by N1,
N2, ..., NN to the values given in V1, V2, ..., VN.

applicationData(C,Desc,T) creates and registers the data for Numerix
CROSSASSET Application Data object in table T.

applicationData(C,Desc,S) creates and registers the data in the structure, S. The
structure fieldnames represents the property names for the values in each field.

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset
constructor.

Desc — Description of data
character vector or cell array of character vectors
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Description of data, specified as a character vector or cell array of character vectors.
Data Types: char | cell

T — Table input
table VariableNames represents the property names for values in the corresponding
column

Table input for data to register for the Numerix CROSSASSET Application Data object,
specified using VariableNames.
Data Types: table

S — Structure input
structure fieldnames represents the property names for the values in each field

Structure input for data to register for the Numerix CROSSASSET Application Data
object, specified using the fieldnames.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

N1 — Numerix name-value parameter
name-value parameter defined by Numerix

Numerix parameter, specified as Name,Value argument pair.
Example:
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',
discountFactors)

Data Types: char | double | logical

N2 — Numerix name-value parameters
name-value parameter defined by Numerix

Numerix parameter, specified as Name,Value argument pair.
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Example:
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',
discountFactors)

Data Types: char | double | logical

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes (MATLAB).

Examples

Create a Numerix CROSSASSET Application Data Object

Create a datetime object.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                   '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'});

Create the corresponding vector of discount factors for a 3-month LIBOR curve.
 discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                       0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                       0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                       0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                       0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                       0.213809;0.152345];

Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Create and register the data with the Numerix CROSSASSET Application Data object.
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applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)

See Also
applicationCall | applicationMatrix | close | getdata | numerixCrossAsset

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call
Objects” on page 10-16

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b

11 Functions — Alphabetical List

11-1182

https://www.numerix.com/CrossAsset


applicationMatrix
Class: numerixCrossAsset

Create and register Numerix CROSSASSET Application Matrix object

Syntax
applicationMatrix(C,Desc,Rdata,Cdata,Mdata)

Description
applicationMatrix(C,Desc,Rdata,Cdata,Mdata) creates the CROSSASSET
Application Matrix object from the row information (Rdata), column information (Cdata),
and matrix (Mdata).

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset
constructor.

Desc — Description of data
character vector or cell array of character vectors

Description of data, specified as a character vector or cell array of character vectors.
Data Types: char | cell

Rdata — Row information for Application Matrix object
numeric values

Row information for Application Matrix object, specified using numeric values.
Example: Rdata = [41992,42020,42449,42905,43115];
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Data Types: double

Cdata — Column information for Application Matrix object
numeric values

Column information for Application Matrix object, specified as numeric values.
Example: Cdata = [390,395,400,405];
Data Types: double

Mdata — Volatility information for Application Matrix object
numeric values

Volatility information for Application Matrix object, specified as numeric values.
Example: Mdata = [0.35778, 0.35132, 0.34394, 0.33582;...
0.33405, 0.32819, 0.32669, 0.31904;...
0.31576, 0.31235, 0.30371, 0.30261;...
0.29391, 0.29366, 0.28962, 0.28932;...
0.28787, NaN, 0.28347, NaN ];

Data Types: double

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes (MATLAB).

Examples

Create a Numerix CROSSASSET Application Matrix Object

Create a volatility matrix with dates describing the rows and strike prices describing the
columns with the description BYSTRIKEVOLDATA. Missing values in the matrix input are
denoted as NaN.
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Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Define the matrix data.

rowData = [41992, 42020, 42449, 42905, 43115];
colData = [390, 395, 400, 405];
volData = [0.35778, 0.35132, 0.34394, 0.33582;...
           0.33405, 0.32819, 0.32669, 0.31904;...
           0.31576, 0.31235, 0.30371, 0.30261;...
           0.29391, 0.29366, 0.28962, 0.28932;...
           0.28787, NaN,     0.28347, NaN    ];

Create and register a Numerix CROSSASSET Application Matrix object.

applicationMatrix(c,'BYSTRIKEVOLDATA',rowData,colData,volData);

See Also
applicationCall | applicationData | close | getdata | numerixCrossAsset

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call
Objects” on page 10-16

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b

 applicationMatrix

11-1185

https://www.numerix.com/CrossAsset


close
Class: numerixCrossAsset

Close numerixCrossAsset object

Syntax
AppData = close(C)

Description
AppData = close(C) closes the numerixCrossAsset object (C).

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset
constructor.

Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes (MATLAB).

Examples
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Close the Numerix CROSSASSET Object

Construct a numerixCrossAsset object.

c = numerixCrossAsset 

 c = 

numerixCrossAsset with properties:

Application: [1x1 com.numerix.pro.Application]
ApplicationWarning: [1x1 com.numerix.pro.ApplicationWarning]

Close the numerixCrossAsset object.
close(c)

See Also
applicationCall | applicationData | applicationMatrix | getdata |
numerixCrossAsset

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call
Objects” on page 10-16

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b

 close

11-1187

https://www.numerix.com/CrossAsset


getdata
Class: numerixCrossAsset

Convert Numerix CROSSASSET Application object to MATLAB structure

Syntax
AppData = getdata(C)

Description
AppData = getdata(C) converts a Numerix CROSSASSET Application object to a
MATLAB structure.

Input Arguments
C — Connection object to Numerix CROSSASSET
object

Connection object to Numerix CROSSASSET, specified using the numerixCrossAsset
constructor.

Output Arguments
AppData — Converted Numerix CROSSASSET Application object
structure

Converted Numerix CROSSASSET Application object, returned as a MATLAB structure
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Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes (MATLAB).

Examples

Convert Numerix CROSSASSET Application Object to a MATLAB Structure

Create a datetime object.
dates = datetime({'18-Feb-2014';'20-May-2014';'18-Jun-2014';'16-Jul-2014';
                   '20-Aug-2014';'17-Sep-2014';'15-Oct-2014';'19-Nov-2014';
                  '17-Dec-2014';'18-Mar-2015';'17-Jun-2015';'16-Sep-2015';
                  '16-Dec-2015';'16-Mar-2016';'15-Jun-2016';'21-Sep-2016';
                  '21-Dec-2016';'15-Mar-2017';'20-Feb-2018';'20-Feb-2019';
                  '20-Feb-2020';'22-Feb-2021';'22-Feb-2022';'21-Feb-2023';
                  '20-Feb-2024';'20-Feb-2025';'20-Feb-2026';'20-Feb-2029';
                  '21-Feb-2034';'22-Feb-2039';'22-Feb-2044';'20-Feb-2054';
                  '20-Feb-2064'});

Create the corresponding vector of discount factors for a 3-month LIBOR curve.
 discountFactors = [1;0.99942;0.999231;0.999037;0.998797;0.998616;0.998385;...
                       0.998122;0.997941;0.997159;0.996157;0.994825;0.993065;...
                       0.99078;0.987889;0.984092;0.979913;0.975459;0.952707;...
                       0.922223;0.888128;0.852291;0.816462;0.781228;0.746677;...
                       0.712892;0.680462;0.592285;0.474003;0.383493;0.312617;...
                       0.213809;0.152345];

Create a Numerix CROSSASSET object.

c = numerixCrossAsset;

Add data to the Numerix CROSSASSET Application Data object.
applicationData(c,'USD_3MLIBOR_CURVE','DATE',dates,'DISCOUNTFACTOR',discountFactors)

Add the RATESPEC Call object to the Numerix CROSSASSET Application object using
name-value pairs, where USD_3MLIBOR_CURVE denotes yield curve data object created
previously.
headers = {'ID','LOCAL ID','TIMER','TIMER CPU','UPDATED'};
 applicationCall(c,headers,'ID','RATESPEC','OBJECT','MARKET DATA','TYPE','YIELD','COMMENT','Comments here',...
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                 'SKIP',false,'INTERPMETHOD','LogLinear','INTERPVARIABLE','DF',...
                 'CURRENCY','USD','DATA','USD_3MLIBOR_CURVE','BASIS','ACT/360');

Use getdata to convert the Numerix CROSSASSET Application object to a MATLAB
structure.

APPDATA = getdata(C)

See Also
applicationCall | applicationData | applicationMatrix | close |
numerixCrossAsset

Topics
“Numerix CROSSASSET Interface Workflow Example Using Matrix, Data, and Call
Objects” on page 10-16

External Websites
https://www.numerix.com/CrossAsset

Introduced in R2016b
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parseResults
Class: numerix

Converts Numerix CAIL data to MATLAB data types

Syntax
R = parseResults(N,Results)

Description
R = parseResults(N,Results) returns Numerix CAIL data in native MATLAB data
types.

Input Arguments
N

Numerix object constructed using numerix.

Results

Result instances for each trade instance.

Output Arguments
R

Results from Numerix table output represented as MATLAB data types.
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Attributes
Access public
Static false
Hidden false

To learn about attributes of methods, see Method Attributes (MATLAB).

Examples

Return Results for Numerix CAIL API to Price a Callable Reverse Floater

Initialize Numerix environment.

import com.numerix.integration.*;
import com.numerix.integration.implementation.*;

n = numerix('i:\NumeriX_java_10_3_0\data')

n = 

              Path: 'i:\NumeriX_java_10_3_0\data'
    RepositoryPath: 'i:\NumeriX_java_10_3_0\data\Repository'
        Repository: [1x1 com.numerix.integration.implementation.FileSystemRepository]
           Context: [1x1 com.numerix.integration.implementation.LocalCalculationContext]
       LookupsPath: 'i:\NumeriX_java_10_3_0\data\Data\LookupRules'
       MarketsPath: 'i:\NumeriX_java_10_3_0\data\Data\Markets'
       FixingsPath: 'i:\NumeriX_java_10_3_0\data\Data\Fixings'
        TradesPath: 'i:\NumeriX_java_10_3_0\data\Data\Trades'
        Parameters: [1x1 com.numerix.integration.implementation.CalculationParameters]

Create a market.
quotes = java.util.HashMap;
quotes.put('IR.USD-LIBOR-3M.SWAP-1Y.MID', 0.0066056);
quotes.put('IR.USD-LIBOR-3M.SWAP-10Y.MID', 0.022465005);
quotes.put('IR.USD-LIBOR-3M.SWAP-20Y.MID', 0.027544995);
market = Market('EOD_14-NOV-2011', DateExtensions.date('14-Nov-2011'), quotes.entrySet);

Define a trade instance based on instrument template found in the Repository.
tradeDescriptor = 'TRADE.IR.CALLABLEREVERSEFLOATER';
tradeParameters = java.util.HashMap;
tradeParameters.put('Trade ID','1001');
tradeParameters.put('Quote Type', 'MID');
tradeParameters.put('Currency', 'USD');
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tradeParameters.put('Notional', 1000000.0);
tradeParameters.put('Effective Date', DateExtensions.date('1-Dec-2011'));
tradeParameters.put('Termination Date', DateExtensions.date('1-Dec-2021'));
tradeParameters.put('IR Index', 'LIBOR');
tradeParameters.put('IR Index Tenor', '3M');
tradeParameters.put('Structured Freq', '3M');
tradeParameters.put('Structured Side', 'Receive');
tradeParameters.put('Structured Coupon Floor', 0.0);
tradeParameters.put('Structured Coupon UpBd', 0.08);
tradeParameters.put('StructuredCoupon Multiplier', 1.4);
tradeParameters.put('Structured Coupon Cap', 0.05);
tradeParameters.put('Structured Basis', 'ACT/360');
tradeParameters.put('Funding Freq', '3M');
tradeParameters.put('Funding Side', 'Pay');
tradeParameters.put('Funding Spread', 0.003);
tradeParameters.put('Funding Basis', 'ACT/360');
tradeParameters.put('Call Start Date', DateExtensions.date('1-Dec-2013'));
tradeParameters.put('Call End Date', DateExtensions.date('1-Dec-2020'));
tradeParameters.put('Option Side', 'Short');
tradeParameters.put('Option Type', 'Right to Terminate');
tradeParameters.put('Call Frequency', '3M');
tradeParameters.put('Model', 'IR.USD-LIBOR-3M.MID.DET');
tradeParameters.put('Method', 'BackwardAnalytic');

Create a trade instance.
trade = RepositoryExtensions.createTradeInstance(n.Repository, tradeDescriptor, tradeParameters);

Price the trades.
results = CalculationContextExtensions.calculate(n.Context, trade, market, Request.getAll);

Parse the results for MATLAB and display.

r = n.parseResults(results)
disp([r.Name r.Category r.Currency r.Data])

r = 

    Category: {13x1 cell}
    Currency: {13x1 cell}
        Name: {13x1 cell}
        Data: {13x1 cell}

    'Reporting Currency'           'Price'       ''       'USD'        
    'Structured Cashflow Log'      'Cashflow'    ''        {41x20 cell}
    'Structured Leg PV Accrued'    'Price'       'USD'    [          0]
    'PV'                           'Price'       'USD'    [ 6.4133e+04]
    'Structured Leg PV Clean'      'Price'       'USD'    [ 4.2637e+05]
    'Option PV'                    'Price'       'USD'    [-1.3220e+05]
    'Funding Cashflow Log'         'Cashflow'    ''        {41x20 cell}
    'Structured Leg PV'            'Price'       'USD'    [ 4.2637e+05]
    'Funding Leg PV'               'Price'       'USD'    [-2.3004e+05]
    'Funding Leg PV Accrued'       'Price'       'USD'    [          0]
    'Funding Leg PV Clean'         'Price'       'USD'    [-2.3004e+05]
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    'Yield Risk Report'            ''            ''        { 4x30 cell}
    'Messages'                     ''            ''        { 4x1  cell}

See Also
numerix

Topics
“Working with Simple Numerix Trades” on page 10-2
“Working with Advanced Numerix Trades” on page 10-5
“Use Numerix to Price Cash Deposits” on page 10-10
“Use Numerix for Interest-Rate Risk Assessment” on page 10-13

External Websites
https://www.numerix.com/cail

Introduced in R2013b
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oasbybdt
Determine option adjusted spread using Black-Derman-Toy model

Syntax
[OAS,OAD,OAC] = oasbybdt(BDTTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbybdt( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbybdt(BDTTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates) calculates option adjusted spread using a Black-
Derman-Toy model.

[OAS,OAD,OAC] = oasbybdt( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute OAS Using the Black-Derman-Toy (BDT) Model

This example shows how to compute OAS using the Black-Derman-Toy (BDT) model with
the following data.

ValuationDate = 'Oct-1-2010';
Rates = [0.035; 0.042; 0.047; 0.052];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates, 'EndDates', EndDates, ...
'Rates', Rates, 'Compounding', Compounding); 
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% specify VolSpec and TimeSpec
Sigma = 0.20;
VS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)));
TS = bdttimespec(ValuationDate, EndDates, Compounding);

% build the BDT tree
BDTTree = bdttree(VS, RateSpec, TS);
BDTTreenew = cvtree(BDTTree);

% instrument information
CouponRate = 0.065;
Settle = ValuationDate;
Maturity = '01-Oct-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates ='01-Oct-2011';
Period = 1;
Price = 101.58;

% compute the OAS
OAS = oasbybdt(BDTTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period)

OAS = 32.7688

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double
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CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond with an embedded option is set to the
ValuationDate of the BDT tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
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• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price
values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES of
serial date numbers or character vectors depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option is exercised between the underlying bond Settle date and the single listed
exercise date.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: OAS =
oasbybdt(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,Exe
rciseDates,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:
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• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
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at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector
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Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

Definitions

Bond with Embedded Options
A bond with embedded option allows the issuer to buy back (callable) or redeem
(puttable) the bond at a predetermined price at specified future dates.

Financial Instruments Toolbox software supports American, European, and Bermuda
callable and puttable bonds. The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to the issuer. For
example, if interest rates go down by the time of the call date, the issuer is able to
refinance its debt at a cheaper level and can call the bond. The price of a callable bond
is:

Price callable bond = Price Option free bond − Price call option
• Puttable bond — The holder bought a bond and a put option. For example, if interest

rates rise, the future value of coupon payments becomes less valuable. Therefore, the
investor can sell the bond back to the issuer and then lend proceeds elsewhere at a
higher rate. The price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put option

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg
Press, 2007.
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See Also
bdtprice | bdttree | instoptembnd | oasbybk | oasbyhjm | oasbyhw |
optembndbybdt

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2011a
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oasbybk
Determine option adjusted spread using Black-Karasinski model

Syntax
[OAS,OAD,OAC] = oasbybk(BKTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbybk( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbybk(BKTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates) calculates option adjusted spread using a Black-
Karasinski model.

[OAS,OAD,OAC] = oasbybk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute OAS and OAD Using the Black-Karasinski (BK) Model

This example shows how to compute OAS and OAD using the Black-Karasinski (BK) model
using the following data.

ValuationDate = 'Aug-2-2010';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;

% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates,'EndDates', EndDates, ...
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'Rates', Rates,'Compounding', Compounding); 

% specify VolSpec and TimeSpec
Sigma = 0.10;
Alpha = 0.01;
VS = bkvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...
EndDates, Alpha*ones(size(EndDates)));
TS = bktimespec(ValuationDate, EndDates, Compounding);

% build the BK tree
BKTree = bktree(VS, RateSpec, TS);

% instrument information
CouponRate = 0.045;
Settle = ValuationDate;
Maturity = '02-Aug-2014';
OptSpec = 'put';
Strike = 100;
ExerciseDates ='02-Aug-2013';
Period = 1;
AmericanOpt = 1;
Price = 101;

% compute OAS and OAD
[OAS, OAD] = oasbybk(BKTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)

OAS = 21.8655

OAD = 1.8654

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric
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Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond with an embedded option is set to the
ValuationDate of the BK tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:
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• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option is exercised between the underlying bond Settle date and the single listed
exercise date.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: OAS =
oasbybk(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,Exer
ciseDates,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.
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In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.
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OAD — Option adjusted duration
vector

Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

Definitions

Bond with Embedded Options
A bond with embedded option allows the issuer to buy back (callable) or redeem
(puttable) the bond at a predetermined price at specified future dates.

Financial Instruments Toolbox software supports American, European, and Bermuda
callable and puttable bonds. The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to the issuer. For
example, if interest rates go down by the time of the call date, the issuer is able to
refinance its debt at a cheaper level and can call the bond. The price of a callable bond
is:

Price callable bond = Price Option free bond − Price call option
• Puttable bond — The holder bought a bond and a put option. For example, if interest

rates rise, the future value of coupon payments becomes less valuable. Therefore, the
investor can sell the bond back to the issuer and then lend proceeds elsewhere at a
higher rate. The price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put option

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg
Press, 2007.

 oasbybk

11-1211



See Also
bkprice | bktree | instoptembnd | oasbybdt | oasbyhjm | oasbyhw | optembndbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2011a
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oasbycir
Determine option adjusted spread using Cox-Ingersoll-Ross model

Syntax
[OAS,OAD,OAC] = oasbycir(CIRTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbycir( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbycir(CIRTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates) calculates the option adjusted spread from a Cox-
Ingersoll-Ross (CIR) interest-rate tree. oasbycir computes the price of an option
adjusted spread for bonds with embedded options using a CIR++ model with the
Nawalka-Beliaeva (NB) approach.

[OAS,OAD,OAC] = oasbycir( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute OAS Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

ValuationDate = 'October-25-2018';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.
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NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;    
Maturity = '01-Jan-2023'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1.0462 2.0924 3.1386]
        dObs: [737358 737740 738122 738504]
     FwdTree: {[1.0373]  [1.0750 1.0443 1.0229]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Define the OAS instrument.

CouponRate = 0.045;
Settle = ValuationDate;
Maturity = '25-October-2019';
OptSpec = 'call';
Strike = 100;
ExerciseDates = {'25-October-2018','25-October-2019'};
Period = 1;
AmericanOpt = 0;
Price = 97;

Compute the OAS.

[OAS,OAD] = oasbycir(CIRT,Price,CouponRate,Settle,Maturity,OptSpec,Strike,ExerciseDates,'Period',Period,'AmericanOpt',AmericanOpt)

OAS = 416.9457

OAD = 0.9282
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Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector | string array | datetime

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers, date character vectors, string arrays, or datetime arrays.

Note The Settle date for every bond with an embedded option is set to the
ValuationDate of the CIR tree. The bond argument Settle is ignored.

Data Types: double | char | string | datetime

Maturity — Maturity date
serial date number | date character vector | string array | datetime

Maturity date, specified as an NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime
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OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put' | string array with values "call" or "put"

Definition of option, specified as a NINST-by-1 cell array of character vectors or string
arrays with values 'call' or 'put'.
Data Types: char | cell | string

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers, date character vectors, string arrays, or datetime arrays
depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

.
Data Types: double | char | string | datetime
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: OAS =
oasbycir(CIRTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,Exe
rciseDates,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers, date character vectors, string arrays, or
datetime arrays.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime
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Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date, date
character vectors, string arrays, or datetime arrays.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers, date character
vectors, string arrays, or datetime arrays.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double | string | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | string array | datetime

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers, date character vectors, string arrays, or datetime array.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double | string | datetime

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double
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Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector

Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

Definitions

Bond with Embedded Options
A bond with embedded option allows the issuer to buy back (callable) or redeem
(puttable) the bond at a predetermined price at specified future dates.

Financial Instruments Toolbox software supports American, European, and Bermuda
callable and puttable bonds. The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to the issuer. For
example, if interest rates go down by the time of the call date, the issuer is able to
refinance its debt at a cheaper level and can call the bond. The price of a callable bond
is:

Price callable bond = Price Option free bond − Price call option
• Puttable bond — The holder bought a bond and a put option. For example, if interest

rates rise, the future value of coupon payments becomes less valuable. Therefore, the
investor can sell the bond back to the issuer and then lend proceeds elsewhere at a
higher rate. The price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put option
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See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
optbndbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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oasbyhjm
Determine option adjusted spread using Heath-Jarrow-Morton model

Syntax
[OAS,OAD,OAC] = oasbyhjm(HJMTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbyhjm( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbyhjm(HJMTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates) calculates option adjusted spread using a Heath-
Jarrow-Morton model.

[OAS,OAD,OAC] = oasbyhjm( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute OAS Using the Heath-Jarrow-Morton (HJM) Model

This example shows how to compute OAS using the Heath-Jarrow-Morton (HJM) model
using the following data.

ValuationDate = 'Nov-1-2010';
Rates = [0.0356; 0.0427; 0.0478; 0.0529];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;
 
% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates,'EndDates', EndDates, ...
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'Rates', Rates,'Compounding', Compounding); 
 
% specify VolSpec and TimeSpec
Sigma = 0.02;
VS = hjmvolspec('Constant', Sigma);
TS = hjmtimespec(ValuationDate, EndDates, Compounding);
 
% build the HJM tree
HJMTree = hjmtree(VS, RateSpec, TS);
HJMTreenew = cvtree(HJMTree);
 
% instrument information
CouponRate = 0.05;
Settle = ValuationDate;
Maturity = '01-Nov-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates ='01-Nov-2011';
Period = 1;
Price = 97.5;

% compute the OAS
OAS = oasbyhjm(HJMTree, Price, CouponRate, Settle, Maturity, OptSpec, Strike,...
ExerciseDates, 'Period', Period)

OAS = 5.0057

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double
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CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond with an embedded option is set to the
ValuationDate of the HJM tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
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• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price
values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option is exercised between the underlying bond Settle date and the single listed
exercise date.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: OAS =
oasbybk(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,Exer
ciseDates,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:
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• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
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at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector
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Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

Definitions

Bond with Embedded Options
A bond with embedded option allows the issuer to buy back (callable) or redeem
(puttable) the bond at a predetermined price at specified future dates.

Financial Instruments Toolbox software supports American, European, and Bermuda
callable and puttable bonds. The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to the issuer. For
example, if interest rates go down by the time of the call date, the issuer is able to
refinance its debt at a cheaper level and can call the bond. The price of a callable bond
is:

Price callable bond = Price Option free bond − Price call option
• Puttable bond — The holder bought a bond and a put option. For example, if interest

rates rise, the future value of coupon payments becomes less valuable. Therefore, the
investor can sell the bond back to the issuer and then lend proceeds elsewhere at a
higher rate. The price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put option

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg
Press, 2007.
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See Also
hjmprice | hjmtree | instoptembnd | oasbybdt | oasbybk | oasbyhw |
optembndbyhjm

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2011a
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oasbyhw
Determine option adjusted spread using Hull-White model

Syntax
[OAS,OAD,OAC] = oasbyhw(HWTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[OAS,OAD,OAC] = oasbyhw( ___ ,Name,Value)

Description
[OAS,OAD,OAC] = oasbyhw(HWTree,Price,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates) calculates option adjusted spread using a Hull-
White model.

[OAS,OAD,OAC] = oasbyhw( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute OAS and OAD Using the Hull-White (HW) Model

This example shows how to compute OAS and OAD using the Hull-White (HW) model
using the following data.

ValuationDate = 'October-25-2010';
Rates = [0.0355; 0.0382; 0.0427; 0.0489];
StartDates = ValuationDate;
EndDates = datemnth(ValuationDate, 12:12:48)';
Compounding = 1;

% define RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate,...
'StartDates', StartDates, 'EndDates', EndDates, ...
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'Rates', Rates,'Compounding', Compounding); 

% specify VolsSpec and TimeSpec
Sigma = 0.05;
Alpha = 0.01;
VS = hwvolspec(ValuationDate, EndDates, Sigma*ones(size(EndDates)),...
EndDates, Alpha*ones(size(EndDates)));
TS = hwtimespec(ValuationDate, EndDates, Compounding);

% build the HW tree
HWTree = hwtree(VS, RateSpec, TS);

% instrument information
CouponRate = 0.045;
Settle = ValuationDate;
Maturity = '25-October-2014';
OptSpec = 'call';
Strike = 100;
ExerciseDates = {'25-October-2010','25-October-2013'};
Period = 1;
AmericanOpt = 0;
Price = 97;

% compute the OAS
[OAS, OAD] = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'AmericanOpt', AmericanOpt)

OAS = -12.8538

OAD = 3.2910

Compute the OAS to Measure Cost of an Embedded Option Relative to a Risk-
Free Curve

This example shows how to compute the price of a callable bond using a Hull-White tree.

Use the following bond data:

Settle = datenum('20-Aug-2014');

% Bond Properties
Maturity = datenum('01-Apr-2034');
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CouponRate = .0625;
CallDates = datemnth('01-Oct-2014',6*(0:19));
CallStrikes = [102.85 102.7 102.55 102.4 102.25 102.1 101.95 101.8 ...
    101.65 101.5 101.35 101.2 101.05 100.9 100.75 100.6 100.45 100.3 ...
    100.15 100];

Use the following zero-curve data:

CurveDates = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');
ZeroRates = [.11 0.30 0.64 1.44 2.07 2.61 3.29 3.55]'/100;

Define the RateSpec and build the HW tree.

RateSpec = intenvset('StartDate',Settle,'EndDates',CurveDates,'Rates',ZeroRates);

% HW Model Properties
alpha = .1;
sigma = .01;

TimeSpec = hwtimespec(Settle,cfdates(Settle,Maturity,12),2);
VolSpec = hwvolspec(Settle,Maturity,sigma,Maturity,alpha);

HWTree = hwtree(VolSpec,RateSpec,TimeSpec,'method','HW2000')

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [1x236 double]
        dObs: [1x236 double]
      CFlowT: {1x236 cell}
       Probs: {1x235 cell}
     Connect: {1x235 cell}
     FwdTree: {1x236 cell}

Compute the OAS for the bond.

Price = 103.25;
OAS = oasbyhw(HWTree, Price, CouponRate, Settle, Maturity, 'call', CallStrikes, CallDates)

OAS = 234.8209
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If you want to compute an OAS that only measures the option cost, you can pass in an
issuer-specific curve instead of a risk-free curve (this would be done in the RateSpec
argument).

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Price — Market prices of bonds with embedded options
numeric

Market prices of bonds with embedded options, specified as an NINST-by-1 vector.
Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate.
Data Types: double

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond with an embedded option is set to the
ValuationDate of the HW tree. The bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector
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Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option is exercised between the underlying bond Settle date and the single listed
exercise date.
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Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: OAS =
oasbybk(BDTTree,Price,CouponRate,Settle,Maturity,OptSpec,Strike,Exer
ciseDates,'Period',4)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector
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Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double
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Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
OAS — Option adjusted spread
vector

Option adjusted spread, returned as a NINST-by-1 vector.

OAD — Option adjusted duration
vector

Option adjusted duration, returned as a NINST-by-1 vector.

OAC — Option adjusted convexity
vector

Option adjusted convexity, returned as a NINST-by-1 vector.

Definitions

Bond with Embedded Options
A bond with embedded option allows the issuer to buy back (callable) or redeem
(puttable) the bond at a predetermined price at specified future dates.

Financial Instruments Toolbox software supports American, European, and Bermuda
callable and puttable bonds. The pricing for a bond with embedded options is as follows:

• Callable bond — The holder bought a bond and sold a call option to the issuer. For
example, if interest rates go down by the time of the call date, the issuer is able to
refinance its debt at a cheaper level and can call the bond. The price of a callable bond
is:
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Price callable bond = Price Option free bond − Price call option
• Puttable bond — The holder bought a bond and a put option. For example, if interest

rates rise, the future value of coupon payments becomes less valuable. Therefore, the
investor can sell the bond back to the issuer and then lend proceeds elsewhere at a
higher rate. The price of a puttable bond is:

Price puttable bond = Price Option free bond + Price put option

References
[1] Fabozzi, F. Handbook of Fixed Income Securities. 7th Edition. McGraw-Hill, 2005.

[2] Windas, T. Introduction to Option-Adjusted Spread Analysis. 3rd Edition. Bloomberg
Press, 2007.

See Also
hwprice | hwtree | instoptembnd | oasbybdt | oasbybk | oasbyhjm | optembndbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2011a
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optbndbybdt
Price bond option from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optbndbybdt(BDTTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbybdt( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbybdt(BDTTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity) calculates the price
for a bond option from a Black-Derman-Toy interest-rate tree.

[Price,PriceTree] = optbndbybdt( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds
optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the BDT interest-rate tree in the deriv.mat file, price a European call and put
option on a 10% bond with a strike of 95. The exercise date for the option is Jan. 01, 2002.
The settle date for the bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2003.

Load the file deriv.mat, which provides BDTTree. The BDTTree structure contains the
time and forward-rate information needed to price the bond.

load deriv.mat;

Use optbondbybdt to compute the price of the 'Call' option.
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[Price,PriceTree] = optbndbybdt(BDTTree,'Call',95,'01-Jan-2002',... 
0,0.10,'01-Jan-2000','01-Jan-2003',1)

Price = 1.7657

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {1x5 cell}

Now use optbndbybdt to compute the price of a 'Put' option on the same bond.

[Price,PriceTree] = optbndbybdt(BDTTree,'Put',95,'01-Jan-2002',... 
0,0.10,'01-Jan-2000','01-Jan-2003',1)

Price = 0.5740

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {[0.5740]  [0 1.2628]  [0 0 2.8871]  [0 0 0 0]  [0 0 0 0]}

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer
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Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value
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Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond is set to the ValuationDate of the BDT tree. The
bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1
vector. This rule applies only when Maturity is an end-of-month date for a month having
30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers
or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector
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(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date
numbers date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date
numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

(Optional) Forward starting date of payments (the date from which a bond cash flow is
considered), specified as a NINST-by-1 vector using serial date numbers or date character
vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure
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(Optional) Derivatives pricing options, specified as structure that is created with
derivset.
Data Types: struct

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

See Also
bdtprice | bdttree | instoptbnd

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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optbndbybk
Price bond option from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optbndbybk(BKTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbybk( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbybk(BKTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity) calculates the price for a bond option
from a Black-Karasinski interest-rate tree.

[Price,PriceTree] = optbndbybk( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds
optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the BK interest rate tree in the deriv.mat file, price a European call and put
option on a 4% bond with a strike of 96. The exercise date for the option is Jan. 01, 2006.
The settle date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides BKTree. The BKTree structure contains the
time and forward-rate information needed to price the bond.

load deriv.mat; 

Use optbondbybk to compute the price of the 'call' option.
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[Price,PriceTree] = optbndbybk(BKTree,'Call',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle 
> In optbndbytrintree (line 41)
  In optbndbybk (line 89) 
Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbytrintree (line 152)
  In optbndbybk (line 89) 

Price =

    0.1512

PriceTree = 

  struct with fields:

     FinObj: 'BKPriceTree'
      PTree: {[0.1512]  [0.0281 0.1481 0.3119]  [0 0 0.1329 0.3886 0.3086]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]} 

Now use optbndbybdt to compute the price of a 'put' option on the same bond.

[Price,PriceTree] = optbndbybk(BKTree,'Put',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Warning: OptBonds are valued at Tree ValuationDate rather than Settle 
> In optbndbytrintree (line 41)
  In optbndbybk (line 89) 
Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbytrintree (line 152)
  In optbndbybk (line 89) 

Price =

    0.0272

PriceTree = 

  struct with fields:
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     FinObj: 'BKPriceTree'
      PTree: {[0.0272]  [0.0860 0.0204 0]  [0.0474 0.1266 0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

11 Functions — Alphabetical List

11-1250



Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.
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Note The Settle date for every bond is set to the ValuationDate of the BK tree. The
bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector

(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1
vector. This rule applies only when Maturity is an end-of-month date for a month having
30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers
or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date
numbers date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

 optbndbybk

11-1253



(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date
numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

(Optional) Forward starting date of payments (the date from which a bond cash flow is
considered), specified as a NINST-by-1 vector using serial date numbers or date character
vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with
derivset.
Data Types: struct

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.
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PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bkprice | bktree | instoptbnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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optbndbycir
Price bond option from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optbndbycir(CIRTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optbndbycir(CIRTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity) calculates the price
for a bond option from a Cox-Ingersoll-Ross (CIR) interest-rate tree using a CIR++ model
with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = optbndbycir( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Price a European Call and Put Option on a Bond Using a CIR Interest-Rate Tree

Compute the price for a European call option on a 4% bond with a strike of 96. The
exercise date for the option is Jan. 01, 2018. The settle date for the bond is Jan. 01, 2017,
and the maturity date is Jan. 01, 2020.

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
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Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2019'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.5000 1 1.5000]
        dObs: [736696 736878 737061 737243]
     FwdTree: {[1.0173]  [1.0276 1.0175 1.0097]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the call option.

[Price,PriceTree] = optbndbycir(CIRT,'Call',96,'01-Jan-2018',... 
0,0.04,'01-Jan-2017','01-Jan-2020')

Price = 2.6827

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 0.5000 1 1.5000 2]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Price the put option.

[Price,PriceTree] = optbndbycir(CIRT,'Put',96,'01-Jan-2018',... 
0,0.04,'01-Jan-2017','01-Jan-2020')
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Price = 0.6835

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 0.5000 1 1.5000 2]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with
values 'call' or 'put' | string arrays with values "call" or "put"

Definition of option, specified as a NINST-by-1 cell array of character vectors or string
arrays.
Data Types: char | cell | string

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double
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ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers, data character vectors, string arrays, or datetime arrays
depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char | string | datetime

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector | string array | datetime
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Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers, date character vectors, string arrays, or datetime arrays.

Note The Settle date for every bond is set to the ValuationDate of the CIR tree. The
bond argument Settle is ignored.

Data Types: double | char | string

Maturity — Maturity date
serial date number | date character vector | string array | datetime

Maturity date, specified as an NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] = optbndbycir(CIRTree,OptSpec,
Strike,ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity,'Period'
6,'Basis',7,'Face',1000)

Period — Coupons per year
2 per year (default) | possible values include: 0, 1, 2, 3, 4, 6, 12.

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime
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Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers, date character vectors, string arrays, or
datetime arrays.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date, date
character vectors, string arrays, or datetime arrays.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers, date character
vectors, string arrays, or datetime arrays.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double | string | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | string array | datetime

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers, date character vectors, string arrays, or datetime
arrays.

If you do not specify StartDate, the effective start date is the Settle date.

11 Functions — Alphabetical List

11-1262



Data Types: char | double | string | datetime

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains the clean prices.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.
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[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
instoptbnd | oasbycir | optembndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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optbndbyhjm
Price bond option from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optbndbyhjm(HJMTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbyhjm( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbyhjm(HJMTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,CouponRate,Settle,Maturity) calculates the price
for a bond option from a Black-Karasinski interest-rate tree.

[Price,PriceTree] = optbndbyhjm( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds
optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the HJM forward-rate tree in the deriv.mat file, price a European call and put
option on a 4% bond with a strike of 96. The exercise date for the option is Jan. 01, 2003.
The settle date for the bond is Jan. 01, 2000, and the maturity date is Jan. 01, 2004.

Load the file deriv.mat, which provides HJMTree. The HJMTree structure contains the
time and forward-rate information needed to price the bond.

load deriv.mat; 

Use optbndbyhjm to compute the price of the 'call' option.
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[Price,PriceTree] = optbndbyhjm(HJMTree,'Call',96,'01-Jan-2003',...
0,0.04,'01-Jan-2000','01-Jan-2004')

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbyhjm (line 217) 

Price =

    2.2410

PriceTree = 

  struct with fields:

    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3 4]
     PBush: {[2.2410]  [1×1×2 double]  [1×2×2 double]  [1×4×2 double]  [0 0 0 0 0 0 0 0]}

Now use optbndbyhjm to compute the price of a 'put' option on the same bond.

[Price,PriceTree] = optbndbyhjm(HJMTree,'Put',96,'01-Jan-2003',...
0,0.04,'01-Jan-2000','01-Jan-2004')

Warning: Not all cash flows are aligned with the tree. Result will be approximated. 
> In optbndbyhjm (line 217) 

Price =

    0.0446

PriceTree = 

  struct with fields:

    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3 4]
     PBush: {[0.0446]  [1×1×2 double]  [1×2×2 double]  [1×4×2 double]  [0 0 0 0 0 0 0 0]}

Input Arguments
HJMTree — Interest-rate tree structure
structure
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Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char
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AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

(Optional) Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond is set to the ValuationDate of the HJM tree. The
bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector
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(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1
vector. This rule applies only when Maturity is an end-of-month date for a month having
30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers
or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date
numbers date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date
numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector
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(Optional) Forward starting date of payments (the date from which a bond cash flow is
considered), specified as a NINST-by-1 vector using serial date numbers or date character
vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with
derivset.
Data Types: struct

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PBush contains the clean prices.
• PriceTree.tObs contains the observation times.
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See Also
hjmprice | hjmtree | instoptbnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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optbndbyhw
Price bond option from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optbndbyhw(HWTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity)
[Price,PriceTree] = optbndbyhw( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options)

Description
[Price,PriceTree] = optbndbyhw(HWTree,OptSpec,Strike,ExerciseDates,
AmericanOpt,CouponRate,Settle,Maturity) calculates the price for a bond option
from a Hull-White interest-rate tree.

[Price,PriceTree] = optbndbyhw( ___ ,Period,Basis,EndMonthRule,
IssueDate,FirstCouponDate,LastCouponDate,StartDate,Face,Options) adds
optional arguments.

Examples

Price a European Call and Put Option on a Bond

Using the HW interest rate tree in the deriv.mat file, price a European call option on a
4% bond with a strike of 96. The exercise date for the option is Jan. 01, 2006. The settle
date for the bond is Jan. 01, 2005, and the maturity date is Jan. 01, 2009.

Load the file deriv.mat, which provides HWTree. The HWTree structure contains the
time and forward-rate information needed to price the bond.

load deriv.mat; 

Use optbndbyhw to compute the price of the 'call' option.
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[Price,PriceTree] = optbndbyhw(HWTree,'Call',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Price =

    1.1556

PriceTree = 

  struct with fields:

     FinObj: 'HWPriceTree'
      PTree: {[1.1556]  [0.0150 0.8509 3.7085]  [0 0 0.0722 4.9980 3.8429]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}

Now use optbndbyhw to compute the price of a 'put' option on the same bond.

[Price,PriceTree] = optbndbyhw(HWTree,'Put',96,'01-Jan-2006',... 
0,0.04,'01-Jan-2005','01-Jan-2009')

Price =

    1.0150

PriceTree = 

  struct with fields:

     FinObj: 'HWPriceTree'
      PTree: {[1.0150]  [3.2945 0.7413 0]  [3.5551 4.6060 0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3×1 double]  [3×3 double]  [3×5 double]}

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
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Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or data character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

 optbndbyhw

11-1275



AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond is set to the ValuationDate of the HW tree. The
bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

Period — Coupons per year
2 per year (default) | vector
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(Optional) Coupons per year, specified as an NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

(Optional) Day-count basis, specified as a NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

(Optional) End-of-month rule flag is specified as a nonnegative integer using a NINST-by-1
vector. This rule applies only when Maturity is an end-of-month date for a month having
30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

(Optional) Bond issue date, specified as an NINST-by-1 vector using serial date numbers
or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

(Optional) Irregular first coupon date, specified as an NINST-by-1 vector using serial date
numbers date or date character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

(Optional) Irregular last coupon date, specified as a NINST-by-1 vector using serial date
numbers or date character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector
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(Optional) Forward starting date of payments (the date from which a bond cash flow is
considered), specified as a NINST-by-1 vector using serial date numbers or date character
vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

(Optional) Face or par value, specified as anNINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

(Optional) Derivatives pricing options, specified as structure that is created with
derivset.
Data Types: struct

Output Arguments
Price — Expected prices of bond option at time 0
matrix

Expected price of the bond option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,

 optbndbyhw

11-1279



there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
hwprice | hwtree | instoptbnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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optByBatesFFT
Option price by Bates model using FFT and FRFT

Syntax
[Price,StrikeOut] = optByBatesFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
[Price,StrikeOut] = optByBatesFFT( ___ ,Name,Value)

Description
[Price,StrikeOut] = optByBatesFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
computes vanilla European option price by Bates model, using Carr-Madan FFT and
Chourdakis FRFT methods.

[Price,StrikeOut] = optByBatesFFT( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Bates Model

Use optByBatesFFT to calibrate the FFT strike grid, compute option prices, and plot an
option price surface.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
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ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute Option Prices for the Entire FFT (or FRFT) Strike Grid, Without
Specifying Strike

Compute option prices and also output the corresponding strikes. If the Strike input is
empty ([]), option prices will be computed on the entire FFT (or FRFT) strike grid. The
FFT (or FRFT) strike grid is determined as exp(log-strike grid), where each column
of the log-strike grid has NumFFT points with LogStrikeStep spacing that are roughly
centered around each element of log(AssetPrice). The default value for NumFFT is
2^12. In addition to the prices in the first output, the optional last output contains the
corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option prices for the entire FFT strike grid
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield);

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option prices
Range = (2046:2052);
[Kout(Range) Call(Range)]

ans = 7×2
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   50.4929   29.4990
   58.8640   21.4545
   68.6231   12.8544
   80.0000    5.3484
   93.2631    1.2404
  108.7251    0.1648
  126.7505    0.0152

Change the Number of FFT (or FRFT) Points and Compare with optByBatesNI

Try a different number of FFT (or FRFT) points, and compare the results with direct
numerical integration. Unlike optByBatesFFT, which uses FFT (or FRFT) techniques for
fast computation across the whole range of strikes, the optByBatesNI function uses
direct numerical integration and it is typically slower, especially for multiple strikes.
However, the values computed by optByBatesNI can serve as a benchmark for adjusting
the settings for optByBatesFFT.

% Try a smaller number of FFT (or FRFT) points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike     CallFFT       CallNI         Error  
    ______    _________    ___________    _________

    12.696       66.237         66.696      0.45912
    23.449        55.86         56.103      0.24239
    43.312       36.418         36.541      0.12246
        80       5.4029         5.3484     0.054469
    147.76     0.044921      0.0010864     0.043835

 optByBatesFFT

11-1283



    272.93    0.0094655    -7.8249e-08    0.0094656
    504.11    0.0024986    -3.3873e-07    0.0024989

Make Further Adjustments to FFT (or FRFT)

If the values in the output CallFFT are significantly different from those in CallNI, try
making adjustments to optByBatesFFT settings, such as CharacteristicFcnStep,
LogStrikeStep, NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep *
CharacteristicFcnStep) is 2*pi / NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...    
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike    CallFFT    CallNI      Error   
    ______    _______    ______    __________

    79.76     5.4682     5.4682    1.5355e-08
    79.84     5.4281     5.4281    1.4833e-08
    79.92     5.3882     5.3882    1.4244e-08
       80     5.3484     5.3484     1.359e-08
    80.08     5.3088     5.3088    1.2875e-08
    80.16     5.2693     5.2693    1.2101e-08
    80.24       5.23       5.23    1.1272e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of |Strike| inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike
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MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566

Compute the Option Price for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify
the strikes (rather than providing an empty array). If the specified strikes do not match a
value on the FFT (or FRFT) strike grid, the outputs are interpolated on the specified
strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Call = 5.3484

Compute the Option Prices for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Call = 5×1

    7.5765
    6.4020
    5.3484
    4.4173
    3.6073
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Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the
Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001) % Five values in vector output

Call = 5×1

    9.7516
   10.3931
   10.8865
   11.2990
   11.6491

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into
NStrikes-by-NMaturities matrices. In this case, they are square matrices.

[Call, Kout] = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    9.7516   11.4387   12.8395   14.0588   15.1361
    8.6554   10.3931   11.8344   13.0890   14.1980
    7.6432    9.4149   10.8865   12.1693   13.3046
    6.7153    8.5035    9.9952   11.2990   12.4553
    5.8705    7.6581    9.1594   10.4771   11.6491

Kout = 5×5
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    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute Option Prices for a Vector of Strikes and a Vector of Dates of Different
Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is,
the output NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    7.5765    9.7516   11.4387   12.8395   14.0588   15.1361
    6.4020    8.6554   10.3931   11.8344   13.0890   14.1980
    5.3484    7.6432    9.4149   10.8865   12.1693   13.3046
    4.4173    6.7153    8.5035    9.9952   11.2990   12.4553
    3.6073    5.8705    7.6581    9.1594   10.4771   11.6491

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByBatesFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 4) matrix output
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Call = 5×4

    4.2033    6.6918    9.7516   13.2808
    3.5558    5.8112    8.6554   11.9993
    2.9906    5.0181    7.6432   10.7934
    2.5018    4.3096    6.7153    9.6652
    2.0825    3.6818    5.8705    8.6158

Plot an Option Price Surface

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a
wider range of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to
"true" to output the surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase |NumFFT| to support a wider range of strikes
NumFFT = 2^13;

Call = optByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV,  MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);

11 Functions — Alphabetical List

11-1288



Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or
FRFT) strike grid, which is determined as exp(log-strike grid). Each column of the
log-strike grid has 'NumFFT' points with 'LogStrikeStep' spacing that are roughly
centered around each element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric
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Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price, StrikeOut] =
optByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,Thet
aV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13
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Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double
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LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-
separated pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the
log-strike grid, specified as the comma-separated pair consisting of 'NumFFT' and a
scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair
consisting of 'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of
'LogStrikeStep' and a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used.
Otherwise, FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric
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Damping factor for Carr-Madan formulation, specified as the comma-separated pair
consisting of 'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' |
string array with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature'
and a single character vector or string array with a value of 'simpson' or
'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. If Strike is
empty, NRows is equal to NumFFT. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or
NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.
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StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput.

Definitions

Bates Stochastic Volatility Jump Diffusion Model
The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to
stochastic volatility, the jump diffusion parameters similar to Merton (1976) were also
added to model sudden asset price movements.

The stochastic differential equation is:
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dv v dt v dW
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is

normally distributed with mean ln( )1
2

2

+ -m
d

J  and the standard deviation δ, and (1+J)
has a lognormal distribution:
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v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and W
t

v  for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

l p  is the annual frequency (intensity) of Poisson process Pt for ( l p  ≥ 0).

The characteristic function fBates j( )f  for j = 1 (asset price mean measure) and j =2 (risk-
neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Carr-Madan Formulation
The Carr and Madan (1999) formulation is a popular modified implementation of Heston
(1993) framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan
developed an alternative expression so that taking its inverse Fourier transform gives the
option price itself directly.
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K
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i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for
integration, u, is discretized into NumFFT(N) points with the step size
CharacteristicFcnStep (Δu), and the log-strike k is discretized into N points with the
step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a
minimum value of 0 and a maximum value of (N-1) (Δu), and it approximates the
continuous integration range from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around
ln(St), with a minimum value of
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As a result of the discretization, the expression for the call option becomes
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where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT/FRFT points

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following
constraint:

D Dk u
N

= Ê
ËÁ

ˆ
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2p

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optSensByBatesFFT
Option price and sensitivities by Bates model using FFT and FRFT

Syntax
[PriceSens,StrikeOut] = optSensByBatesFFT(Rate,AssetPrice,Settle,
Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,
JumpFreq)
[PriceSens,StrikeOut] = optSensByBatesFFT( ___ ,Name,Value)

Description
[PriceSens,StrikeOut] = optSensByBatesFFT(Rate,AssetPrice,Settle,
Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,
JumpFreq) computes vanilla European option price and sensitivities by Bates model,
using Carr-Madan FFT and Chourdakis FRFT methods.

[PriceSens,StrikeOut] = optSensByBatesFFT( ___ ,Name,Value) adds optional
name-value pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Bates Model

Use optSensByBatesFFT to calibrate the FFT strike grid for sensitivities, compute
option sensitivities, and plot option sensitivity surfaces.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

 optSensByBatesFFT

11-1303



V0 = 0.04;
ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Sensitivities for the Entire FFT (or FRFT) Strike Grid,
Without Specifying "Strike"

Compute option sensitivities and also output the corresponding strikes. If the Strike
input is empty ( [] ), option sensitivities will be computed on the entire FFT (or FRFT)
strike grid. The FFT (or FRFT) strike grid is determined as exp(log-strike grid),
where each column of the log-strike grid has NumFFT points with LogStrikeStep
spacing that are roughly centered around each element of log(AssetPrice). The
default value for NumFFT is 2^12. In addition to the sensitivities in the first output, the
optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option sensitivities for the entire FFT strike grid
[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta");

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option sensitivities
Range = (2046:2052);
[Kout(Range) Delta(Range)]

ans = 7×2
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   50.4929    0.9846
   58.8640    0.9585
   68.6231    0.8498
   80.0000    0.5630
   93.2631    0.1955
  108.7251    0.0319
  126.7505    0.0033

Change the Number of FFT (or FRFT) Points and Compare with
optSensByBatesNI

Try a different number of FFT (or FRFT) points, and compare the results with numerical
integration. Unlike optSensByBatesFFT, which uses FFT (or FRFT) techniques for fast
computation across the whole range of strikes, the optSensByBatesNI function uses
direct numerical integration and it is typically slower, especially for multiple strikes.
However, the values computed by optSensByBatesNI can serve as a benchmark for
adjusting the settings for optSensByBatesFFT.

% Try a smaller number of FFT points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike     DeltaFFT      DeltaNI        Error   
    ______    __________    __________    __________

    12.696        0.9265       0.99002      0.063524
    23.449       0.95153       0.99002      0.038497
    43.312       0.95928       0.98928      0.029994
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        80        0.5355       0.56303      0.027531
    147.76     0.0016267    0.00025691     0.0013698
    272.93    0.00058267    1.8942e-09    0.00058267
    504.11    0.00017752    8.7099e-10    0.00017752

Make Further Adjustments to FFT (or FRFT)

If the values in the output DeltaFFT are significantly different from those in DeltaNI,
try making adjustments to optSensByBatesFFT settings, such as
CharacteristicFcnStep, LogStrikeStep, NumFFT, DampingFactor, and so on. Note
that if (LogStrikeStep * CharacteristicFcnStep) is 2*pi/ NumFFT, FFT is used.
Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...    
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike    DeltaFFT    DeltaNI      Error   
    ______    ________    _______    __________

    79.76     0.57037     0.57037    6.3042e-09
    79.84     0.56793     0.56793     7.156e-09
    79.92     0.56548     0.56548     7.975e-09
       80     0.56303     0.56303    8.7573e-09
    80.08     0.56057     0.56057    9.4992e-09
    80.16     0.55811     0.55811    1.0197e-08
    80.24     0.55564     0.55564    1.0847e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
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% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566

Compute the Option Sensitivity for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify
the strikes rather than providing an empty array. If the specified strikes do not match a
value on the FFT (or FRFT) strike grid, the outputs are interpolated on the specified
strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 0.5630

Compute the Option Sensitivities for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 5×1

    0.6807
    0.6234
    0.5630
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    0.5011
    0.4392

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
the Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001) % Five values in vector output

Delta = 5×1

    0.6625
    0.6232
    0.5958
    0.5748
    0.5577

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into
NStrikes-by-NMaturities matrices. In this case, they are square matrices.

[Delta, Kout] = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6625    0.6556    0.6515    0.6483    0.6455
    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5805    0.5900    0.5958    0.5996    0.6019
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    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4954    0.5225    0.5389    0.5499    0.5577

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is,
the output NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByBatesFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Delta = 5×6

    0.6807    0.6625    0.6556    0.6515    0.6483    0.6455
    0.6234    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5630    0.5805    0.5900    0.5958    0.5996    0.6019
    0.5011    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4392    0.4954    0.5225    0.5389    0.5499    0.5577

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset
Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
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ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByBatesFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, ...
    Strike, V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4350    0.5579    0.6625    0.7457
    0.3881    0.5124    0.6222    0.7120
    0.3432    0.4670    0.5805    0.6763
    0.3010    0.4223    0.5381    0.6390
    0.2619    0.3789    0.4954    0.6002

Plot Option Sensitivity Surfaces

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a
wider range of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to
"true" to output the surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = optSensByBatesFFT(...
    Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
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xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or
FRFT) strike grid, which is determined as exp(log-strike grid). Each column of the
log-strike grid has 'NumFFT' points with 'LogStrikeStep' spacing that are roughly
centered around each element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric
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Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [PriceSens,StrikeOut] =
optSensByBatesFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,
ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13
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Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double
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LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-
separated pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega",
"rho", "theta", and "vegalt" | cell array of character vectors with values 'price',
'delta', 'gamma', 'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT string array or cell array of character vectors with supported
values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast,
"vegalt" is the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec =
["price","delta","gamma","vega","rho","theta","vegalt"]

Data Types: string | cell

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the
log-strike grid, specified as the comma-separated pair consisting of 'NumFFT' and a
scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair
consisting of 'CharacteristicFcnStep' and a scalar numeric value.
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Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of
'LogStrikeStep' and a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used.
Otherwise, FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair
consisting of 'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' |
string array with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature'
and a single character vector or string array with a value of 'simpson' or
'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. If Strike is
empty, NRows is equal to NumFFT. NColumns is determined by the sizes of
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AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or
NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput. The name-value pair argument OutSpec determines the
types and order of the outputs.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput.

Definitions
Bates Stochastic Volatility Jump Diffusion Model
The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to
stochastic volatility, the jump diffusion parameters similar to Merton (1976) were also
added to model sudden asset price movements.

The stochastic differential equation is:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is

normally distributed with mean ln( )1
2

2
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v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and W
t

v  for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

l p  is the annual frequency (intensity) of Poisson process Pt for ( l p  ≥ 0).
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The characteristic function fBates j( )f  for j = 1 (asset price mean measure) and j =2 (risk-
neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Carr-Madan Formulation
The Carr and Madan (1999) formulation is a popular modified implementation of Heston
(1993) framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan
developed an alternative expression so that taking its inverse Fourier transform gives the
option price itself directly.
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.
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i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for
integration, u, is discretized into NumFFT(N) points with the step size
CharacteristicFcnStep (Δu), and the log-strike k is discretized into N points with the
step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a
minimum value of 0 and a maximum value of (N-1) (Δu), and it approximates the
continuous integration range from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around
ln(St), with a minimum value of
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As a result of the discretization, the expression for the call option becomes
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where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT/FRFT points

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following
constraint:

D Dk u
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otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optByBatesNI
Option price by Bates model using numerical integration

Syntax
Price = optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
Price = optByBatesNI( ___ ,Name,Value)

Description
Price = optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,
V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq) computes vanilla
European option price by Bates model, using numerical integration methods.

Price = optByBatesNI( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Bates Model

optByBatesNI uses numerical integration to compute option prices and then plot an
option price surface.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
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Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Price for a Single Strike
Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield)

Call = 5.3484

Compute the Option Prices for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield)

Call = 5×1

    7.5765
    6.4020
    5.3484
    4.4173
    3.6073

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the
Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield) % Five values in vector output

Call = 5×1

    9.7516
   10.3931
   10.8865
   11.2990
   11.6491

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a
NStrikes-by-NMaturities matrix. In this case, it is a square matrix.

Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    9.7516   11.4387   12.8395   14.0588   15.1361
    8.6554   10.3931   11.8344   13.0890   14.1980
    7.6432    9.4149   10.8865   12.1693   13.3046
    6.7153    8.5035    9.9951   11.2990   12.4553
    5.8705    7.6581    9.1594   10.4771   11.6491

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is,
the output NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes
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Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    7.5765    9.7516   11.4387   12.8395   14.0588   15.1361
    6.4020    8.6554   10.3931   11.8344   13.0890   14.1980
    5.3484    7.6432    9.4149   10.8865   12.1693   13.3046
    4.4173    6.7153    8.5035    9.9951   11.2990   12.4553
    3.6073    5.8705    7.6581    9.1594   10.4771   11.6491

Compute Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByBatesNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    4.2033    6.6918    9.7516   13.2808
    3.5558    5.8111    8.6554   11.9993
    2.9906    5.0181    7.6432   10.7934
    2.5018    4.3096    6.7153    9.6651
    2.0825    3.6818    5.8705    8.6158

Plot an Option Price Surface

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to
output the surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';
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Call = optByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);

11 Functions — Alphabetical List

11-1334



Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
Data Types: double
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MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optByBatesNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,Theta
V,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
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• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating "Little Heston Trap" formulation
true (default) | logical with values true or false

Flag indicating "Little Heston Trap" formulation by Albrecher et al, specified as the
comma-separated pair consisting of 'LittleTrap' and a logical:
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• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate
continuous integral over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf],
specified as the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2
vector representing [LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using
numerical integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" |
character vector with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of
models, specified as the comma-separated pair consisting of 'Framework' and a scalar
string or character vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string
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ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. NColumns is
determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

Definitions

Bates Stochastic Volatility Jump Diffusion Model
The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to
stochastic volatility, the jump diffusion parameters similar to Merton (1976) were also
added to model sudden asset price movements.

The stochastic differential equation is:
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v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and W
t

v  for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).
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δ is the standard deviation of ln(1+J) for (δ ≥ 0).

l p  is the annual frequency (intensity) of Poisson process Pt for ( l p  ≥ 0).

The characteristic function fBates j( )f  for j = 1 (asset price mean measure) and j =2 (risk-
neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).
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i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Numerical Integration Method Under Heston (1993)
Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Heston (1993) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.
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τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1
and P2, respectively.

This framework is chosen with the default value “Heston1993” for the Framework
name-value pair argument.

Numerical Integration Method Under Lewis (2001) Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Lewis (2001) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.
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St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where 
f = -Ê

ËÁ
ˆ
¯̃

u
i

2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value
pair argument.
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See Also
optByBatesFFT | optByHestonFFT | optByHestonNI | optByMertonFFT |
optByMertonNI | optSensByBatesFFT | optSensByBatesNI | optSensByHestonFFT
| optSensByHestonNI | optSensByMertonFFT | optSensByMertonNI

Introduced in R2018a
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optSensByBatesNI
Option price or sensitivities by Bates model using numerical integration

Syntax
PriceSens = optSensByBatesNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
PriceSens = optSensByBatesNI( ___ ,Name,Value)

Description
PriceSens = optSensByBatesNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq)
computes vanilla European option price and sensitivities by Bates model, using numerical
integration methods.

PriceSens = optSensByBatesNI( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Bates Model

optSensByBatesNI uses numerical integration to compute option sensitivities and then
to plot option sensitivity surfaces.

Define Option Variables and Bates Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
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ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;
MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Sensitivity for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 0.5630

Compute the Option Sensitivities for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 5×1

    0.6807
    0.6234
    0.5630
    0.5011
    0.4392
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Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
the Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta  = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta") % Five values in vector output

Delta = 5×1

    0.6625
    0.6232
    0.5958
    0.5748
    0.5577

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a
NStrikes-by-NMaturities matrix. In this case, it is a square matrix.

Delta  = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6625    0.6556    0.6515    0.6483    0.6455
    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5805    0.5900    0.5958    0.5996    0.6019
    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4954    0.5225    0.5389    0.5499    0.5577
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Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is,
the output NStrikes -by- NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta  = optSensByBatesNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'ExpandOutput', true)  % (5 x 6) matrix output

Delta = 5×6

    0.6807    0.6625    0.6556    0.6515    0.6483    0.6455
    0.6234    0.6222    0.6232    0.6239    0.6241    0.6238
    0.5630    0.5805    0.5900    0.5958    0.5996    0.6019
    0.5011    0.5381    0.5564    0.5674    0.5748    0.5798
    0.4392    0.4954    0.5225    0.5389    0.5499    0.5577

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset
Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta  = optSensByBatesNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, ...
    'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4350    0.5579    0.6625    0.7457
    0.3881    0.5124    0.6222    0.7120
    0.3432    0.4670    0.5805    0.6763

 optSensByBatesNI

11-1351



    0.3010    0.4223    0.5381    0.6390
    0.2619    0.3789    0.4954    0.6002

Plot Option Sensitivity Surfaces

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to
output the surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = optSensByBatesNI(...
    Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ThetaV, Kappa, ...
    SigmaV, RhoSV, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

 optSensByBatesNI

11-1353



figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
Data Types: double
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MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens = optSensByBatesNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV,MeanJ,JumpVol,JumpFreq,'
Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual

 optSensByBatesNI

11-1361



• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-
separated pair consisting of 'LittleTrap' and a logical:
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• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega",
"rho", "theta", and "vegalt" | cell array of character vectors with values 'price',
'delta', 'gamma', 'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT string array or cell array of character vectors with supported
values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast,
"vegalt" is the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec =
["price","delta","gamma","vega","rho","theta","vegalt"]

Data Types: string | cell

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate
continuous integral over [0 Inf]
[1e-9 Inf] (default) | vector
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Numerical integration range used to approximate the continuous integral over [0 Inf],
specified as the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2
vector representing [LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using
numerical integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" |
character vector with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of
models, specified as the comma-separated pair consisting of 'Framework' and a scalar
string or character vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. NColumns is
determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices
numeric
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Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput. The name-value pair argument OutSpec determines the
types and order of the outputs.

Definitions

Bates Stochastic Volatility Jump Diffusion Model
The Bates model (Bates (1996)) is an extension of the Heston model, where, in addition to
stochastic volatility, the jump diffusion parameters similar to Merton (1976) were also
added to model sudden asset price movements.

The stochastic differential equation is:

dS r q S dt v S dW JS dP

dv v dt v dW

dW

t p J t t t t t t

t t v t t

t

= - - + +

= - +

( )

( )

l m

k q s

E ddW pdt

dP dt

t
v

t p

È
Î

˘
˚ =

= =prob( 1) l

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is

normally distributed with mean ln( )1
2

2

+ -m
d

J  and the standard deviation δ, and (1+J)
has a lognormal distribution:
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v0 is the initial variance of the asset price at t = 0 (v0> 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for (κ > 0).

σv is the volatility of variance for (σv > 0).

p is the correlation between the Weiner processes Wt and W
t

v  for (-1 ≤ p ≤ 1).

μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ ≥ 0).

l p  is the annual frequency (intensity) of Poisson process Pt for ( l p  ≥ 0).

The characteristic function fBates j( )f  for j = 1 (asset price mean measure) and j =2 (risk-
neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity for (τ = T - t).

i is the unit imaginary number for (i2= -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Numerical Integration method Under Heston (1993)
Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Heston (1993) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.
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Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1
and P2, respectively.

This framework is chosen with the default value “Heston1993” for the Framework
name-value pair argument.

Numerical Integration Method Under Lewis (2001) Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Lewis (2001) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.
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τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where 
f = -Ê

ËÁ
ˆ
¯̃

u
i

2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value
pair argument.
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optByHestonFD
Option price by Heston model using finite differences

Syntax
[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,
SigmaV,RhoSV)
[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD( ___ ,
Name,Value)

Description
[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,
SigmaV,RhoSV) computes a vanilla European or American option price by the Heston
model, using the alternating direction implicit (ADI) method.

[Price,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD( ___ ,
Name,Value) specifies options using one or more name-value pair arguments in addition
to the input arguments in the previous syntax.

Examples

Price an American Option Using the Heston Model

Define the option variables and Heston model parameters.

AssetPrice = 10;
Strike = 10;
Rate = 0.1;
Settle = '01-Jan-2017';
ExerciseDates = '02-Apr-2017';
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V0 = 0.0625;
ThetaV = 0.16;
Kappa = 5.0;
SigmaV = 0.9;
RhoSV = 0.1;

Compute the American put option price.

OptSpec = 'Put';
Price = optByHestonFD(Rate, AssetPrice, Settle, ...
ExerciseDates, OptSpec, Strike, V0, ThetaV, Kappa, SigmaV, RhoSV, 'AmericanOpt', 1)

Price = 0.5188

Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as numeric value using a scalar numeric.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime array | string array

Option settlement date, specified as a scalar using serial date numbers, date character
vectors, datetime arrays, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime array

Option exercise dates, specified as a serial date number, date character vector, string
array, or datetime array:
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• For a European option, there is only one ExerciseDates value and this is the option
expiry date.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any tree date between or including the pair of dates on that row. If
only one non-NaN date is listed, the option can be exercised between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | string | datetime

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a scalar using a cell array of character vectors or
string arrays with values 'call' or 'put'.
Data Types: cell | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

V0 — Initial variance of underlying asset
scalar numeric

Initial variance of the underlying asset, specified as a scalar numeric.
Data Types: double

ThetaV — Long-term variance of underlying asset
scalar numeric

Long-term variance of the underlying asset, specified as a scalar numeric.
Data Types: double

Kappa — Mean revision speed for variance of underlying asset
scalar numeric

Mean revision speed for the variance of the underlying asset, specified as a scalar
numeric.
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Data Types: double

SigmaV — Volatility of variance of underlying asset
scalar numeric

Volatility of the variance of the underlying asset, specified as a scalar numeric.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
scalar numeric

Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceGrid,AssetPrices,Variances,Times] =
optByHestonD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,
ThetaV,Kappa,SigmaV,RhoSV,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and
ExDividendDates = [ ] or do not enter them. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of
'DividendAmounts' and a NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter
values for DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double
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ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of
'ExDividendDates' and an NDIV-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) |
positive scalar

Maximum price for the price grid boundary, specified as the comma-separated pair
consisting of 'AssetPriceMax' and a positive scalar.
Data Types: single | double

VarianceMax — Maximum variance to use for variance grid boundary
1.0 (default) | scalar numeric

Maximum variance to use for the variance grid boundary, specified as the comma-
separated pair consisting of 'VarianceMax' as a scalar numeric.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | scalar numeric

Size of the asset grid for finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a scalar numeric.
Data Types: double

VarianceGridSize — Number of nodes for variance grid for finite difference grid
200 (default) | scalar numeric

Number of nodes for the variance grid for finite difference grid, specified as the comma-
separated pair consisting of 'VarianceGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar
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Number of nodes of the time grid for finite difference grid, specified as the comma-
separated pair consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with value of [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
scalar flag with one of these values:

• 0 — European
• 1 — American

Data Types: double

Output Arguments
Price — Option price
numeric

Option price, returned as a scalar numeric.

PriceGrid — Grid containing prices calculated by the finite difference method
numeric

Grid containing prices calculated by the finite difference method, returned as a three-
dimensional grid with size AssetGridSize ⨉ VarianceGridSize ⨉ TimeGridSize.
The depth is not necessarily equal to the TimeGridSize, because exercise and ex-
dividend dates are added to the time grid. PriceGrid(:, :, end) contains the price
for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a
vector.

Variances — Variances
vector

Variances corresponding to the second dimension of PriceGrid, returned as a vector.

11 Functions — Alphabetical List

11-1378



Times — Times
vector

Times corresponding to the third dimension of PriceGrid, returned as a vector.

Definitions
Heston Stochastic Volatility Model
The Heston model is an extension of the Black-Scholes model, where the volatility (square
root of variance) is no longer assumed to be constant, and the variance now follows a
stochastic (CIR) process. This allows modeling the implied volatility smiles observed in
the market.

The stochastic differential equation is:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).
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[1] Heston, S. L. “A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options.” The Review of Financial Studies. Vol
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See Also
optByHestonFFT | optByHestonNI | optByLocalVolFD | optSensByHestonFD |
optSensByHestonFFT | optSensByHestonNI | optSensByLocalVolFD |
optstockbyfd | optstocksensbyfd

Introduced in R2018b
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optSensByHestonFD
Option price and sensitivities by Heston model using finite differences

Syntax
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(
Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,
SigmaV,RhoSV)
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(
___ ,Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(
Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strike,V0,ThetaV,Kappa,
SigmaV,RhoSV) computes a vanilla European or American option price and sensitivities
by the Heston model, using the alternating direction implicit (ADI) method.

[PriceSens,PriceGrid,AssetPrices,Variances,Times] = optByHestonFD(
___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in the previous syntax.

Examples

Compute an American Option Price and Sensitivities Using the Heston Model

Define the option variables and Heston model parameters.

AssetPrice = 10;
Strike = 10;
Rate = 0.1;
Settle = '01-Jan-2017';
ExerciseDates = '02-Apr-2017';
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V0 = 0.0625;
ThetaV = 0.16;
Kappa = 5.0;
SigmaV = 0.9;
RhoSV = 0.1;

Compute the American put option price and sensitivities.

OptSpec = 'Put';
[Price,Delta,Gamma,Rho,Theta,Vega,VegaLT] = optSensByHestonFD(Rate, AssetPrice, Settle, ExerciseDates, ...
OptSpec, Strike, V0, ThetaV, Kappa, SigmaV, RhoSV, 'AmericanOpt', 1, ...
'OutSpec', ["Price" "Delta" "Gamma" "Rho" "Theta" "Vega" "VegaLT"])

Price = 0.5188

Delta = -0.4472

Gamma = 0.2822

Rho = -0.9234

Theta = -1.1614

Vega = 0.8998

VegaLT = 1.0921

Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double
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Settle — Option settlement date
serial date number | date character vector | datetime array | string array

Option settlement date, specified as a scalar using serial date numbers, date character
vectors, datetime arrays, or string arrays.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime array

Option exercise dates, specified as a serial date number, date character vector, string
array, or datetime array:

• For a European option, there is only one ExerciseDates value and this is the option
expiry date.

• For an American option, use a 1-by-2 vector of exercise date boundaries. The option
can be exercised on any tree date between or including the pair of dates on that row. If
only one non-NaN date is listed, the option can be exercised between the Settle date
and the single listed ExerciseDate.

Data Types: double | char | string | datetime

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a scalar using a cell array of character vectors or
string arrays with values 'call' or 'put'.
Data Types: cell | string

Strike — Option strike price value
scalar numeric

Option strike price value, specified as a scalar numeric.
Data Types: double

V0 — Initial variance of underlying asset
scalar numeric

Initial variance of the underlying asset, specified as a scalar numeric.
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Data Types: double

ThetaV — Long-term variance of underlying asset
scalar numeric

Long-term variance of the underlying asset, specified as a scalar numeric.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
scalar numeric

Mean revision speed for the variance of the underlying asset, specified as a scalar
numeric.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
scalar numeric

Volatility of the variance of the underlying asset, specified as a scalar numeric.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
scalar numeric

Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [PriceSens,PriceGrid,AssetPrices,Variances,Times] =
optSensByHestonFD(Rate,AssetPrice,Settle,ExerciseDates,OptSpec,Strik
e,V0,ThetaV,Kappa,SigmaV,RhoSV,'Basis',7)
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Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and
ExDividendDates = [ ] or do not enter them. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double
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DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of
'DividendAmounts' and a NDIV-by-1 vector.

Note Each dividend amount must have a corresponding ex-dividend date. If you enter
values for DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | string array | datetime array

Ex-dividend dates, specified as the comma-separated pair consisting of
'ExDividendDates' and a NDIV-by-1 vector of serial date numbers, character vectors,
string arrays, or datetime arrays.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, value is calculated based on asset price distribution at maturity (default) |
positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMax' and a positive scalar.
Data Types: single | double

VarianceMax — Maximum variance to use for variance grid boundary
1.0 (default) | scalar numeric

Maximum variance to use for variance grid boundary, specified as the comma-separated
pair consisting of 'VarianceMax' as a scalar numeric.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | scalar numeric

Size of the asset grid for finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a scalar numeric.
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Data Types: double

VarianceGridSize — Number of nodes for variance grid for finite difference grid
200 (default) | scalar numeric

Number of nodes for the variance grid for finite difference grid, specified as the comma-
separated pair consisting of 'VarianceGridSize' and a scalar numeric.
Data Types: double

TimeGridSize — Number of nodes of time grid for finite difference grid
100 (default) | positive numeric scalar

Number of nodes of the time grid for finite difference grid, specified as the comma-
separated pair consisting of 'TimeGridSize' and a positive numeric scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
scalar flag with one of these values:

• 0 — European
• 1 — American

Data Types: double

OutSpec — Define outputs
["price"] (default) | cell array of character vectors with values 'price', 'delta',
'gamma', 'vega', 'rho', 'theta', and 'vegalt' | string array with values "price",
"delta", "gamma", "vega", "rho", "theta", and "vegalt"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and an
NOUT- by-1 or a 1-by-NOUT string array or cell array of character vectors with the
supported values.

Note 'vega' is the sensitivity with respect to the initial volatility sqrt(V0). In contrast,
'vegalt' is the sensitivity with respect to the long-term volatility sqrt(ThetaV).
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Example: OutSpec =
{'price','delta','gamma','vega','rho','theta','vegalt'}

Data Types: string | cell

Output Arguments
PriceSens — Option price and sensitivities
scalar numeric

Option price and sensitivities, returned as a scalar numeric. OutSpec determines the
types and order of the outputs.

PriceGrid — Grid containing prices calculated by the finite difference method
numeric

Grid containing prices calculated by the finite difference method, returned as a three-
dimensional grid with size AssetGridSize ⨉ VarianceGridSize ⨉ TimeGridSize.
The depth is not necessarily equal to the TimeGridSize, because exercise and ex-
dividend dates are added to the time grid. PriceGrid(:, :, end) contains the price
for t = 0.

AssetPrices — Prices of the asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a
vector.

Variances — Variances
vector

Variances corresponding to the second dimension of PriceGrid, returned as a vector.

Times — Times
vector

Times corresponding to the third dimension of PriceGrid, returned as a vector.
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Definitions

Heston Stochastic Volatility Model
The Heston model is an extension of the Black-Scholes model, where the volatility (square
root of variance) is no longer assumed to be constant, and the variance now follows a
stochastic (CIR) process. This allows modeling the implied volatility smiles observed in
the market.

The stochastic differential equation is:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).
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See Also
optByHestonFD | optByHestonFFT | optByHestonNI | optByLocalVolFD |
optSensByHestonFFT | optSensByHestonNI | optSensByLocalVolFD |
optstockbyfd | optstocksensbyfd

Introduced in R2018b
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optByHestonFFT
Option price by Heston model using FFT and FRFT

Syntax
[Price,StrikeOut] = optByHestonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
[Price,StrikeOut] = optByHestonFFT( ___ ,Name,Value)

Description
[Price,StrikeOut] = optByHestonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV) computes vanilla European
option price by Heston model, using Carr-Madan FFT and Chourdakis FRFT methods.

[Price,StrikeOut] = optByHestonFFT( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Heston Model

Use optByHestonFFT to calibrate a FFT strike grid and then compute option prices and
plot an option price surface.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
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Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Prices for the Entire FFT (or FRFT) Strike Grid, Without
Specifying "Strike"

Compute option prices and also output the corresponding strikes. If the Strike input is
empty ( [] ), option prices will be computed on the entire FFT (or FRFT) strike grid. The
FFT (or FRFT) strike grid is determined as exp(log-strike grid), where each column
of the log-strike grid has NumFFT points with LogStrikeStep spacing that are roughly
centered around each element of log(AssetPrice). The default value for NumFFT is
2^12. In addition to the prices in the first output, the optional last output contains the
corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option prices for the entire FFT strike grid
[Call, Kout] =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield);

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option prices
Range = (2046:2052);
[Kout(Range) Call(Range)]

ans = 7×2

   50.4929   29.4843
   58.8640   21.3767
   68.6231   12.5614
   80.0000    4.7008
   93.2631    0.6496
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  108.7251    0.0144
  126.7505    0.0001

Change the Number of FFT (or FRFT) Points, and Compare with optByHestonNI

Try a different number of FFT (or FRFT) points, and compare the results with direct
numerical integration. Unlike optByHestonFFT, which uses FFT (or FRFT) techniques
for fast computation across the whole range of strikes, the optByHestonNI function uses
direct numerical integration and it is typically slower, especially for multiple strikes.
However, the values computed by optByHestonNI can serve as a benchmark for
adjusting the settings for optByHestonFFT.

% Try a smaller number of FFT (or FRFT) points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Call, Kout] = optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike     CallFFT       CallNI         Error  
    ______    _________    ___________    _________

    12.696       66.066         66.696      0.62964
    23.449       55.766         56.103      0.33672
    43.312       36.359         36.539      0.17974
        80       4.7727         4.7007     0.071928
    147.76     0.066156     2.3472e-08     0.066156
    272.93     0.013271    -2.5036e-09     0.013271
    504.11    0.0034504    -3.0876e-07    0.0034508
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Make Further Adjustments to FFT (or FRFT)

If the values in the output CallFFT are significantly different from those in CallNI, try
making adjustments to optByHestonFFT settings, such as CharacteristicFcnStep,
LogStrikeStep, NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep *
CharacteristicFcnStep) is 2*pi/ NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Call, Kout] = optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, V0, ...
    ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike    CallFFT    CallNI      Error   
    ______    _______    ______    __________

    79.76      4.826      4.826    2.7708e-08
    79.84     4.7841     4.7841    3.0111e-08
    79.92     4.7423     4.7423    3.2376e-08
       80     4.7007     4.7007    3.4496e-08
    80.08     4.6593     4.6593    3.6457e-08
    80.16     4.6181     4.6181    3.8253e-08
    80.24      4.577      4.577    3.9872e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute the Option Price for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify
the strikes rather than providing an empty array. If the specified strikes do not match a
value on the FFT (or FRFT) strike grid, the outputs are interpolated on the specified
strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 4.7007

Compute the Option Prices for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 5×1

    7.0401
    5.8053
    4.7007
    3.7316
    2.8991

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the
Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001) % Five values in vector output

Call = 5×1

    8.9560
    9.3419
    9.6240
    9.8560
   10.0500

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into
NStrikes-by NMaturities matrices. In this case, they are square matrices.

[Call, Kout] =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 5) matrix outputs

Call = 5×5

    8.9560   10.4543   11.7058   12.8009   13.7728
    7.7946    9.3419   10.6337   11.7644   12.7685
    6.7244    8.3028    9.6240   10.7828   11.8134
    5.7475    7.3379    8.6771    9.8560   10.9074
    4.8645    6.4474    7.7930    8.9840   10.0500

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84
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Compute the Option Prices for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is,
the output NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    7.0401    8.9560   10.4543   11.7058   12.8009   13.7728
    5.8053    7.7946    9.3419   10.6337   11.7644   12.7685
    4.7007    6.7244    8.3028    9.6240   10.7828   11.8134
    3.7316    5.7475    7.3379    8.6771    9.8560   10.9074
    2.8991    4.8645    6.4474    7.7930    8.9840   10.0500

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call =  optByHestonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.2944    5.8047    8.9560   12.6052
    2.6413    4.8810    7.7946   11.2507
    2.0864    4.0575    6.7244    9.9738
    1.6230    3.3325    5.7475    8.7783
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    1.2429    2.7028    4.8645    7.6676

Plot an Option Price Surface

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a
wider range of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to
"true" to output the surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

Call =  optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option as 'call' or 'put', specified as a NINST-by-1 or NColumns-by-1
vector using a cell array of character vectors or string arrays with values "call" or
"put".

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string
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Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or
FRFT) strike grid, which is determined as exp(log-strike grid). Each column of the
log-strike grid has 'NumFFT' points with 'LogStrikeStep' spacing that are roughly
centered around each element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double
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RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,StrikeOut] =
optByHestonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,The
taV,Kappa,SigmaV,RhoSV,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-
separated pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the
log-strike grid, specified as the comma-separated pair consisting of 'NumFFT' and a
scalar numeric value.
Data Types: double
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CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair
consisting of 'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of
'LogStrikeStep' and a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used.
Otherwise, FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair
consisting of 'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' |
string array with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature'
and a single character vector or string array with a value of 'simpson' or
'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:
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• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. If Strike is
empty, NRows is equal to NumFFT. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or
NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput.

Definitions

Heston Stochastic Volatility Model
The Heston model is an extension of the Black-Scholes model, where the volatility (square
root of variance) is no longer assumed to be constant, and the variance now follows a
stochastic (CIR) process. This process allows modeling the implied volatility smiles
observed in the market.

The stochastic differential equation is:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHestonj
( )f  for j = 1 (asset price measure) and j = 2 (risk-

neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Carr-Madan Formulation
The Carr and Madan (1999) formulation is a popular modified implementation of Heston
(1993) framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan
developed an alternative expression so that taking its inverse Fourier transform gives the
option price itself directly.
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where

τ is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.
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To apply FFT or FRFT to this formulation, the characteristic function variable for
integration, u, is discretized into NumFFT(N) points with the step size
CharacteristicFcnStep (Δu), and the log-strike k is discretized into N points with the
step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a
minimum value of 0 and a maximum value of (N-1) (Δu), and it approximates the
continuous integration range from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around
ln(St), with a minimum value of

ln( )S
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As a result of the discretization, the expression for the call option becomes
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where

Δu is the step size of discretized characteristic function variable for integration.
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Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following
constraint:

D Dk u
N

= Ê
ËÁ

ˆ
¯̃

2p

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optSensByHestonFFT
Option price and sensitivities by Heston model using FFT and FRFT

Syntax
[PriceSens,StrikeOut] = optSensByHestonFFT(Rate,AssetPrice,Settle,
Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
[PriceSens,StrikeOut] = optSensByHestonFFT( ___ ,Name,Value)

Description
[PriceSens,StrikeOut] = optSensByHestonFFT(Rate,AssetPrice,Settle,
Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV) computes vanilla
European option price and sensitivities by Heston model, using Carr-Madan FFT and
Chourdakis FRFT methods.

[PriceSens,StrikeOut] = optSensByHestonFFT( ___ ,Name,Value) adds
optional name-value pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Heston Model

Use optSensByHestonFFT to calibrate the FFT strike grid for sensitivities, compute
option sensitivities, and plot option sensitivity surfaces.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
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ThetaV = 0.05;
Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Sensitivities for the Entire FFT (or FRFT) Strike Grid,
Without Specifying "Strike"

Compute option sensitivities and also output the corresponding strikes. If the Strike
input is empty ( [] ), option sensitivities will be computed on the entire FFT (or FRFT)
strike grid. The FFT (or FRFT) strike grid is determined as exp(log-strike grid),
where each column of the log-strike grid has NumFFT points with LogStrikeStep
spacing that are roughly centered around each element of log(AssetPrice). The
default value for NumFFT is 2^12. In addition to the sensitivities in the first output, the
optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option sensitivities for the entire FFT strike grid
[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta");

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option sensitivities
Range = (2046:2052);
[Kout(Range) Delta(Range)]

ans = 7×2

   50.4929    0.9866
   58.8640    0.9671
   68.6231    0.8724
   80.0000    0.5775
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   93.2631    0.1545
  108.7251    0.0059
  126.7505    0.0000

Change the Number of FFT (or FRFT) Points, and Compare With
optSensByHestonNI

Try a different number of FFT (or FRFT) points, and compare the results with numerical
integration. Unlike optSensByHestonFFT, which uses FFT (or FRFT) techniques for fast
computation across the whole range of strikes, the optSensByHestonNI function uses
direct numerical integration and it is typically slower, especially for multiple strikes.
However, the values computed by optSensByHestonNI can serve as a benchmark for
adjusting the settings for optSensByHestonFFT.

% Try a smaller number of FFT points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12 
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike     DeltaFFT      DeltaNI        Error   
    ______    __________    __________    __________

    12.696       0.90066       0.99002       0.08936
    23.449       0.93635       0.99002      0.053677
    43.312       0.94796        0.9896      0.041645
        80       0.53274       0.57747      0.044733
    147.76     0.0032769      2.45e-08     0.0032769
    272.93    0.00098029    -1.399e-10    0.00098029
    504.11    0.00028151    5.2868e-10    0.00028151
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Make Further Adjustments to FFT (or FRFT)

If the values in the output DeltaFFT are significantly different from those in DeltaNI,
try making adjustments to optSensByHestonFFT settings, such as
CharacteristicFcnStep, LogStrikeStep, NumFFT, DampingFactor, and so on. Note
that if (LogStrikeStep * CharacteristicFcnStep) is 2*pi/ NumFFT, FFT is used.
Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike    DeltaFFT    DeltaNI      Error   
    ______    ________    _______    __________

    79.76     0.58558     0.58558    3.0538e-08
    79.84     0.58289     0.58289    2.8865e-08
    79.92     0.58018     0.58018    2.7053e-08
       80     0.57747     0.57747    2.5111e-08
    80.08     0.57476     0.57476    2.3049e-08
    80.16     0.57203     0.57203    2.0875e-08
    80.24      0.5693      0.5693    1.8601e-08

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute the Option Sensitivity for a Single Strike

Once you determine FFT (or FRFT) settings, use the Strike input to specify the strikes
rather than providing an empty array. If the specified strikes do not match a value on the
FFT (or FRFT) strike grid, the outputs are interpolated on the specified strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Delta = 0.5775

Compute the Option Sensitivities for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001)

Delta = 5×1

    0.7043
    0.6433
    0.5775
    0.5083
    0.4377

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
the Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001) % Five values in vector output

Delta = 5×1

    0.6848
    0.6413
    0.6095
    0.5841
    0.5631

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into
NStrikes-by-NMaturities matrices. In this case, they are square matrices.

[Delta, Kout] = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5960    0.6048    0.6095    0.6119    0.6129
    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4997    0.5286    0.5452    0.5559    0.5631

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84
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Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is,
the output NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 6) matrix output

Delta = 5×6

    0.7043    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6433    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5775    0.5960    0.6048    0.6095    0.6119    0.6129
    0.5083    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4377    0.4997    0.5286    0.5452    0.5559    0.5631

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset
Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4293    0.5708    0.6848    0.7705
    0.3737    0.5193    0.6416    0.7364
    0.3200    0.4668    0.5960    0.6994
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    0.2693    0.4143    0.5485    0.6597
    0.2226    0.3628    0.4997    0.6177

Plot Option Sensitivity Surfaces

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a
wider range of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to
"true" to output the surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = ...
    optSensByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, 'ExpandOutput', true, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"]);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

11 Functions — Alphabetical List

11-1420



figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

 optSensByHestonFFT

11-1421



figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or
FRFT) strike grid, which is determined as exp(log-strike grid). Each column of the
log-strike grid has 'NumFFT' points with 'LogStrikeStep' spacing that are roughly
centered around each element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric
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Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [PriceSens,StrikeOut] = optSensByHestonFFT(Rate,
AssetPrice,Settle,Maturity,OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,Rho
SV,'Basis',7,'OptSpec',"vega")

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
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Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-
separated pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega",
"rho", "theta", and "vegalt" | cell array of character vectors with values 'price',
'delta', 'gamma', 'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT string array or cell array of character vectors with supported
values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast,
"vegalt" is the sensitivity with respect to the long-term volatility sqrt(ThetaV).
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Example: OutSpec =
["price","delta","gamma","vega","rho","theta","vegalt"]

Data Types: string | cell

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the
log-strike grid, specified as the comma-separated pair consisting of 'NumFFT' and a
scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair
consisting of 'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of
'LogStrikeStep' and a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used.
Otherwise, FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair
consisting of 'DampingFactor' and a scalar numeric value.
Data Types: double
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Quadrature — Type of quadrature
simpson (default) | character vector with values:simpson or trapezoidal | string array
with values: simpson or trapezoidal

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature'
and a single character vector or string array with a value of simpson or trapezoidal.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. If Strike is
empty, NRows is equal to NumFFT. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or
NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput. The name-value pair argument OutSpec determines the
types and order of the outputs.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput.
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Definitions

Heston Stochastic Volatility Model
The Heston model is an extension of the Black-Scholes model, where the volatility (square
root of variance) is no longer assumed to be constant, and the variance now follows a
stochastic (CIR) process. This process allows modeling the implied volatility smiles
observed in the market.

The stochastic differential equation is:

dS r q S dt v S dW

dv v dt v dW

dW dW pd

t t t t t

t t v t t
v

t t
v

= - +

= - +
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Î
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( )

( )k q s

E tt

where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHestonj
( )f  for j = 1 (asset price measure) and j = 2 (risk-

neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Carr-Madan Formulation
The Carr and Madan (1999) formulation is a popular modified implementation of Heston
(1993) framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan
developed an alternative expression so that taking its inverse Fourier transform gives the
option price itself directly.
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.
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To apply FFT or FRFT to this formulation, the characteristic function variable for
integration, u, is discretized into NumFFT(N) points with the step size
CharacteristicFcnStep (Δu), and the log-strike k is discretized into N points with the
step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a
minimum value of 0 and a maximum value of (N-1) (Δu), and it approximates the
continuous integration range from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around
ln(St), with a minimum value of

ln( )S
N

kt -

2
D

and a maximum value of

ln( )S
N

kt + -Ê
ËÁ

ˆ
¯̃2

1 D

Where the minimum allowable strike is
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As a result of the discretization, the expression for the call option becomes
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where

Δu is the step size of discretized characteristic function variable for integration.
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Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following
constraint:

D Dk u
N

= Ê
ËÁ

ˆ
¯̃

2p

otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optByHestonNI
Option price by Heston model using numerical integration

Syntax
Price = optByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
Price = optByHestonNI( ___ ,Name,Value)

Description
Price = optByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,V0,ThetaV,Kappa,SigmaV,RhoSV) computes vanilla European option price
by Heston model, using numerical integration methods.

Price = optByHestonNI( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Heston Model

optByHestonNI uses numerical integration to compute option prices and then to plot an
option price surface.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
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Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Price for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield)

Call = 4.7007

Compute the Option Prices for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield)

Call = 5×1

    7.0401
    5.8053
    4.7007
    3.7316
    2.8991

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the
Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes
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Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield)

Call = 5×1

    8.9560
    9.3419
    9.6240
    9.8560
   10.0500

    % Five values in vector output

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a
NStrikes-by-NMaturities matrix. In this case, it is a square matrix.

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    8.9560   10.4543   11.7058   12.8009   13.7728
    7.7946    9.3419   10.6337   11.7644   12.7685
    6.7244    8.3028    9.6240   10.7828   11.8134
    5.7474    7.3378    8.6771    9.8560   10.9074
    4.8645    6.4474    7.7930    8.9840   10.0500

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is,
the output NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 6) matrix output
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Call = 5×6

    7.0401    8.9560   10.4543   11.7058   12.8009   13.7728
    5.8053    7.7946    9.3419   10.6337   11.7644   12.7685
    4.7007    6.7244    8.3028    9.6240   10.7828   11.8134
    3.7316    5.7474    7.3378    8.6771    9.8560   10.9074
    2.8991    4.8645    6.4474    7.7930    8.9840   10.0500

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByHestonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.2944    5.8047    8.9560   12.6052
    2.6413    4.8810    7.7946   11.2507
    2.0864    4.0575    6.7244    9.9738
    1.6230    3.3325    5.7474    8.7783
    1.2429    2.7028    4.8645    7.6676

Plot an Option Price Surface

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to
output the surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

Call = optByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'ExpandOutput', true);
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[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 or NColumns-by-1
vector using a cell array of character vectors or string arrays with values "call" or
"put".

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string
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Strike — Option strike price value
numeric

Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
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Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optByHestonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,V0,Thet
aV,Kappa,SigmaV,RhoSV,'Basis',7,'Framework',"lewis2001")

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-
separated pair consisting of 'LittleTrap'and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'RelTol' and a scalar numeric value.
Data Types: double
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IntegrationRange — Numerical integration range used to approximate
continuous integral over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf],
specified as the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2
vector representing [LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using
numerical integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" |
character vector with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of
models, specified as the comma-separated pair consisting of 'Framework' and a scalar
string or character vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. NColumns is
determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical
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Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

Definitions
Heston Stochastic Volatility Model
The Heston model is an extension of the Black-Scholes model, where the volatility (square
root of variance) is no longer assumed to be constant, and the variance now follows a
stochastic (CIR) process. This allows modeling the implied volatility smiles observed in
the market.

The stochastic differential equation is:

dS r q S dt v S dW
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dW dW pd

t t t t t
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

 optByHestonNI

11-1447



σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHestonj
( )f  for j = 1 (asset price measure) and j = 2 (risk-

neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Numerical Integration Method Under Heston (1993)
Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Heston (1993) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.
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Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1
and P2, respectively.

This framework is chosen with the default value “Heston1993” for the Framework
name-value pair argument.

Numerical Integration Method Under Lewis (2001) Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Lewis (2001) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.
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τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where 
f = -Ê

ËÁ
ˆ
¯̃

u
i

2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value
pair argument.
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optSensByHestonNI
Option price and sensitivities by Heston model using numerical integration

Syntax
PriceSens = optSensByHestonNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV)
PriceSens = optSensByHestonNI( ___ ,Name,Value)

Description
PriceSens = optSensByHestonNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,V0,ThetaV,Kappa,SigmaV,RhoSV) computes vanilla European
option price and sensitivities by Heston model, using numerical integration methods.

PriceSens = optSensByHestonNI( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Heston Model

optSensByHestonNI uses numerical integration to compute option sensitivities and then
to plot option sensitivity surfaces.

Define Option Variables and Heston Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

V0 = 0.04;
ThetaV = 0.05;
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Kappa = 1.0;
SigmaV = 0.2;
RhoSV = -0.7;

Compute the Option Sensitivity for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 0.5775

Compute the Option Sensitivities for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, 'OutSpec', "delta")

Delta = 5×1

    0.7043
    0.6433
    0.5775
    0.5083
    0.4377

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
the Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes
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Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta") % Five values in vector output

Delta = 5×1

    0.6848
    0.6413
    0.6095
    0.5841
    0.5631

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a
NStrikes-by-NMaturities matrix. In this case, it is a square matrix.

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5960    0.6048    0.6095    0.6119    0.6129
    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4997    0.5286    0.5452    0.5559    0.5631

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities (that is,
the output NStrikes-by-NMaturities matrix can be rectangular).

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true)  % (5 x 6) matrix output
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Delta = 5×6

    0.7043    0.6848    0.6762    0.6703    0.6654    0.6609
    0.6433    0.6416    0.6413    0.6404    0.6390    0.6372
    0.5775    0.5960    0.6048    0.6095    0.6119    0.6129
    0.5083    0.5485    0.5671    0.5776    0.5841    0.5882
    0.4377    0.4997    0.5286    0.5452    0.5559    0.5631

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset
Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByHestonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.4293    0.5708    0.6848    0.7705
    0.3737    0.5193    0.6416    0.7364
    0.3200    0.4668    0.5960    0.6994
    0.2693    0.4143    0.5485    0.6597
    0.2226    0.3628    0.4997    0.6177

Plot Option Sensitivity Surfaces

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to
output the surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

[Delta, Gamma, Rho, Theta, Vega, VegaLT] = ...
    optSensByHestonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
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    V0, ThetaV, Kappa, SigmaV, RhoSV, 'DividendYield', DividendYield, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega", "vegalt"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
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ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);

figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,VegaLT)
title('VegaLT')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

V0 — Initial variance of underlying asset
numeric

Initial variance of the underling asset, specified as a scalar numeric value.
Data Types: double

ThetaV — Long-term variance of underlying asset
numeric

Long-term variance of the underling asset, specified as a scalar numeric value.
Data Types: double

Kappa — Mean revision speed for the variance of underlying asset
numeric

Mean revision speed for the underling asset, specified as a scalar numeric value.
Data Types: double

SigmaV — Volatility of the variance of underlying asset
numeric

Volatility of the variance of the underling asset, specified as a scalar numeric value.
Data Types: double

RhoSV — Correlation between Weiner processes for underlying asset and its
variance
numeric

Correlation between the Weiner processes for the underlying asset and its variance,
specified as a scalar numeric value.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens = optSensByHestonFFT(Rate, AssetPrice,
Settle,Maturity, OptSpec, Strike, V0, ThetaV, Kappa, SigmaV,
RhoSV,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric
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Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

VolRiskPremium — Volatility risk premium
0 (default) | numeric

Volatility risk premium, specified as the comma-separated pair consisting of
'VolRiskPremium' and a scalar numeric value.
Data Types: double

LittleTrap — Flag indicating Little Heston Trap formulation
true (default) | logical with values true or false

Flag indicating Little Heston Trap formulation by Albrecher et al, specified as the comma-
separated pair consisting of 'LittleTrap' and a logical:

• true — Use the Albrecher et al formulation.
• false — Use the original Heston formation.

Data Types: logical

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega",
"rho", "theta", and "vegalt" | cell array of character vectors with values 'price',
'delta', 'gamma', 'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT string array or cell array of character vectors with supported
values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast,
"vegalt" is the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec =
["price","delta","gamma","vega","rho","theta","vegalt"]

Data Types: string | cell
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AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate
continuous integral over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf],
specified as the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2
vector representing [LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using
numerical integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" |
character vector with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of
models, specified as the comma-separated pair consisting of 'Framework' and a scalar
string or character vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false
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Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. NColumns is
determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput. The name-value pair argument OutSpec determines the
types and order of the outputs.

Definitions
Heston Stochastic Volatility Model
The Heston model is an extension of the Black-Scholes model, where the volatility (square
root of variance) is no longer assumed to be constant, and the variance now follows a
stochastic (CIR) process. This allows modeling the implied volatility smiles observed in
the market.

The stochastic differential equation is:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

vt is the asset price variance at time t.

v0 is the initial variance of the asset price at t = 0 for (v0 > 0).

θ is the long-term variance level for (θ > 0).

κ is the mean reversion speed for the variance for (κ > 0).

σv is the volatility of the variance for (σv > 0).

p is the correlation between the Weiner processes Wt and Wv
t for (-1 ≤ p ≤ 1).

The characteristic function fHestonj
( )f  for j = 1 (asset price measure) and j = 2 (risk-

neutral measure) is:
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where

ϕ is the characteristic function variable.

ƛVolRisk is the volatility risk premium.

τ is the time to maturity (τ = T - t).

i is the unit imaginary number (i2 = -1).

The definitions for Cj and Dj under “The Little Heston Trap” by Albrecher et al. (2007)
are:
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Numerical Integration Method Under Heston (1993)
Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Heston (1993) framework is based on the
following expressions:
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r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1
and P2, respectively.

This framework is chosen with the default value “Heston1993” for the Framework
name-value pair argument.

Numerical Integration Method Under Lewis (2001) Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Lewis (2001) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where 
f = -Ê

ËÁ
ˆ
¯̃

u
i

2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value
pair argument.

References
[1] Heston, S. L. “A Closed-Form Solution for Options with Stochastic Volatility with

Applications to Bond and Currency Options.” The Review of Financial Studies. Vol
6. No. 2. 1993.

[2] Lewis, A. L. “A Simple Option Formula for General Jump-Diffusion and Other
Exponential Levy Processes.” Envision Financial Systems and OptionCity.net,
2001.
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See Also
optByBatesFFT | optByBatesNI | optByHestonFFT | optByHestonNI |
optByMertonFFT | optByMertonNI | optSensByBatesFFT | optSensByBatesNI |
optSensByHestonFFT | optSensByMertonFFT | optSensByMertonNI

Introduced in R2018a
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optByLocalVolFD
Option price by local volatility model, using finite differences

Syntax
[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,ImpliedVolData)
[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD( ___ ,
Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,ImpliedVolData)
compute a Vanilla European or American option price by the local volatility model, using
the Crank-Nicolson method.

[Price,PriceGrid,AssetPrices,Times] = optByLocalVolFD( ___ ,
Name,Value) specifies options using one or more name-value pair arguments in addition
to the input arguments in the previous syntax.

Examples

Price a European Option Using the Local Volatility Model

Define the option variables.

AssetPrice = 590;
Strike = 590;
Rate = 0.06;
DividendYield = 0.0262;
Settle = '01-Jan-2018';
ExerciseDates = '01-Jan-2020';
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Define the implied volatility surface data.

Maturity = ["06-Mar-2018" "05-Jun-2018" "12-Sep-2018" "10-Dec-2018" "01-Jan-2019" ...
"02-Jul-2019" "01-Jan-2020" "01-Jan-2021" "01-Jan-2022" "01-Jan-2023"];
Maturity = repmat(Maturity,10,1);
Maturity = Maturity(:);

ExercisePrice = AssetPrice.*[0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40];
ExercisePrice = repmat(ExercisePrice,1,10)';

ImpliedVol = [...
    0.190; 0.168; 0.133; 0.113; 0.102; 0.097; 0.120; 0.142; 0.169; 0.200; ...
    0.177; 0.155; 0.138; 0.125; 0.109; 0.103; 0.100; 0.114; 0.130; 0.150; ...
    0.172; 0.157; 0.144; 0.133; 0.118; 0.104; 0.100; 0.101; 0.108; 0.124; ...
    0.171; 0.159; 0.149; 0.137; 0.127; 0.113; 0.106; 0.103; 0.100; 0.110; ...
    0.171; 0.159; 0.150; 0.138; 0.128; 0.115; 0.107; 0.103; 0.099; 0.108; ...
    0.169; 0.160; 0.151; 0.142; 0.133; 0.124; 0.119; 0.113; 0.107; 0.102; ...
    0.169; 0.161; 0.153; 0.145; 0.137; 0.130; 0.126; 0.119; 0.115; 0.111; ...
    0.168; 0.161; 0.155; 0.149; 0.143; 0.137; 0.133; 0.128; 0.124; 0.123; ...
    0.168; 0.162; 0.157; 0.152; 0.148; 0.143; 0.139; 0.135; 0.130; 0.128; ...
    0.168; 0.164; 0.159; 0.154; 0.151; 0.147; 0.144; 0.140; 0.136; 0.132];

ImpliedVolData = table(Maturity, ExercisePrice, ImpliedVol);

Compute the European call option price.

OptSpec = 'Call';
Price = optByLocalVolFD(Rate, AssetPrice, ...
Settle, ExerciseDates, OptSpec, Strike, ImpliedVolData, 'DividendYield',DividendYield)

Price = 65.5286

Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar numeric

Continuously compounded risk-free interest rate, specified by a scalar numeric.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric
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Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
serial date number | date character vector | datetime array | string array

Settlement date, specified as a scalar serial date number, date character vector, datetime
array, or string array.
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, a date character vector, a
datetime array, or a string array:

• For a European option, there is only one ExerciseDates value and this is the option
expiry date.

• For an American option, use a 1-by-2 vector of serial date numbers, date character
vectors, datetime arrays, or string arrays. The American option can be exercised on
any date between or including the pair of dates. If only one non-NaN date is listed, the
option can be exercised between Settle and the single listed date in
ExerciseDates.

Data Types: double | char | cell | datetime | string

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values "call" or
"put"

Definition of the option, specified as a character vector or string array with values
'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
nonnegative scalar

Option strike price value, specified as a nonnegative scalar.
Data Types: double
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ImpliedVolData — Table of maturity dates, strike or exercise prices, and
corresponding implied volatilities
table

Table of maturity dates, strike or exercise prices, and their corresponding implied
volatilities,specified as a NVOL-by-3 table.
Data Types: table

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price = optByLocalVolFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,ImpliedVolData,'AssetGridSize',1000)

Basis — Day-count basis
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
scalar using one of the supported values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and
ExDividendDates = [ ] or do not enter them. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of
'DividendAmounts' and a NDIV-by-1 vector.

For each dividend amount, there must be a corresponding ExDividendDates date. If you
enter values for DividendAmounts and ExDividendDates, then set DividendYield =
0.

Note If you enter a value for DividendYield, then set DividendAmounts and
ExDividendDates = [ ] or do not enter them.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | datetime array | string array

Ex-dividend dates, specified as the comma-separated pair consisting of
'ExDividendDates' and a NDIV-by-1 vector.
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Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, AssetPriceMax values are calculated using asset distributions at maturity
(default) | positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMax' and a positive scalar.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | positive scalar

Size of the asset grid for a finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a positive scalar.
Data Types: double

TimeGridSize — Size of time grid for finite difference grid
100 (default) | positive scalar

Size of the time grid for a finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
positive integer scalar flag with one of these values:

• 0 — European
• 1 — American

Data Types: double

InterpMethod — Method of interpolation for estimating the implied volatility
surface from ImpliedVolData
'linear' (default) | character vector with values 'linear', 'makima', 'spline', or
'tpaps' | string with values "linear", "makima", "spline", or "tpaps"
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Method of interpolation for estimating the implied volatility surface from
ImpliedVolData, specified as the comma-separated pair consisting of
'InterpMethod' and a character vector or string array with one of the following values:

• 'linear' — Linear interpolation
• 'makima' — Modified Akima cubic Hermite interpolation
• 'spline' — Cubic spline interpolation
• 'tpaps' — Thin-plate smoothing spline interpolation

Note The 'tpaps' method uses the thin-plate smoothing spline functionality from Curve
Fitting Toolbox.

The 'makima' and 'spline' methods work only for gridded data. For scattered data,
use the 'linear' or 'tpaps' methods.

For more information on gridded or scattered data and details on interpolation methods,
see “Gridded and Scattered Sample Data” (MATLAB) and “Interpolating Gridded Data”
(MATLAB).
Data Types: char | string

Output Arguments
Price — Option price
scalar numeric

Option price, returned as a scalar numeric.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a grid that
is two-dimensional with size AssetGridSize ⨉ TimeGridSize. The number of columns
does not have to be equal to the TimeGridSize, because ExerciseDates and
ExDividendDates are added to the time grid. PriceGrid(:, :, end) contains the
price for t = 0.

AssetPrices — Prices of asset
vector
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Prices of the asset corresponding to the first dimension of PriceGrid, returned as a
vector.

Times — Times
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

Definitions

Local Volatility Model
A local volatility model treats volatility as a function both of the current asset level and of
time.

The local volatility can be estimated by using the Dupire formula [2]:
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See Also
optByHestonFD | optSensByHestonFD | optSensByLocalVolFD | optstockbyfd |
optstocksensbyfd

Topics
“Supported Equity Derivatives” on page 3-24

Introduced in R2018b
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optSensByLocalVolFD
Option price and sensitivities by local volatility model, using finite differences

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,ImpliedVolData)
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD( ___ ,
Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD(Rate,
AssetPrice,Settle,ExerciseDates,OptSpec,Strike,ImpliedVolData)
compute option price and sensitivities by the local volatility model, using the Crank-
Nicolson method.

[PriceSens,PriceGrid,AssetPrices,Times] = optSensByLocalVolFD( ___ ,
Name,Value) specifies options using one or more name-value pair arguments in addition
to the input arguments in the previous syntax.

Examples

Compute European Option Price and Sensitivities Using the Local Volatility
Model

Define the option variables.

AssetPrice = 590;
Strike = 590;
Rate = 0.06;
DividendYield = 0.0262;
Settle = '01-Jan-2018';
ExerciseDates = '01-Jan-2020';
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Define the implied volatility surface data.

Maturity = ["06-Mar-2018" "05-Jun-2018" "12-Sep-2018" "10-Dec-2018" "01-Jan-2019" ...
"02-Jul-2019" "01-Jan-2020" "01-Jan-2021" "01-Jan-2022" "01-Jan-2023"];
Maturity = repmat(Maturity,10,1);
Maturity = Maturity(:);

ExercisePrice = AssetPrice.*[0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.30 1.40];
ExercisePrice = repmat(ExercisePrice,1,10)';

ImpliedVol = [...
    0.190; 0.168; 0.133; 0.113; 0.102; 0.097; 0.120; 0.142; 0.169; 0.200; ...
    0.177; 0.155; 0.138; 0.125; 0.109; 0.103; 0.100; 0.114; 0.130; 0.150; ...
    0.172; 0.157; 0.144; 0.133; 0.118; 0.104; 0.100; 0.101; 0.108; 0.124; ...
    0.171; 0.159; 0.149; 0.137; 0.127; 0.113; 0.106; 0.103; 0.100; 0.110; ...
    0.171; 0.159; 0.150; 0.138; 0.128; 0.115; 0.107; 0.103; 0.099; 0.108; ...
    0.169; 0.160; 0.151; 0.142; 0.133; 0.124; 0.119; 0.113; 0.107; 0.102; ...
    0.169; 0.161; 0.153; 0.145; 0.137; 0.130; 0.126; 0.119; 0.115; 0.111; ...
    0.168; 0.161; 0.155; 0.149; 0.143; 0.137; 0.133; 0.128; 0.124; 0.123; ...
    0.168; 0.162; 0.157; 0.152; 0.148; 0.143; 0.139; 0.135; 0.130; 0.128; ...
    0.168; 0.164; 0.159; 0.154; 0.151; 0.147; 0.144; 0.140; 0.136; 0.132];

ImpliedVolData = table(Maturity, ExercisePrice, ImpliedVol);

Compute the European call option price and sensitivities.

OptSpec = 'Call';
[Delta,Gamma,Lambda,Theta,Price]  = optSensByLocalVolFD(Rate, AssetPrice, ...
Settle, ExerciseDates, OptSpec, Strike, ImpliedVolData, 'DividendYield',DividendYield, ...
'OutSpec',["Delta" "Gamma" "Lambda" "Theta" "Price"])

Delta = 0.5462

Gamma = 0.0082

Lambda = 4.9176

Theta = -20.8356

Price = 65.5286
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Input Arguments
Rate — Continuously compounded risk-free interest rate
scalar numeric

Continuously compounded risk-free interest rate, specified by a scalar numeric.
Data Types: double

AssetPrice — Current underlying asset price
scalar numeric

Current underlying asset price, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
serial date number | date character vector | datetime array | string

Settlement date, specified as a scalar serial date number, date character vector, datetime
object, or string array
Data Types: double | char | datetime | string

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime array | string array

Option exercise dates, specified as a serial date number, a date character vector, a
datetime array, or a string array:

• For a European option, there is only one ExerciseDates value and this is the option
expiry date.

• For an American option, use a 1-by-2 vector of serial date numbers, date character
vectors, datetimes, or strings. The American option can be exercised on any date
between or including the pair of dates. If only one non-NaN date is listed, the option
can be exercised between Settle and the single listed date in ExerciseDates.

Data Types: double | char | cell | datetime | string

OptSpec — Definition of option
character vector with value of 'call' or 'put' | string array with value of "call" or
"put"
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Definition of the option, specified as a character vector or string array with a value of
'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
nonnegative scalar

Option strike price value, specified as a nonnegative scalar.
Data Types: double

ImpliedVolData — Table of maturity dates, strike or exercise prices, and
corresponding implied volatilities
table

A table of maturity dates, strike or exercise prices, and their corresponding implied
volatilities,specified as a NVOL-by-3 table.
Data Types: table

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens = Price = optByLocalVolFD(Rate,AssetPrice,Settle,
ExerciseDates,OptSpec,Strike,ImpliedVolData,'AssetGridSize',
1000,'OutSpec',
{'delta','gamma','vega','lambda','rho','theta','price'})

Basis — Day-count basis
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
scalar using one of these supported values:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | scalar numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric.

Note If you enter a value for DividendYield, then set DividendAmounts and
ExDividendDates = [ ] or do not enter them. If you enter values for
DividendAmounts and ExDividendDates, then set DividendYield = 0.

Data Types: double

DividendAmounts — Cash dividend amounts
[ ] (default) | vector

Cash dividend amounts, specified as the comma-separated pair consisting of
'DividendAmounts' and a NDIV-by-1 vector.

For each dividend amount, there must be a corresponding ExDividendDates date. If you
enter values for DividendAmounts and ExDividendDates, then set DividendYield =
0.
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Note If you enter a value for DividendYield, then set DividendAmounts and
ExDividendDates = [ ] or do not enter them.

Data Types: double

ExDividendDates — Ex-dividend dates
[ ] (default) | serial date number | date character vector | datetime array | string array

Ex-dividend dates, specified as the comma-separated pair consisting of
'ExDividendDates' and a NDIV-by-1 vector.
Data Types: double | char | string | datetime

AssetPriceMax — Maximum price for price grid boundary
if unspecified, AssetPriceMax values are calculated using asset distributions at maturity
(default) | positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMax' and a positive scalar.
Data Types: double

AssetGridSize — Size of asset grid for finite difference grid
400 (default) | positive scalar

Size of the asset grid for finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a positive scalar.
Data Types: double

TimeGridSize — Size of time grid for finite difference grid
100 (default) | positive scalar

Size of the time grid for finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
positive integer scalar flag with one of these values:
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• 0 — European
• 1 — American

Data Types: double

InterpMethod — Method of interpolation for estimating the implied volatility
surface from ImpliedVolData
'linear' (default) | character vector with values 'linear', 'makima', 'spline', or
'tpaps' | string with values "linear", "makima", "spline", or "tpaps"

Method of interpolation for estimating the implied volatility surface from
ImpliedVolData, specified as the comma-separated pair consisting of
'InterpMethod' and a character vector or string with one of the following values:

• 'linear' — Linear interpolation
• 'makima' — Modified Akima cubic Hermite interpolation
• 'spline' — Cubic spline interpolation
• 'tpaps' — Thin-plate smoothing spline interpolation

Note The 'tpaps' method uses the thin-plate smoothing spline functionality from Curve
Fitting Toolbox.

The 'makima' and 'spline' methods work only for gridded data. For scattered data,
use the 'linear' or 'tpaps' methods.

For more information on gridded or scattered data and details on interpolation methods,
see “Gridded and Scattered Sample Data” (MATLAB) and “Interpolating Gridded Data”
(MATLAB).
Data Types: char | string

OutSpec — Define outputs
{'price'} (default) | cell array of character vectors with values 'price', 'delta',
'gamma', 'vega', 'lambda', 'rho', 'theta' | string array with values "price",
"delta", "gamma", "vega", "rho", "theta"

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and an
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'price', 'delta', 'gamma', 'vega', 'lambda', 'rho', and 'theta'.
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Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: cell | string

Output Arguments
PriceSens — Option price and sensitivities
scalar numeric

Option price and sensitivities, returned as a scalar numeric. OutSpec determines the
types and order of the output.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a grid that
is two-dimensional with size AssetGridSize ⨉ TimeGridSize. The number of columns
does not have to be equal to the TimeGridSize, because ExerciseDates and
ExDividendDates are added to the time grid. PriceGrid(:, :, end) contains the
price for t = 0.

AssetPrices — Prices of asset
vector

Prices of the asset corresponding to the first dimension of PriceGrid, returned as a
vector.

Times — Times
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

Definitions

Local Volatility Model
A local volatility model treats volatility as a function both of the current asset level and of
time.
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The local volatility can be estimated by using the Dupire formula [2]:
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optByMertonFFT
Option price by Merton76 model using FFT and FRFT

Syntax
[Price,StrikeOut] = optByMertonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq)
[Price,StrikeOut] = optByMertonFFT( ___ ,Name,Value)

Description
[Price,StrikeOut] = optByMertonFFT(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes vanilla European
option price by Merton76 model, using Carr-Madan FFT and Chourdakis FRFT methods.

[Price,StrikeOut] = optByMertonFFT( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Merton76 Model

Use optByMertonFFT to calibrate the FFT strike grid, compute option prices, and plot
an option price surface.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
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JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Prices for the Entire FFT (or FRFT) Strike Grid, Without
Specifying "Strike"

Compute option prices and also output the corresponding strikes. If the Strike input is
empty ( [] ), option prices will be computed on the entire FFT (or FRFT) strike grid. The
FFT (or FRFT) strike grid is determined as exp(log-strike grid), where each column
of the log-strike grid has NumFFT points with LogStrikeStep spacing that are roughly
centered around each element of log(AssetPrice). The default value for NumFFT is
2^12. In addition to the prices in the first output, the optional last output contains the
corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified (will use the entire FFT strike grid)

% Compute option prices for the entire FFT strike grid
[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);

% Show the lowest and highest strike values on the FFT strike grid
format
MinStrike = Kout(1) % Lowest possible strike in the current FFT strike grid

MinStrike = 2.9205e-135

MaxStrike = Kout(end) % Highest possible strike in the current FFT strike grid

MaxStrike = 1.8798e+138

% Show a subset of the strikes and corresponding option prices
Range = (2046:2052);
[Kout(Range) Call(Range)]

ans = 7×2

   50.4929   29.4645
   58.8640   21.2601
   68.6231   12.2218
   80.0000    4.5600
   93.2631    0.9579
  108.7251    0.1236
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  126.7505    0.0113

Change the Number of FFT (or FRFT) Points and Compare with optByMertonNI

Try a different number of FFT(or FRFT) points, and compare the results with direct
numerical integration. Unlike optByMertonFFT, which uses FFT (or FRFT) techniques
for fast computation across the whole range of strikes, the optByMertonNI function uses
direct numerical integration and it is typically slower, especially for multiple strikes.
However, the values computed by optByMertonNI can serve as a benchmark for
adjusting the settings for optByMertonFFT.

% Try a smaller number of FFT (or FRFT) points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike     CallFFT       CallNI         Error  
    ______    _________    ___________    _________

    12.696       66.328         66.696      0.36786
    23.449       55.922         56.103      0.18071
    43.312       36.481         36.536     0.055233
        80       4.7387           4.56      0.17867
    147.76     0.046602      0.0008089     0.045793
    272.93    0.0092842    -7.0709e-08    0.0092842
    504.11    0.0024041    -2.4515e-07    0.0024044

Make Further Adjustments to FFT (or FRFT)

If the values in the output CallFFT are significantly different from those in CallNI, try
making adjustments to optByMertonFFT settings, such as CharacteristicFcnStep,
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LogStrikeStep, NumFFT, DampingFactor, and so on. Note that if (LogStrikeStep *
CharacteristicFcnStep) is 2*pi/ NumFFT, FFT is used. Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
CallFFT = Call(Range);
CallNI = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield);
Error = abs(CallFFT-CallNI);
table(Strike, CallFFT, CallNI, Error)

ans=7×4 table
    Strike    CallFFT    CallNI      Error   
    ______    _______    ______    __________

    79.76      4.674      4.674    4.9664e-10
    79.84     4.6358     4.6358    4.9651e-10
    79.92     4.5978     4.5978    4.9642e-10
       80       4.56       4.56    4.9641e-10
    80.08     4.5224     4.5224    4.9642e-10
    80.16      4.485      4.485     4.965e-10
    80.24     4.4478     4.4478     4.966e-10

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566

Compute Option Price for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify
the strikes rather than providing an empty array. If the specified strikes do not match a
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value on the FFT (or FRFT) strike grid, the outputs are interpolated on the specified
strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 4.5600

Compute the Option Prices for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Call = 5×1

    6.7411
    5.5762
    4.5600
    3.6891
    2.9551

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the
Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes
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Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001) % Five values in vector output

Call = 5×1

    8.5589
    8.9439
    9.2316
    9.4653
    9.6565

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into
NStrikes-by-NMaturities matrices. In this case, they are square matrices.

[Call, Kout] = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    8.5589    9.9675   11.1343   12.1492   13.0464
    7.4844    8.9439   10.1481   11.1939   12.1181
    6.5125    8.0023    9.2316   10.2999   11.2449
    5.6401    7.1402    8.3827    9.4653   10.4249
    4.8630    6.3545    7.5990    8.6881    9.6565

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is,
the output NStrikes-by-NMaturities matrix can be rectangular.
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 6) matrix output

Call = 5×6

    6.7411    8.5589    9.9675   11.1343   12.1492   13.0464
    5.5762    7.4844    8.9439   10.1481   11.1939   12.1181
    4.5600    6.5125    8.0023    9.2316   10.2999   11.2449
    3.6891    5.6401    7.1402    8.3827    9.4653   10.4249
    2.9551    4.8630    6.3545    7.5990    8.6881    9.6565

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByMertonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.4187    5.6579    8.5589   12.0417
    2.8538    4.8401    7.4844   10.7343
    2.3718    4.1205    6.5125    9.5230
    1.9635    3.4922    5.6401    8.4090
    1.6198    2.9476    4.8630    7.3921
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Plot an Option Price Surface

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a
wider range of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to
"true" to output the surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

Call = optByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'NumFFT', NumFFT, ...
    'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, 'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or
FRFT) strike grid, which is determined as exp(log-strike grid). Each column of the
log-strike grid has'NumFFT' points with 'LogStrikeStep' spacing that are roughly
centered around each element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,StrikeOut] =
optByMertonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,
MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric
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Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the
log-strike grid, specified as the comma-separated pair consisting of 'NumFFT' and a
scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair
consisting of 'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric

Log-strike grid spacing, specified as the comma-separated pair consisting of
'LogStrikeStep' and a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used.
Otherwise, FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair
consisting of 'DampingFactor' and a scalar numeric value.
Data Types: double
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Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' |
string array with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature'
and a single character vector or string array with a value of 'simpson' or
'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. If Strike is
empty, NRows is equal to NumFFT. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or
NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput.
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Definitions

Merton Jump Diffusion Model
The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-
Scholes model, where sudden asset price movements (both up and down) are modeled by
adding the jump diffusion parameters with the Poisson process.

The stochastic differential equation is:
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μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).
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σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton j76 ( )f  for j = 1 (asset prices measure) and j = 2 (risk-
neutral measure) is:
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where

ϕ is the characteristic function variable.

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Carr-Madan Formulation
The Carr and Madan (1999) formulation is a popular modified implementation of Heston
(1993) framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan
developed an alternative expression so that taking its inverse Fourier transform gives the
option price itself directly.
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

α is the damping factor.

u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for
integration, u, is discretized into NumFFT(N) points with the step size
CharacteristicFcnStep (Δu), and the log-strike k is discretized into N points with the
step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a
minimum value of 0 and a maximum value of (N-1) (Δu), and it approximates the
continuous integration range from 0 to infinity.
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The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around
ln(St), with a minimum value of
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where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following
constraint:
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otherwise, the functions use the FRFT method described in Chourdakis (2005).
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optSensByMertonFFT
Option price and sensitivities by Merton76 model using FFT and FRFT

Syntax
[PriceSens,StrikeOut] = optSensByMertonFFT(Rate,AssetPrice,Settle,
Maturity,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq)
[PriceSens,StrikeOut] = optSensByMertonFFT( ___ ,Name,Value)

Description
[PriceSens,StrikeOut] = optSensByMertonFFT(Rate,AssetPrice,Settle,
Maturity,OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes vanilla
European option price and sensitivities by Merton76 model, using Carr-Madan FFT and
Chourdakis FRFT methods.

[PriceSens,StrikeOut] = optSensByMertonFFT( ___ ,Name,Value) adds
optional name-value pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Merton76 Model

Use optSensByMertonFFT to calibrate the FFT strike grid for sensitivities, compute
option sensitivities, and plot option sensitivity surfaces.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
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MeanJ = 0.02;
JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Prices for the Entire FFT (or FRFT) Strike Grid, Without
Specifying "Strike"

Compute option sensitivities and also output the corresponding strikes. If the Strike
input is empty ( [] ), option sensitivities will be computed on the entire FFT (or FRFT)
strike grid. The FFT (or FRFT) strike grid is determined as exp(log-strike grid),
where each column of the log-strike grid has NumFFT points with LogStrikeStep
spacing that are roughly centered around each element of log(AssetPrice). The
default value for NumFFT is 2^12. In addition to the sensitivities in the first output, the
optional last output contains the corresponding strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = []; % Strike is not specified

[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta");

% Show the lowest and highest strike values on the FFT strike grid
format
[Kout(1) Kout(end)]

ans = 1×2
10138 ×

    0.0000    1.8798

% Show a subset of the strikes and corresponding option sensitivities
Range = (2046:2052);
[Kout(Range) Delta(Range)]

ans = 7×2

   50.4929    0.9895
   58.8640    0.9801
   68.6231    0.8816
   80.0000    0.5283
   93.2631    0.1551
  108.7251    0.0241
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  126.7505    0.0025

Change the Number of FFT (or FRFT) Points and Compare with
optSensByMertonNI

Try a different number of FFT (or FRFT) points, and compare the results with numerical
integration. Unlike optSensByMertonFFT, which uses FFT (or FRFT) techniques for fast
computation across the whole range of strikes, the optSensByMertonNI function uses
direct numerical integration and it is typically slower, especially for multiple strikes.
However, the values computed by optSensByMertonNI can serve as a benchmark for
adjusting the settings for optSensByMertonFFT.

% Try a smaller number of FFT points 
% (e.g. for faster performance or smaller memory footprint)
NumFFT = 2^10; % Smaller than the default value of 2^12
Strike = []; % Strike is not specified (will use the entire FFT strike grid)
[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT);

% Compare with numerical integration method
Range = (510:516);
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike     DeltaFFT      DeltaNI        Error   
    ______    __________    __________    __________

    12.696       0.89726       0.99002      0.092766
    23.449       0.93421       0.99002       0.05581
    43.312       0.94691       0.99001      0.043093
        80       0.50983       0.52827      0.018446
    147.76      0.004147    0.00019101      0.003956
    272.93      0.001071     1.547e-09      0.001071
    504.11    0.00030521    5.7578e-10    0.00030521

11 Functions — Alphabetical List

11-1512



Make Further Adjustments to FFT (or FRFT)

If the values in the output DeltaFFT are significantly different from those in DeltaNI,
try making adjustments to optSensByMertonFFT settings, such as
CharacteristicFcnStep, LogStrikeStep, NumFFT, DampingFactor, and so on. Note
that if (LogStrikeStep * CharacteristicFcnStep) is 2*pi/ NumFFT, FFT is used.
Otherwise, FRFT is used.

Strike = []; % Strike is not specified (will use the entire FFT or FRFT strike grid)
[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001);

% Compare with numerical integration method
Strike = Kout(Range);
DeltaFFT = Delta(Range);
DeltaNI = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta");
Error = abs(DeltaFFT-DeltaNI);
table(Strike, DeltaFFT, DeltaNI, Error)

ans=7×4 table
    Strike    DeltaFFT    DeltaNI      Error   
    ______    ________    _______    __________

    79.76     0.53701     0.53701    5.6407e-12
    79.84      0.5341      0.5341    5.3257e-12
    79.92     0.53119     0.53119    5.0099e-12
       80     0.52827     0.52827    4.6956e-12
    80.08     0.52536     0.52536    4.3811e-12
    80.16     0.52245     0.52245    4.0653e-12
    80.24     0.51953     0.51953    3.7503e-12

% Save the final FFT (or FRFT) strike grid for future reference. For
% example, it provides information about the range of Strike inputs for
% which the FFT (or FRFT) operation is valid.
FFTStrikeGrid = Kout;
MinStrike = FFTStrikeGrid(1) % Strike cannot be less than MinStrike

MinStrike = 47.9437

MaxStrike = FFTStrikeGrid(end) % Strike cannot be greater than MaxStrike

MaxStrike = 133.3566
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Compute the Option Sensitivity for a Single Strike

Once the desired FFT (or FRFT) settings are determined, use the Strike input to specify
the strikes rather than providing an empty array. If the specified strikes do not match a
value on the FFT (or FRFT) strike grid, the outputs are interpolated on the specified
strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80;

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 0.5283

Compute the Option Sensitivities for a Vector of Strikes

Use the Strike input to specify the strikes.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001)

Delta = 5×1

    0.6727
    0.6013
    0.5283
    0.4565
    0.3883

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
the Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".
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Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001) % Five values in vector output

Delta = 5×1

    0.6419
    0.5907
    0.5565
    0.5311
    0.5110

Expand the Outputs for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the outputs into
NStrikes-by-NMaturities matrices. In this case, they are square matrices.

[Delta, Kout] = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6419    0.6305    0.6245    0.6204    0.6173
    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4927    0.5112    0.5229    0.5311    0.5372
    0.4447    0.4725    0.4898    0.5020    0.5110

Kout = 5×5

    76    76    76    76    76
    78    78    78    78    78
    80    80    80    80    80
    82    82    82    82    82
    84    84    84    84    84
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Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is,
the output NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 6) matrix output

Delta = 5×6

    0.6727    0.6419    0.6305    0.6245    0.6204    0.6173
    0.6013    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5283    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4565    0.4927    0.5112    0.5229    0.5311    0.5372
    0.3883    0.4447    0.4725    0.4898    0.5020    0.5110

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset
Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonFFT(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, 'OutSpec', "delta", ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, ...
    'LogStrikeStep', 0.001, 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.3796    0.5157    0.6419    0.7472
    0.3315    0.4637    0.5922    0.7043
    0.2874    0.4137    0.5422    0.6592
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    0.2474    0.3664    0.4927    0.6128
    0.2117    0.3224    0.4447    0.5657

Plot Option Sensitivity Surfaces

Use the Strike input to specify the strikes. Increase the value for NumFFT to support a
wider range of strikes. Also, the Maturity input can be a vector. Set ExpandOutput to
"true" to output the surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

% Increase 'NumFFT' to support a wider range of strikes
NumFFT = 2^13;

[Delta, Gamma, Rho, Theta, Vega] = optSensByMertonFFT(...
    Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'NumFFT', NumFFT, 'CharacteristicFcnStep', 0.065, 'LogStrikeStep', 0.001, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

If this input is an empty array ([]), option prices are computed on the entire FFT (or
FRFT) strike grid, which is determined as exp(log-strike grid). Each column of the
log-strike grid has'NumFFT' points with 'LogStrikeStep' spacing that are roughly
centered around each element of log(AssetPrice).

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [PriceSens,StrikeOut] =
optSensByMertonFFT(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Si
gma,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric
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Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double

OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega",
"rho", "theta", and "vegalt" | cell array of character vectors with values 'price',
'delta', 'gamma', 'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT string array or cell array of character vectors with supported
values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast,
"vegalt" is the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec =
["price","delta","gamma","vega","rho","theta","vegalt"]

Data Types: string | cell

NumFFT — Number of grid points in the characteristic function variable
4096 (default) | numeric

Number of grid points in the characteristic function variable and in each column of the
log-strike grid, specified as the comma-separated pair consisting of 'NumFFT' and a
scalar numeric value.
Data Types: double

CharacteristicFcnStep — Characteristic function variable grid spacing
0.01 (default) | numeric

Characteristic function variable grid spacing, specified as the comma-separated pair
consisting of 'CharacteristicFcnStep' and a scalar numeric value.
Data Types: double

LogStrikeStep — Log-strike grid spacing
2*pi/NumFFT/CharacteristicFcnStep (default) | numeric
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Log-strike grid spacing, specified as the comma-separated pair consisting of
'LogStrikeStep' and a scalar numeric value.

Note If (LogStrikeStep*CharacteristicFcnStep) is 2*pi/NumFFT, FFT is used.
Otherwise, FRFT is used.

Data Types: double

DampingFactor — Damping factor for Carr-Madan formulation
1.5 (default) | numeric

Damping factor for Carr-Madan formulation, specified as the comma-separated pair
consisting of 'DampingFactor' and a scalar numeric value.
Data Types: double

Quadrature — Type of quadrature
"simpson" (default) | character vector with values:'simpson' or 'trapezoidal' |
string array with values: "simpson" or "trapezoidal"

Type of quadrature, specified as the comma-separated pair consisting of 'Quadrature'
and a single character vector or string array with a value of 'simpson' or
'trapezoidal'.
Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. If Strike is
empty, NRows is equal to NumFFT. NColumns is determined by the sizes of
AssetPrice, Settle, Maturity, and OptSpec, which must all be either scalar or
NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.
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Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput. The name-value pair argument OutSpec determines the
types and order of the outputs.

StrikeOut — Strikes corresponding to Price
numeric

Strikes corresponding to Price, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput.

Definitions

Merton Jump Diffusion Model
The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-
Scholes model, where sudden asset price movements (both up and down) are modeled by
adding the jump diffusion parameters with the Poisson process.

The stochastic differential equation is:

dS r q S dt S dW JS dP

dP dt
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t p
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.
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J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is

normally distributed with mean ln( )1
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μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).
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ϕ is the characteristic function variable.

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Carr-Madan Formulation
The Carr and Madan (1999) formulation is a popular modified implementation of Heston
(1993) framework.

Rather than computing the probabilities P1 and P2 as intermediate steps, Carr and Madan
developed an alternative expression so that taking its inverse Fourier transform gives the
option price itself directly.
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

α is the damping factor.
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u is the characteristic function variable for integration, where ϕ = (u - (α+1)i).

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

To apply FFT or FRFT to this formulation, the characteristic function variable for
integration, u, is discretized into NumFFT(N) point with the step size
CharacteristicFcnStep (Δu), and the log-strike k is discretized into N points with the
step size LogStrikeStep(Δk).

The discretized characteristic function variable for integration, uj(for j = 1,2,3,…,N), has a
minimum value of 0 and a maximum value of (N-1) (Δu), and it approximates the
continuous integration range from 0 to infinity.

The discretized log-strike grid, kn(for n = 1, 2, 3, N) is approximately centered around
ln(St), with a minimum value of
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As a result of the discretization, the expression for the call option becomes
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where

Δu is the step size of discretized characteristic function variable for integration.

Δk is the step size of discretized log-strike.

N is the number of FFT or FRFT points.

wj is the weights for quadrature used for approximating the integral.

FFT is used to evaluate the above expression if Δk and Δu are subject to the following
constraint:
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otherwise, the functions use the FRFT method described in Chourdakis (2005).
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See Also
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optByMertonNI
Option price by Merton76 model using numerical integration

Syntax
Price = optByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,Sigma,MeanJ,JumpVol,JumpFreq)
Price = optByMertonNI( ___ ,Name,Value)

Description
Price = optByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,
Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes vanilla European option price
by the Merton76 model, using numerical integration.

Price = optByMertonNI( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Workflow for Plotting an Option Price Surface Using the Merton76 Model

optByMertonNI uses numerical integration to compute option prices and then plot an
option price surface.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
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JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Price for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield)

Call = 4.5600

Compute the Option Prices for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield)

Call = 5×1

    6.7410
    5.5762
    4.5600
    3.6891
    2.9551

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of the
Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
Strike = [76 78 80 82 84]'; % Five strikes
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Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield)

Call = 5×1

    8.5589
    8.9439
    9.2316
    9.4653
    9.6565

    % Five values in vector output

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a
NStrikes-by-NMaturities matrix. In this case, it is a square matrix.

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 5) matrix output

Call = 5×5

    8.5589    9.9675   11.1343   12.1492   13.0464
    7.4844    8.9439   10.1481   11.1939   12.1181
    6.5125    8.0023    9.2316   10.2999   11.2449
    5.6401    7.1402    8.3827    9.4653   10.4249
    4.8630    6.3545    7.5990    8.6881    9.6565

Compute the Option Prices for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is,
the output NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 6) matrix output
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Call = 5×6

    6.7410    8.5589    9.9675   11.1343   12.1492   13.0464
    5.5762    7.4844    8.9439   10.1481   11.1939   12.1181
    4.5600    6.5125    8.0023    9.2316   10.2999   11.2449
    3.6891    5.6401    7.1402    8.3827    9.4653   10.4249
    2.9551    4.8630    6.3545    7.5990    8.6881    9.6565

Compute the Option Prices for a Vector of Strikes and a Vector of Asset Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Call = optByMertonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'ExpandOutput', true) % (5 x 4) matrix output

Call = 5×4

    3.4186    5.6579    8.5589   12.0417
    2.8538    4.8401    7.4844   10.7343
    2.3718    4.1205    6.5125    9.5230
    1.9635    3.4922    5.6401    8.4090
    1.6198    2.9476    4.8630    7.3921

Plot an Option Price Surface

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to
output the surface as a NStrikes-by-NMaturities matrix.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
Strike = (2:2:200)';

Call = optByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'ExpandOutput', true);
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[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Call);
title('Price');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
zlim([0 80]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric
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Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sigma,M
eanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double
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AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate
continuous integral over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf],
specified as the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2
vector representing [LowerLimit UpperLimit].
Data Types: double

Framework — Framework for computing option prices and sensitivities using
numerical integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" |
character vector with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of
models, specified as the comma-separated pair consisting of 'Framework' and a scalar
string or character vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false
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Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. NColumns is
determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
Price — Option prices
numeric

Option prices, returned as a NINST-by-1, or NRows-by-NColumns, depending on
ExpandOutput.

Definitions

Merton Jump Diffusion Model
The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-
Scholes model, where sudden asset price movements (both up and down) are modeled by
adding the jump diffusion parameters with the Poisson process.

The stochastic differential equation is:

dS r q S dt S dW JS dP

dP dt

t p j t t t t t
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r is the continuous risk-free rate.

q is the continuous dividend yield.

Wt is the Weiner process.

J is the random percentage jump size conditional on the jump occurring, where ln(1+J) is

normally distributed with mean ln( )1
2

2

+ -m
d

J  and the standard deviation δ, and (1+J)
has a lognormal distribution:
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μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).

σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton j76 ( )f  for j = 1 (asset prices measure) and j = 2 (risk-
neutral measure) is:
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where

ϕ is the characteristic function variable

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Numerical Integration Method Under Heston (1993)
Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Heston (1993) framework is based on the
following expressions:
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r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1
and P2, respectively.

This framework is chosen with the default value “Heston1993” for the Framework
name-value pair argument.

Numerical Integration Method Under Lewis (2001) Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Lewis (2001) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K

i is a unit imaginary number (i2= -1)

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where 
f = -Ê

ËÁ
ˆ
¯̃

u
i

2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.

This framework is chosen with the value “Lewis2001” for the Framework name-value
pair argument.
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optSensByMertonNI
Option price and sensitivities by Merton76 model using numerical integration

Syntax
PriceSens = optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq)
PriceSens = optSensByMertonNI( ___ ,Name,Value)

Description
PriceSens = optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,
OptSpec,Strike,Sigma,MeanJ,JumpVol,JumpFreq) computes vanilla European
option price and sensitivities by the Merton76 model, using numerical integration.

PriceSens = optSensByMertonNI( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Workflow for Plotting an Option Sensitivity Surface Using the Merton76 Model

optSensByMertonNI uses numerical integration to compute option sensitivities and then
plot option sensitivity surfaces.

Define Option Variables and Merton76 Model Parameters

AssetPrice = 80;
Rate = 0.03;
DividendYield = 0.02;
OptSpec = 'call';

Sigma = 0.16;
MeanJ = 0.02;
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JumpVol = 0.08;
JumpFreq = 2;

Compute the Option Sensitivity for a Single Strike

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = 80; 

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")

Delta = 0.5283

Compute the Option Sensitivities for a Vector of Strikes

The Strike input can be a vector.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 6);
Strike = (76:2:84)';

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")

Delta = 5×1

    0.6727
    0.6013
    0.5283
    0.4565
    0.3883

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
the Same Lengths

Use the Strike input to specify the strikes. Also, the Maturity input can be a vector,
but it must match the length of the Strike vector if the ExpandOutput name-value pair
argument is not set to "true".

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, [12 18 24 30 36]); % Five maturities
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Strike = [76 78 80 82 84]'; % Five strikes

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta")

Delta = 5×1

    0.6419
    0.5907
    0.5565
    0.5311
    0.5110

    % Five values in vector output

Expand the Output for a Surface

Set the ExpandOutput name-value pair argument to "true" to expand the output into a
NStrikes-by-NMaturities matrix. In this case, it is a square matrix.

Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 5) matrix output

Delta = 5×5

    0.6419    0.6305    0.6245    0.6204    0.6173
    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4927    0.5112    0.5229    0.5311    0.5372
    0.4447    0.4725    0.4898    0.5020    0.5110

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Dates of
Different Lengths

When ExpandOutput is "true", NStrikes do not have to match NMaturities. That is,
the output NStrikes-by-NMaturities matrix can be rectangular.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*(0.5:0.5:3)'); % Six maturities
Strike = (76:2:84)'; % Five strikes
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Delta = optSensByMertonNI(Rate, AssetPrice, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true)  % (5 x 6) matrix output

Delta = 5×6

    0.6727    0.6419    0.6305    0.6245    0.6204    0.6173
    0.6013    0.5922    0.5907    0.5905    0.5905    0.5905
    0.5283    0.5422    0.5507    0.5565    0.5607    0.5637
    0.4565    0.4927    0.5112    0.5229    0.5311    0.5372
    0.3883    0.4447    0.4725    0.4898    0.5020    0.5110

Compute the Option Sensitivities for a Vector of Strikes and a Vector of Asset
Prices

When ExpandOutput is "true", the output can also be a NStrikes-by-NAssetPrices
rectangular matrix by accepting a vector of asset prices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12); % Single maturity
ManyAssetPrices = [70 75 80 85]; % Four asset prices
Strike = (76:2:84)'; % Five strikes

Delta = optSensByMertonNI(Rate, ManyAssetPrices, Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', "delta", 'ExpandOutput', true) % (5 x 4) matrix output

Delta = 5×4

    0.3796    0.5157    0.6419    0.7472
    0.3315    0.4637    0.5922    0.7043
    0.2874    0.4137    0.5422    0.6592
    0.2474    0.3664    0.4927    0.6128
    0.2117    0.3224    0.4447    0.5657

Plot Option Sensitivity Surfaces

The Strike and Maturity inputs can be vectors. Set ExpandOutput to "true" to
output the surfaces as NStrikes-by-NMaturities matrices.

Settle = datenum('29-Jun-2017');
Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]');
Times = yearfrac(Settle, Maturity);
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Strike = (2:2:200)';

[Delta, Gamma, Rho, Theta, Vega] = optSensByMertonNI(...
    Rate, AssetPrice,Settle, Maturity, OptSpec, Strike, ...
    Sigma, MeanJ, JumpVol, JumpFreq, 'DividendYield', DividendYield, ...
    'OutSpec', ["delta", "gamma", "rho", "theta", "vega"], ...
    'ExpandOutput', true);

[X,Y] = meshgrid(Times,Strike);

figure;
surf(X,Y,Delta);
title('Delta');
xlabel('Years to Option Expiry');
ylabel('Strike');
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Gamma)
title('Gamma')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Rho)
title('Rho')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Theta)
title('Theta')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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figure;
surf(X,Y,Vega)
title('Vega')
xlabel('Years to Option Expiry')
ylabel('Strike')
view(-112,34);
xlim([0 Times(end)]);
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Input Arguments
Rate — Continuously compounded risk-free interest rate
decimal

Continuously compounded risk-free interest rate, specified as a scalar decimal value.
Data Types: double

AssetPrice — Current underlying asset price
numeric

 optSensByMertonNI

11-1559



Current underlying asset price, specified as numeric value using a scalar or a NINST-by-1
or NColumns-by-1 vector.

For more information on the proper dimensions for AssetPrice, see the name-value pair
argument ExpandOutput.
Data Types: double

Settle — Option settlement date
serial date number | date character vector | datetime | string array

Option settlement date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays. The Settle date
must be before the Maturity date.

For more information on the proper dimensions for Settle, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

Maturity — Option maturity date
serial date number | date character vector | datetime | string array

Option maturity date, specified as a NINST-by-1 or NColumns-by-1 vector using serial
date numbers, date character vectors, datetime arrays, or string arrays.

For more information on the proper dimensions for Maturity, see the name-value pair
argument ExpandOutput.
Data Types: double | char | datetime | string

OptSpec — Definition of option
cell array of character vector with values 'call' or 'put' | string array with values
"call" or "put"

Definition of the option, specified as a NINST-by-1 or NColumns-by-1 vector using a cell
array of character vectors or string arrays with values 'call' or 'put'.

For more information on the proper dimensions for OptSpec, see the name-value pair
argument ExpandOutput.
Data Types: cell | string

Strike — Option strike price value
numeric
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Option strike price value, specified as a NINST-by-1, NRows-by-1, NRows-by-NColumns
vector of strike prices.

For more information on the proper dimensions for Strike, see the name-value pair
argument ExpandOutput.
Data Types: double

Sigma — Volatility of underlying asset
numeric

Volatility of the underling asset, specified as a scalar numeric value.
Data Types: double

MeanJ — Mean of the random percentage jump size
decimal

Mean of the random percentage jump size (J), specified as a scalar decimal value where
log(1+J) is normally distributed with mean (log(1+MeanJ)-0.5*JumpVol^2) and the
standard deviation JumpVol.
Data Types: double

JumpVol — Standard deviation of log(1+J)
decimal

Standard deviation of log(1+J) where J is the random percentage jump size, specified as
a scalar decimal value.
Data Types: double

JumpFreq — Annual frequency of Poisson jump process
numeric

Annual frequency of Poisson jump process, specified as a scalar numeric value.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optSensByMertonNI(Rate,AssetPrice,Settle,Maturity,OptSpec,Strike,Sig
ma,MeanJ,JumpVol,JumpFreq,'Basis',7)

Basis — Day-count basis of instrument
0 (default) | numeric values: 0,1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13

Day-count of the instrument, specified as the comma-separated pair consisting of
'Basis' and a scalar using a supported value:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

DividendYield — Continuously compounded underlying asset yield
0 (default) | numeric

Continuously compounded underlying asset yield, specified as the comma-separated pair
consisting of 'DividendYield' and a scalar numeric value.
Data Types: double
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OutSpec — Define outputs
["price"] (default) | string array with values "price", "delta", "gamma", "vega",
"rho", "theta", and "vegalt" | cell array of character vectors with values 'price',
'delta', 'gamma', 'vega', 'rho', 'theta', and 'vegalt'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT string array or cell array of character vectors with supported
values.

Note "vega" is the sensitivity with respect the initial volatility sqrt(V0). In contrast,
"vegalt" is the sensitivity with respect to the long-term volatility sqrt(ThetaV).

Example: OutSpec =
["price","delta","gamma","vega","rho","theta","vegalt"]

Data Types: string | cell

AbsTol — Absolute error tolerance for numerical integration
1e-10 (default) | numeric

Absolute error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'AbsTol' and a scalar numeric value.
Data Types: double

RelTol — Relative error tolerance for numerical integration
1e-6 (default) | numeric

Relative error tolerance for numerical integration, specified as the comma-separated pair
consisting of 'RelTol' and a scalar numeric value.
Data Types: double

IntegrationRange — Numerical integration range used to approximate
continuous integral over [0 Inf]
[1e-9 Inf] (default) | vector

Numerical integration range used to approximate the continuous integral over [0 Inf],
specified as the comma-separated pair consisting of 'IntegrationRange' and a 1-by-2
vector representing [LowerLimit UpperLimit].
Data Types: double
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Framework — Framework for computing option prices and sensitivities using
numerical integration of models
"heston1993" (default) | string with values "heston1993" or "lewis2001" |
character vector with values 'heston1993' or 'lewis2001'

Framework for computing option prices and sensitivities using numerical integration of
models, specified as the comma-separated pair consisting of 'Framework' and a scalar
string or character vector with the following values:

• "heston1993" or 'heston1993' — Method used in Heston (1993)
• "lewis2001" or 'lewis2001' — Method used in Lewis (2001)

Data Types: char | string

ExpandOutput — Flag to expand the outputs
false (outputs are NINST-by-1 vectors) (default) | logical with value of true or false

Flag to expand the outputs, specified as the comma-separated pair consisting of
'ExpandOutput' and a logical:

• true — If true, the outputs are NRows-by- NColumns matrices. NRows is the number
of strikes for each column and it is determined by the Strike input. For example,
Strike can be a NRows-by-1 vector, or a NRows-by-NColumns matrix. NColumns is
determined by the sizes of AssetPrice, Settle, Maturity, and OptSpec, which
must all be either scalar or NColumns-by-1 vectors.

• false — If false, the outputs are NINST-by-1 vectors. Also, the inputs Strike,
AssetPrice, Settle, Maturity, and OptSpec must all be either scalar or NINST-
by-1 vectors.

Data Types: logical

Output Arguments
PriceSens — Option prices or sensitivities
numeric

Option prices or sensitivities, returned as a NINST-by-1, or NRows-by-NColumns,
depending on ExpandOutput. The name-value pair argument OutSpec determines the
types and order of the outputs.
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Definitions

Merton Jump Diffusion Model
The Merton jump diffusion model (Merton (1976)) is a different extension of the Black-
Scholes model, where sudden asset price movements (both up and down) are modeled by
adding the jump diffusion parameters with the Poisson process.

The stochastic differential equation is:
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μJ is the mean of J for (μJ > -1).

δ is the standard deviation of ln(1+J) for (δ≥ 0).

ƛp is the annual frequency (intensity) of Poisson process Ptfor (ƛp ≥ 0).
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σ is the volatility of the asset price for (σ > 0).

The characteristic function fMerton j76 ( )f  for j = 1 (asset prices measure) and j = 2 (risk-
neutral measure) is:
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where

ϕ is the characteristic function variable.

τ is the time to maturity (τ = T- t).

i is the unit imaginary number ( i2 = -1).

Numerical Integration Method Under Heston (1993)
Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Heston (1993) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

fj(ϕ) is the characteristic function for Pj(j = 1,2).

P1 is the probability of St > K under the asset price measure for the model.

P2 is the probability of St > K under the risk-neutral measure for the model.

Where j = 1,2 so that f1(ϕ) and f2(ϕ) are the characteristic functions for probabilities P1
and P2, respectively.

This framework is chosen with the default value “Heston1993” for the Framework
name-value pair argument.
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Numerical Integration Method Under Lewis (2001) Framework
Numerical integration is used to evaluate the continuous integral for the inverse Fourier
transform.

The numerical integration method under the Lewis (2001) framework is based on the
following expressions:
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where

r is the continuous risk-free rate.

q is the continuous dividend yield.

St is the asset price at time t.

K is the strike.

τ is time to maturity (τ = T-t).

Call(K) is the call price at strike K.

Put(K) is the put price at strike K.

i is a unit imaginary number (i2= -1).

ϕ is the characteristic function variable.

u is the characteristic function variable for integration, where 
f = -Ê
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ˆ
¯̃

u
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2 .

f2(ϕ) is the characteristic function for P2.

P2 is the probability of St > K under the risk-neutral measure for the model.
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This framework is chosen with the value “Lewis2001” for the Framework name-value
pair argument.
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optembndbybdt
Price bonds with embedded options by Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optembndbybdt(BDTTree,CouponRate,Settle,
Maturity,OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optembndbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbybdt(BDTTree,CouponRate,Settle,
Maturity,OptSpec,Strike,ExerciseDates) calculates price for bonds with
embedded options from a Black-Derman-Toy interest-rate tree.

optembndbybdt computes prices of vanilla bonds with embedded options, stepped
coupon bonds with embedded options, and bonds with sinking fund option provisions. For
more information, see “Definitions” on page 11-1580.

[Price,PriceTree] = optembndbybdt( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a Callable Bond Using a BDT Interest-Rate Tree Model

Create a BDTTree with the following data:

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.
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RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1

Create a VolSpec.

Volatility = 0.10 * ones (3,1);
VolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)

VolSpec = struct with fields:
             FinObj: 'BDTVolSpec'
      ValuationDate: 733043
           VolDates: [3x1 double]
           VolCurve: [3x1 double]
    VolInterpMethod: 'linear'

Create a TimeSpec.

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

Build the BDTTree.

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
        TFwd: {[3x1 double]  [2x1 double]  [2]}
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      CFlowT: {[3x1 double]  [2x1 double]  [3]}
     FwdTree: {[1.0350]  [1.0406 1.0495]  [1.0447 1.0546 1.0667]}

To compute the price of an American callable bond that pays a 5.25% annual coupon,
matures in Jan-1-2010, and is callable on Jan-1-2008 and 01-Jan-2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.0525;
Period = 1;
OptSpec = 'call'; 
Strike = [100];  
ExerciseDates = {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt = 1;

PriceCallBond = optembndbybdt(BDTTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp', 1)

PriceCallBond = 101.4750

Price Single Stepped Callable Bonds Using a BDT Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for
the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
Strike=100;
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ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree
% Assume the volatility to be 10%
Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RS, BDTTimeSpec);

% The first row corresponds to the price of the callable bond with maturity 
% of three years. The second row corresponds to the price of the callable bond
% with maturity of four years.
PBDT=  optembndbybdt(BDTT, CouponRate, Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PBDT = 2×1

  100.0945
  100.0297

Price a Sinking Fund Bond Using a BDT Interest-Rate Tree Model

A corporation issues a three year bond with a sinking fund obligation requiring the
company to sink 1/3 of face value after the first year and 1/3 after the second year. The
company has the option to buy the bonds in the market or call them at $98. The following
data describes the details needed for pricing the sinking fund bond:

Rates = [0.1;0.1;0.1;0.1];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% Create RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);

% Build the BDT tree
% Assume the volatility to be 10%
Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
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BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

% Instrument
% The bond has a coupon rate of 9%, a period of one year and matures in
% 1-Jan-2014. Face decreases 1/3 after the first year and 1/3 after the 
% second year.
CouponRate = 0.09;
Settle = 'Jan-1-2011';
Maturity =  'Jan-1-2014';
Period = 1;
Face = { ...        
            {'Jan-1-2012'  100; ...
             'Jan-1-2013'   66.6666; ...
             'Jan-1-2014'   33.3333};
        };

% Option provision
OptSpec = 'call'; 
Strike = [98 98];
ExerciseDates ={'Jan-1-2012', 'Jan-1-2013'};

% Price of non-sinking fund bond. 
PNSF = bondbybdt(BDTT, CouponRate, Settle, Maturity, Period)

PNSF = 97.5131

Price of the bond with the option sinking provision.

PriceSF = optembndbybdt(BDTT, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates,'Period', Period, 'Face', Face)

PriceSF = 96.8364

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

11 Functions — Alphabetical List

11-1574



CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond is set to the ValuationDate of the BDT tree. The
bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:
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• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optembndbybdt(BDTTree,CouponRate,Settle,Maturity,OptSpec,Strike,Exer
ciseDates,'Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:
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• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
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at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure
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Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

Definitions
Vanilla Bond with Embedded Option
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment. A vanilla bond with an embedded option is where an option
contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond. Stepped coupon bonds can have options features (call
and puts).

Sinking Fund Bond with Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity,
affecting bond prices since the time of the principal repayment changes. This means that
investors receive the coupon and a portion of the principal paid back over time. These
types of bonds reduce credit risk, since it lowers the probability of investors not receiving
their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the
sinking fund obligation either by purchasing the bonds to be redeemed from the market
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or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are
high, then the issuer buys back the requirement amount of bonds from the market since
bonds are cheap, but if interest rates are low (bond prices are high), then most likely the
issuer is buying the bonds at the call price. Unlike a call feature, however, if a bond has a
sinking fund option provision, it is an obligation, not an option, for the issuer to buy back
the increments of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

See Also
bdtprice | bdttree | cfamounts | instoptembnd

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2008a
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optembndbybk
Price bonds with embedded options by Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optembndbybk(BKTree,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optembndbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbybk(BKTree,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates) calculates price for bonds with embedded options
from a Black-Karasinski interest-rate tree.

optembndbybk computes prices of vanilla bonds with embedded options, stepped coupon
bonds with embedded options, and bonds with sinking fund option provisions. For more
information, see “Definitions” on page 11-1591.

[Price,PriceTree] = optembndbybk( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Price a Callable Bond Using a BK Interest-Rate Tree Model

Create a BKTree with the following data:

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.
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RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1

Create a VolSpec.

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve)

BKVolSpec = struct with fields:
             FinObj: 'BKVolSpec'
      ValuationDate: 733043
           VolDates: [3x1 double]
           VolCurve: [3x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 734139
    VolInterpMethod: 'linear'

Create a TimeSpec.

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

Build the BKTree.

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKTree = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
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    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
       Probs: {[3x1 double]  [3x3 double]}
     Connect: {[2]  [2 3 4]}
     FwdTree: {[1.0350]  [1.0458 1.0450 1.0442]  [1x5 double]}

To compute the price of an American puttable bond that pays an annual coupon of 5.25% ,
matures on January 1, 2010, and is callable on January 1, 2008 and January 1, 2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put'; 
Strike = [100];  
ExerciseDates = {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt = 1;

PricePutBondBK = optembndbybk(BKTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)

PricePutBondBK = 102.3820

Price Single Stepped Callable Bonds Using a BK Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for
the interest rate term structure is as follows:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);
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% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RS, BKTimeSpec);

% The first row corresponds to the price of the callable bond with maturity 
% of three years. The second row corresponds to the price of the callable bond
% with maturity of four years.
PBK= optembndbybk(BKT, CouponRate,  Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PBK = 2×1

  100.0945
  100.0945

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value
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Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond is set to the ValuationDate of the BK tree. The
bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
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• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price
values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optembndbybk(BKTree,CouponRate,Settle,Maturity,OptSpec,Strike,Exerci
seDates,'Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:
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• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
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at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

11 Functions — Alphabetical List

11-1590



Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

Definitions
Vanilla Bond with Embedded Option
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment. A vanilla bond with an embedded option is where an option
contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond. Stepped coupon bonds can have options features (call
and puts).

Sinking Fund Bond with Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity,
affecting bond prices since the time of the principal repayment changes. This means that
investors receive the coupon and a portion of the principal paid back over time. These
types of bonds reduce credit risk, since it lowers the probability of investors not receiving
their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the
sinking fund obligation either by purchasing the bonds to be redeemed from the market
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or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are
high, then the issuer buys back the requirement amount of bonds from the market since
bonds are cheap, but if interest rates are low (bond prices are high), then most likely the
issuer is buying the bonds at the call price. Unlike a call feature, however, if a bond has a
sinking fund option provision, it is an obligation, not an option, for the issuer to buy back
the increments of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

See Also
bkprice | bktree | cfamounts | instoptembnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2008a
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optembndbycir
Price bonds with embedded options by Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optembndbycir(CIRTree,CouponRate,Settle,
Maturity,OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optembndbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbycir(CIRTree,CouponRate,Settle,
Maturity,OptSpec,Strike,ExerciseDates) calculates price for bonds with
embedded options from a Cox-Ingersoll-Ross (CIR) interest-rate tree.

optembndbycir computes prices of vanilla bonds with embedded options, stepped
coupon bonds with embedded options, and bonds with sinking fund option provisions
using a CIR++ model with the Nawalka-Beliaeva (NB) approach. For more information,
see “Definitions” on page 11-1600.

[Price,PriceTree] = optembndbycir( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a Callable Bond Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.025; 0.032; 0.037; 0.042]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
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Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;
Maturity = '01-Jan-2018'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 
CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.2500 0.5000 0.7500]
        dObs: [736696 736787 736878 736969]
     FwdTree: {[1.0062]  [1.0090 1.0062 1.0039]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Define the bond with embedded option instrument.

BondSettlement = 'Jan-1-2017';
BondMaturity   = 'Jan-1-2020'; 
CouponRate = 0.035;
Period = 1;
OptSpec = 'put'; 
Strike = 100;  
ExerciseDates = {'Jan-1-2018' '01-Jan-2019'}; 

Price the bond.

[Price,PriceTree] = optembndbycir(CIRT,CouponRate,BondSettlement,BondMaturity,OptSpec,...
Strike,ExerciseDates,'AmericanOpt',1,'Period',1)

Price = 103.3099

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
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       tObs: [0 0.2500 0.5000 0.7500 1]
      PTree: {1x5 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector | string array | datetime

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers, date character vectors, string arrays, or datetime arrays.

Note The Settle date for every bond is set to the ValuationDate of the CIR tree. The
bond argument Settle is ignored.

Data Types: double | char | string | datetime

Maturity — Maturity date
serial date number | date character vector | string array | datetime

Maturity date, specified as an NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays.
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Data Types: double | char | string | datetime

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put' | string array with value "call" or "put"

Definition of option, specified as a NINST-by-1 cell array of character vectors or string
arrays with a value of 'call' or 'put'.
Data Types: char | cell | string

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector | string array | datetime

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers, date character vectors, string arrays, or datetime arrays
depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char | string | datetime
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optembndbycir(BDTTree,CouponRate,Settle,Maturity,OptSpec,Strike,Exer
ciseDates,'Period',1,'AmericanOpt',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an
NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
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• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector | string array | datetime

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers, date character vectors, string arrays, or
datetime arrays.
Data Types: double | char | string | datetime

FirstCouponDate — Irregular first coupon date
serial date number | date character vector | string array | datetime
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Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers, date character
vectors, string arrays, or datetime arrays.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char | string | datetime

LastCouponDate — Irregular last coupon date
serial date number | date character vector | string array | datetime

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers, date character
vectors, string arrays, or datetime arrays.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double | string | datetime

StartDate — Forward starting date of payments
serial date number | date character vector | string array | datetime

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers, date character vectors, string arrays, or datetime
arrays.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double | string | datetime

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double
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Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains the clean prices.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

Definitions

Vanilla Bond with Embedded Option
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment. A vanilla bond with an embedded option is where an option
contract has an underlying asset of a vanilla bond.
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Stepped Coupon Bond with Callable and Puttable Features
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond. Stepped coupon bonds can have options features (calls
and puts).

Sinking Fund Bond with Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity,
affecting bond prices since the time of the principal repayment changes. This means that
investors receive the coupon and a portion of the principal paid back over time. These
types of bonds reduce credit risk, since it lowers the probability of investors not receiving
their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the
sinking fund obligation either by purchasing the bonds to be redeemed from the market
or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are
high, then the issuer buys back the requirement amount of bonds from the market since
bonds are cheap, but if interest rates are low (bond prices are high), then most likely the
issuer is buying the bonds at the call price. Unlike a call feature, however, if a bond has a
sinking fund option provision, it is an obligation, not an option, for the issuer to buy back
the increments of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.
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[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
instoptembnd | oasbycir | optbndbycir | optemfloatbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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optembndbyhjm
Price bonds with embedded options by Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optembndbyhjm(HJMTree,CouponRate,Settle,
Maturity,OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbyhjm(HJMTree,CouponRate,Settle,
Maturity,OptSpec,Strike,ExerciseDates) calculates price for bonds with
embedded options from a Heath-Jarrow-Morton interest-rate tree.

optembndbyhjm computes prices of vanilla bonds with embedded options, stepped
coupon bonds with embedded options, and bonds with sinking fund option provisions. For
more information, see “Definitions” on page 11-1614.

[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a Callable Bond Using an HJM Interest-Rate Tree Model

Create a HJMTree with the following data:

Rates = [0.05;0.06;0.07];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.
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RateSpec = intenvset('Rates', Rates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1

Create a VolSpec.

VolSpec = hjmvolspec('Constant', 0.01)

VolSpec = struct with fields:
          FinObj: 'HJMVolSpec'
    FactorModels: {'Constant'}
      FactorArgs: {{1x1 cell}}
      SigmaShift: 0
      NumFactors: 1
       NumBranch: 2
         PBranch: [0.5000 0.5000]
     Fact2Branch: [-1 1]

Create a TimeSpec.

TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding)

TimeSpec = struct with fields:
           FinObj: 'HJMTimeSpec'
    ValuationDate: 733043
         Maturity: [3x1 double]
      Compounding: 1
            Basis: 0
     EndMonthRule: 1

Build the HJMTree.
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HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
        TFwd: {[3x1 double]  [2x1 double]  [2]}
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
     FwdTree: {[3x1 double]  [2x1x2 double]  [1x2x2 double]}

To compute the price of an American callable bond that pays a 6% annual coupon and
matures and is callable on January 1, 2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.06;
Period = 1;
OptSpec = 'call'; 
Strike = [98];  
ExerciseDates = '01-Jan-2010'; 
AmericanOpt = 1;

[PriceCallBond,PT] = optembndbyhjm(HJMTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates, 'Period', 1,'AmericanOp',1)

PriceCallBond = 95.9492

PT = struct with fields:
    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3]
     PBush: {[95.9492]  [1x1x2 double]  [1x2x2 double]  [98 98 98 98]}

Price Single Stepped Callable Bonds Using an HJM Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for
the interest rate term structure is as follows:
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Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree with the following data
Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates);
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec, RS, HJMTimeSpec);

% The first row corresponds to the price of the callable bond with maturity 
% of three years. The second row corresponds to the price of the callable 
% bond with maturity of four years.
PHJM=  optembndbyhjm(HJMT, CouponRate, Settle, Maturity ,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PHJM = 2×1

  100.0484
   99.8009

Price a Sinking Fund Bond Using an HJM Interest-Rate Tree Model

A corporation issues a three year bond with a sinking fund obligation requiring the
company to sink 1/3 of face value after the first year and 1/3 after the second year. The
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company has the option to buy the bonds in the market or call them at $99. The following
data describes the details needed for pricing the sinking fund bond:

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Build the HJM tree.

Sigma = 0.1;
HJMTimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);
HJMVolSpec = hjmvolspec('Constant', Sigma);
HJMT = hjmtree(HJMVolSpec, RateSpec, HJMTimeSpec)

HJMT = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734504 734869 735235 735600]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}
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Define the sinking fund instrument. The bond has a coupon rate of 4.5%, a period of one
year and matures in 1-Jan-2013. Face decreases 1/3 after the first year.

CouponRate = 0.045;
Settle = 'Jan-1-2011';
Maturity =  'Jan-1-2013';
Period = 1;
Face = { {'Jan-1-2012'  100; ...
          'Jan-1-2013'   66.6666}};

Define the option provision.

OptSpec = 'call';
Strike = 99;
ExerciseDates = 'Jan-1-2012';

Price of non-sinking fund bond.

PNSF = bondbyhjm(HJMT, CouponRate, Settle, Maturity, Period)

PNSF = 100.5663

Price of the bond with the option sinking provision.

PriceSF = optembndbyhjm(HJMT, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face)

PriceSF = 98.8736

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
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NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond is set to the ValuationDate of the HJM tree. The
bond argument Settle is ignored.

Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.
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• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
• For an American option, use a NINST-by-2 vector of exercise date boundaries. The

option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optembndbyhjm(HJMTree,CouponRate,Settle,Maturity,OptSpec,Strike,Exer
ciseDates,'Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double
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Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.
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• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date, specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double
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StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values

Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PBush contains the clean prices.
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• PriceTree.tObs contains the observation times.

Definitions

Vanilla Bond with Embedded Option
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
and the last interest payment. A vanilla bond with an embedded option is where an option
contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond. Stepped coupon bonds can have options features (call
and puts).

Sinking Fund Bond with Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity,
affecting bond prices since the time of the principal repayment changes. This means that
investors receive the coupon and a portion of the principal paid back over time. These
types of bonds reduce credit risk, since it lowers the probability of investors not receiving
their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the
sinking fund obligation either by purchasing the bonds to be redeemed from the market
or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are
high, then the issuer buys back the requirement amount of bonds from the market since
bonds are cheap, but if interest rates are low (bond prices are high), then most likely the
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issuer is buying the bonds at the call price. Unlike a call feature, however, if a bond has a
sinking fund option provision, it is an obligation, not an option, for the issuer to buy back
the increments of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

See Also
cfamounts | hjmprice | hjmtree | instoptembnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2008a
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optembndbyhw
Price bonds with embedded options by Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optembndbyhw(HWTree,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optembndbyhw(HWTree,CouponRate,Settle,Maturity,
OptSpec,Strike,ExerciseDates) calculates price for bonds with embedded options
from a Hull-White interest-rate tree.

optembndbyhw computes prices of vanilla bonds with embedded options, stepped coupon
bonds with embedded options, and bonds with sinking fund option provisions. For more
information, see “Definitions” on page 11-1626.

[Price,PriceTree] = optembndbyhjm( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a Callable Bond Using an HW Interest-Rate Tree Model

Create a HWTree with the following data:

ZeroRates = [ 0.035;0.04;0.045];
Compounding = 1;
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009'];
EndDates   = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
ValuationDate = 'jan-1-2007';

Create a RateSpec.
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RateSpec = intenvset('Rates', ZeroRates, 'StartDates', ValuationDate, 'EndDates', ...
EndDates, 'Compounding', Compounding, 'ValuationDate', ValuationDate)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [3x1 double]
            Rates: [3x1 double]
         EndTimes: [3x1 double]
       StartTimes: [3x1 double]
         EndDates: [3x1 double]
       StartDates: 733043
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1

Create a VolSpec.

VolDates = ['jan-1-2008';'jan-1-2009';'jan-1-2010'];
VolCurve = 0.01;
AlphaDates = 'jan-1-2010';
AlphaCurve = 0.1;
HWVolSpec = hwvolspec(ValuationDate, VolDates, VolCurve, AlphaDates, AlphaCurve)

HWVolSpec = struct with fields:
             FinObj: 'HWVolSpec'
      ValuationDate: 733043
           VolDates: [3x1 double]
           VolCurve: [3x1 double]
         AlphaCurve: 0.1000
         AlphaDates: 734139
    VolInterpMethod: 'linear'

Create a TimeSpec.

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding)

HWTimeSpec = struct with fields:
           FinObj: 'HWTimeSpec'
    ValuationDate: 733043
         Maturity: [3x1 double]
      Compounding: 1
            Basis: 0
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     EndMonthRule: 1

Build the HWTree.

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWTree = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [733043 733408 733774]
      CFlowT: {[3x1 double]  [2x1 double]  [3]}
       Probs: {[3x1 double]  [3x3 double]}
     Connect: {[2]  [2 3 4]}
     FwdTree: {[1.0350]  [1.0633 1.0451 1.0271]  [1x5 double]}

Compute the price of an American puttable bond that pays an annual coupon of 5.25%,
matures on January 1, 2010, and is puttable from January 1, 2008 to January 1, 2010.

BondSettlement = 'jan-1-2007';
BondMaturity   = 'jan-1-2010'; 
CouponRate = 0.0525;
Period = 1;
OptSpec = 'put'; 
Strike = [100];  
ExerciseDates = {'jan-1-2008' '01-Jan-2010'}; 
AmericanOpt = 1;

PricePutBondHW = optembndbyhw(HWTree, CouponRate, BondSettlement, BondMaturity,...
OptSpec, Strike, ExerciseDates,'Period', 1, 'AmericanOpt', 1)

PricePutBondHW = 102.9127

Price Single Stepped Callable Bonds Using an HW Interest-Rate Tree Model

Price the following single stepped callable bonds using the following data: The data for
the interest rate term structure is as follows:
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Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2010';
StartDates = ValuationDate;
EndDates = {'Jan-1-2011'; 'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'};
Compounding = 1;

% Create RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Instrument
Settle = '01-Jan-2010';
Maturity = {'01-Jan-2013';'01-Jan-2014'};
CouponRate = {{'01-Jan-2012' .0425;'01-Jan-2014' .0750}};  
OptSpec='call';
Strike=100;
ExerciseDates='01-Jan-2012';  %Callable in two years

% Build the tree with the following data
VolDates = ['1-Jan-2011'; '1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014'];
VolCurve = 0.01;
AlphaDates = '01-01-2014';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RS, HWTimeSpec);

% The first row corresponds to the price of the callable bond with maturity
% of three years. The second row corresponds to the price of the callable 
% bond with maturity of four years.

PHW= optembndbyhw(HWT, CouponRate,  Settle, Maturity,OptSpec, Strike,...
ExerciseDates, 'Period', 1)

PHW = 2×1

  100.0326
   99.7987
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Price a Sinking Fund Bond Using an HW Interest-Rate Tree Model

A corporation issues a two year bond with a sinking fund obligation requiring the
company to sink 1/3 of face value after the first year. The company has the option to buy
the bonds in the market or call them at $99. The following data describes the details
needed for pricing the sinking fund bond:

Rates = [0.1;0.1;0.1;0.1];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
Compounding = 1;

% Create RateSpec
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

% Build the HW tree
% The data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

% Instrument
% The bond has a coupon rate of 9%, a period of one year and matures in
% 1-Jan-2013. Face decreases 1/3 after the first year.
CouponRate = 0.09;
Settle = 'Jan-1-2011';
Maturity =  'Jan-1-2013';
Period = 1;
Face = { ...        
            {'Jan-1-2012'  100; ...
             'Jan-1-2013'   66.6666}; ...
        };

% Option provision
OptSpec = 'call'; 
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Strike = 99;
ExerciseDates = 'Jan-1-2012';

% Price of non-sinking fund bond. 
PNSF = bondbyhw(HWT, CouponRate, Settle, Maturity, Period)

PNSF = 98.2645

Price of the bond with the option sinking provision.

PriceSF = optembndbyhw(HWT, CouponRate, Settle, Maturity,...
OptSpec, Strike, ExerciseDates, 'Period', Period, 'Face', Face)

PriceSF = 98.1553

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

CouponRate — Bond coupon rate
positive decimal value

Bond coupon rate, specified as an NINST-by-1 decimal annual rate or NINST-by-1 cell
array, where each element is a NumDates-by-2 cell array. The first column of the
NumDates-by-2 cell array is dates and the second column is associated rates. The date
indicates the last day that the coupon rate is valid.
Data Types: double | cell

Settle — Settlement date
serial date number | date character vector

Settlement date for the bond option, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.

Note The Settle date for every bond is set to the ValuationDate of the HW tree. The
bond argument Settle is ignored.
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Data Types: double | char

Maturity — Maturity date
serial date number | date character vector

Maturity date, specified as an NINST-by-1 vector of serial date numbers or date character
vectors.
Data Types: double | char

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors.
Data Types: char

Strike — Option strike price values
nonnegative integer

Option strike price value, specified as a NINST-by-1 or NINST-by-NSTRIKES depending on
the type of option:

• European option — NINST-by-1 vector of strike price values.
• Bermuda option — NINST by number of strikes (NSTRIKES) matrix of strike price

values. Each row is the schedule for one option. If an option has fewer than NSTRIKES
exercise opportunities, the end of the row is padded with NaNs.

• American option — NINST-by-1 vector of strike price values for each option.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1, NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the type of option:

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates.
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• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optembndbyhw(HWTree,CouponRate,Settle,Maturity,OptSpec,Strike,Exerci
seDates,'Period',1,'AmericanOp',1)

AmericanOpt — Option type
0 European/Bermuda (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Period — Coupons per year
2 per year (default) | vector

Coupons per year, specified as the comma-separated pair consisting of 'Period' and a
NINST-by-1 vector.
Data Types: double

Basis — Day-count basis
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector of integers.

 optembndbyhw

11-1623



• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with values 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer using a NINST-by-1 vector. This rule applies
only when Maturity is an end-of-month date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

IssueDate — Bond issue date
serial date number | date character vector

Bond issue date,specified as the comma-separated pair consisting of 'IssueDate' and a
NINST-by-1 vector using serial date numbers or date character vectors.
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Data Types: double | char

FirstCouponDate — Irregular first coupon date
serial date number | date character vector

Irregular first coupon date, specified as the comma-separated pair consisting of
'FirstCouponDate' and a NINST-by-1 vector using serial date numbers date or date
character vectors.

When FirstCouponDate and LastCouponDate are both specified, FirstCouponDate
takes precedence in determining the coupon payment structure. If you do not specify a
FirstCouponDate, the cash flow payment dates are determined from other inputs.
Data Types: double | char

LastCouponDate — Irregular last coupon date
serial date number | date character vector

Irregular last coupon date, specified as the comma-separated pair consisting of
'LastCouponDate' and a NINST-by-1 vector using serial date numbers or date
character vectors.

In the absence of a specified FirstCouponDate, a specified LastCouponDate
determines the coupon structure of the bond. The coupon structure of a bond is truncated
at the LastCouponDate, regardless of where it falls, and is followed only by the bond's
maturity cash flow date. If you do not specify a LastCouponDate, the cash flow payment
dates are determined from other inputs.
Data Types: char | double

StartDate — Forward starting date of payments
serial date number | date character vector

Forward starting date of payments (the date from which a bond cash flow is considered),
specified as the comma-separated pair consisting of 'StartDate' and a NINST-by-1
vector using serial date numbers or date character vectors.

If you do not specify StartDate, the effective start date is the Settle date.
Data Types: char | double

Face — Face value
100 (default) | nonnegative value | cell array of nonnegative values
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Face or par value, specified as the comma-separated pair consisting of 'Face' and a
NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices of embedded option at time 0
matrix

Expected price of the embedded option at time 0, returned as a NINST-by-1 matrix.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

Definitions

Vanilla Bond with Embedded Option
A vanilla coupon bond is a security representing an obligation to repay a borrowed
amount at a designated time and to make periodic interest payments until that time.

The issuer of a bond makes the periodic interest payments until the bond matures. At
maturity, the issuer pays to the holder of the bond the principal amount owed (face value)
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and the last interest payment. A vanilla bond with an embedded option is where an option
contract has an underlying asset of a vanilla bond.

Stepped Coupon Bond with Callable and Puttable Features
A step-up and step-down bond is a debt security with a predetermined coupon structure
over time.

With these instruments, coupons increase (step up) or decrease (step down) at specific
times during the life of the bond. Stepped coupon bonds can have options features (call
and puts).

Sinking Fund Bond with Embedded Option
A sinking fund bond is a coupon bond with a sinking fund provision.

This provision obligates the issuer to amortize portions of the principal prior to maturity,
affecting bond prices since the time of the principal repayment changes. This means that
investors receive the coupon and a portion of the principal paid back over time. These
types of bonds reduce credit risk, since it lowers the probability of investors not receiving
their principal payment at maturity.

The bond may have a sinking fund option provision allowing the issuer to retire the
sinking fund obligation either by purchasing the bonds to be redeemed from the market
or by calling the bond via a sinking fund call, whichever is cheaper. If interest rates are
high, then the issuer buys back the requirement amount of bonds from the market since
bonds are cheap, but if interest rates are low (bond prices are high), then most likely the
issuer is buying the bonds at the call price. Unlike a call feature, however, if a bond has a
sinking fund option provision, it is an obligation, not an option, for the issuer to buy back
the increments of the issue as stated. Because of this, a sinking fund bond trades at a
lower price than a non-sinking fund bond.

See Also
cfamounts | hwprice | hwtree | instoptembnd

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
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“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2008a
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optemfloatbybdt
Price embedded option on floating-rate note for Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbybdt(BDTTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbybdt(BDTTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates) prices embedded options on floating-rate notes
from a Black-Derman-Toy interest rate tree. optemfloatbybdt computes prices of
vanilla floating-rate notes with embedded options.

[Price,PriceTree] = optemfloatbybdt( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price Callable Embedded Option for Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BDT tree and assume a volatility of 10%.

Sigma = 0.1;
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Define the floater instruments with the embedded call option.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  {'Jan-1-2015';'Jan-1-2016'};
Period = 1;
OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2015';

Compute the price of the floaters with the embedded call.

Price= optemfloatbybdt(BDTT, Spread, Settle, Maturity, OptSpec, Strike,...
ExerciseDates)

Price = 2×1

  100.2800
  100.3655
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Input Arguments
BDTTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bdttree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date
numbers | date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the BDT tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors
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Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optemfloatbybdt(BDTTree,Spread,Settle,Maturity,OptSpec,Strike,Exerci
seDates,'AmericanOpt',1,'FloatReset',6,'Basis',8)

11 Functions — Alphabetical List

11-1632



AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
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• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
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Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PTree contains option prices.
• PriceTree.tObs contains the observation times.

See Also
instoptemfloat | optembndbybdt | optemfloatbybk | optemfloatbyhjm |
optemfloatbyhw

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2
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Introduced in R2013a

11 Functions — Alphabetical List

11-1636



optemfloatbybk
Price embedded option on floating-rate note for Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbybk(BKTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbybk(BKTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates) prices embedded options on floating-rate notes
from a Black-Karasinski interest rate tree. optemfloatbybk computes prices of vanilla
floating-rate notes with embedded options.

[Price,PriceTree] = optemfloatbybk( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price European Callable Embedded Option for Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BK tree.

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
            AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec)

BKT = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0300]  [1.0387 1.0380 1.0373]  [1x5 double]  [1x7 double]}

The floater instrument has a spread of 15, a period of one year, and matures and is
callable on Jan-1-2015.

Spread = 15;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2015';
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Period = 1;
OptSpec = {'call'};
Strike =101;
ExerciseDates = 'Jan-1-2015';

Compute the price of the floater with the embedded call.

Price= optemfloatbybk(BKT, Spread, Settle, Maturity,...
OptSpec, Strike, ExerciseDates)

Price = 100.4201

Input Arguments
BKTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bktree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date
numbers | date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the BK tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char
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Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optemfloatbybk(BKTree,Spread,Settle,Maturity,OptSpec,Strike,Exercise
Dates,'AmericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double

 optemfloatbybk

11-1641



Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PTree contains option prices.
• PriceTree.tObs contains the observation times.
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See Also
instoptemfloat | optembndbybk | optemfloatbybdt | optemfloatbyhjm |
optemfloatbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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optemfloatbycir
Price embedded option on floating-rate note for Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbycir(CIRTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbycir(CIRTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates) prices embedded options on floating-rate notes
from a Cox-Ingersoll-Ross (CIR) interest rate tree. optemfloatbycir computes prices of
vanilla floating-rate notes with embedded options using a CIR++ model with the
Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = optemfloatbycir( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price European Callable Embedded Option for a Floating-Rate Note Using a CIR
Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 
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Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2020'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, 3); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [736696 737061 737426]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]}
     Connect: {[3x1 double]  [3x3 double]}
       Probs: {[3x1 double]  [3x3 double]}

Define the floater instruments with the embedded call option.

Spread = 10;
Settle = 'Jan-1-2017';
Maturity =  {'Jan-1-2019';'Jan-1-2020'};
Period = 1;
OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2019';

Compute the price of the floaters with the embedded call.

[Price,PriceTree] = optemfloatbycir(CIRT,Spread,Settle,Maturity,OptSpec,Strike,ExerciseDates)

Price = 2×1

  100.1887
  100.2757

11 Functions — Alphabetical List

11-1646



PriceTree = struct with fields:
    FinObj: 'CIRPriceTree'
      tObs: [0 1 2 3]
     PTree: {[2x1 double]  [2x3 double]  [2x5 double]  [2x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree specified as a structure by using cirtree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of CIR tree (default) | serial date number | vector of serial date numbers
| date character vector | cell array of date character vectors | string array | datetime

Settlement dates of floating-rate note specified as serial date numbers, date character
vectors, string arrays, or datetime arrays using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the CIR tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char | string | datetime

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors | string array | datetime
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Floating-rate note maturity date specified as serial date numbers, date character vectors,
string arrays, or datetime arrays using a NINST-by-1 vector of dates.
Data Types: double | cell | char | string | datetime

OptSpec — Definition of option
character vector with value of 'call' or 'put' | cell array of character vectors with
value of 'call' or 'put' | string array with value of "call" or "put"

Definition of option, specified as a NINST-by-1 cell array of character vectors or string
arrays with a value of 'call' or 'put'.
Data Types: cell | char | string

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors | string array | datetime

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers, date character vectors, string arrays, or datetime arrays using an NINST-by-
NSTRIKES or an NINST-by-2 vector of for the option exercise dates.

• For a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-
by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDates on the option expiry date.

• For an American option, the ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDates.

Data Types: double | char | cell | string | datetime

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optemfloatbycir(CIRTree,Spread,Settle,Maturity,OptSpec,Strike,Exerci
seDates,'AmericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 vector of flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set [1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]
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Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double
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Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts.

When using a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where
the first column is dates, and the second column is associated principal amount. The date
indicates the last day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and the output from derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains option prices.
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See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
instoptemfloat | oasbycir | optbndbycir | optembndbycir | optfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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optemfloatbyhjm
Price embedded option on floating-rate note for Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates) prices embedded options on floating-rate notes
from a Heath-Jarrow-Morton interest rate tree. optemfloatbybk computes prices of
vanilla floating-rate notes with embedded options.

[Price,PriceTree] = optemfloatbyhjm( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price European Callable Embedded Option for a Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.035;0.040;0.045];
ValuationDate = 'Jan-1-2012';
StartDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: [4x1 double]
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HJM tree.

VolSpec = hjmvolspec('Constant', 0.01);
TimeSpec = hjmtimespec(RateSpec.ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

The floater instrument has a spread of 15, a period of one year, and matures and is
callable on Jan-1-2016.

Spread = 15;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;
OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';

Compute the price of the floater with the embedded call.
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Price = optemfloatbyhjm(HJMTree, Spread, Settle, Maturity,...
OptSpec, Strike, ExerciseDates)

Price = 96.2355

Input Arguments
HJMTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hjmtree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date
numbers | date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the HJM tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
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Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | cell | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [Price,PriceTree] =
optemfloatbyhjm(HJMTree,Spread,Settle,Maturity,OptSpec,Strike,Exerci
seDates,'AmericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values
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Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PBush contains the clean prices.
• PriceTree.tObs contains the observation times.

See Also
instoptemfloat | optembndbyhjm | optemfloatbybdt | optemfloatbybk |
optemfloatbyhw

Topics
“Computing Instrument Prices” on page 2-99
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“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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optemfloatbyhw
Price embedded option on floating-rate note for Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optemfloatbyhw(HWTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates)
[Price,PriceTree] = optemfloatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = optemfloatbyhw(HWTree,Spread,Settle,Maturity,
OptSpec,Strike,ExerciseDates) prices embedded options on floating-rate notes
from a Hull-White interest rate tree. optemfloatbybk computes prices of vanilla
floating-rate notes with embedded options.

[Price,PriceTree] = optemfloatbyhw( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price European Callable Embedded Option for Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates',...
StartDates, 'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HW tree using the following:

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
            AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0300]  [1.0562 1.0381 1.0202]  [1x5 double]  [1x7 double]}

Define the floater instruments with the embedded call option.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  {'Jan-1-2015';'Jan-1-2016'};
Period = 1;
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OptSpec = {'call'};
Strike = 101;
ExerciseDates = 'Jan-1-2015';

Compute the price of the floaters with the embedded call.

Price= optemfloatbyhw(HWT, Spread, Settle, Maturity, OptSpec, Strike,...
ExerciseDates)

Price = 2×1

  100.2800
  100.3655

Input Arguments
HWTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hwtree.
Data Types: struct

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date
numbers | date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note with an embedded option is set to the
ValuationDate of the HW tree. The floating-rate note argument Settle is ignored.
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Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
Data Types: double | cell | char

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optemfloatbyhw(HWTree,Spread,Settle,Maturity,OptSpec,Strike,Exercise
Dates,'AmericanOpt',1,'FloatReset',6,'Basis',8)

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double
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Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.
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• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 are returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PTree contains embedded option prices.
• PriceTree.tObs contains the observation times.
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See Also
instoptemfloat | optembndbyhw | optemfloatbybdt | optemfloatbybk |
optemfloatbyhjm

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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optfloatbybdt
Price options on floating-rate notes for Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = optfloatbybdt(BDTTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbybdt(BDTTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity) prices options on
floating-rate notes from a Black-Derman-Toy interest rate tree. optfloatbybdt
computes prices of options on vanilla floating-rate notes.

[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of American Call and Put Options on a Floating-Rate Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BDT tree and assume a volatility of 10%.

Sigma = 0.1;  
BDTTimeSpec = bdttimespec(ValuationDate, EndDates);
BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec)

BDTT = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {1x4 cell}

The floater instrument has a spread of 10, a period of one year, and matures on
Jan-1-2016.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'; 'put'};
Strike = [100;101];
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ExerciseDates = 'Jan-1-2015';
AmericanOpt = 1;

Compute the price of the call and put options.

Price= optfloatbybdt(BDTT,  OptSpec, Strike, ExerciseDates,AmericanOpt, Spread,...
Settle, Maturity)

Price = 2×1

    0.3655
    0.8087

Input Arguments
BDTTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bdttree.
Data Types: struct

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors
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Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of BDT Tree (default) | serial date number | vector of serial date
numbers | date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the
BDT tree. The floating-rate note argument Settle is ignored.
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Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
[Price,PriceTree]=optfloatbybdt(BDTTree,OptSpec,Strike,ExerciseDates
,AmericanOpt,Spread,Settle,Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double
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Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell
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Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PTree contains option prices.
• PriceTree.tObs contains the observation times.
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See Also
bdttree | bondbybdt | capbybdt | cfbybdt | floatbybdt | floorbybdt |
instoptfloat | swapbybdt

Topics
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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optfloatbybk
Price options on floating-rate notes for Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = optfloatbybdt(BKTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbybdt(BKTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity) prices options on
floating-rate notes from a Black-Karasinski interest rate tree. optfloatbybk computes
prices of options on vanilla floating-rate notes.

[Price,PriceTree] = optfloatbybdt( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate
Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.
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RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the BK tree.

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate,VolDates,VolCurve,...
AlphaDates,AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate,VolDates,Compounding);
BKT = bktree(BKVolSpec,RateSpec,BKTimeSpec)

BKT = struct with fields:
      FinObj: 'BKFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0300]  [1.0387 1.0380 1.0373]  [1x5 double]  [1x7 double]}

The floater instrument has a spread of 10, a period of one year, and matures on
Jan-1-2016.
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Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';
AmericanOpt = [0;1];

Compute the price of the call options.

Price = optfloatbybk(BKT,OptSpec,Strike,ExerciseDates,AmericanOpt,...
Spread,Settle,Maturity)

Price = 2×1

    4.2740
    5.3655

Input Arguments
BKTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using bktree.
Data Types: struct

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers
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Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double
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Settle — Settlement dates of floating-rate note
ValuationDate of BK tree (default) | serial date number | vector of serial date numbers |
date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the
BK tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optfloatbybk(BKTree,OptSpec,Strike,ExerciseDates,AmericanOpt,Spread,
Settle,Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.
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Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an
NINST-by-1 vector.
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PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bktree | bondbybk | capbybk | cfbybk | floatbybk | floorbybk | instoptfloat |
swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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optfloatbycir
Price options on floating-rate notes for Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = optfloatbycir(CIRTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbycir(CIRTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity) prices options on
floating-rate notes from a Cox-Ingersoll-Ross (CIR) interest-rate tree. optfloatbycir
computes prices of options on vanilla floating-rate notes using a CIR++ model with the
Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = optfloatbycir( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate
Note Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 
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Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2021'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [736696 737061 737426 737791]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]  [1x7 double]}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

The floater instrument has a spread of 10, a period of one year, and matures on
Jan-1-2018.

Spread = 10;
Settle = 'Jan-1-2017';
Maturity = 'Jan-1-2019';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2018';
AmericanOpt = [0;1];

Compute the price of the call options.

[Price,PriceTree] = optfloatbycir(CIRT, OptSpec,Strike,ExerciseDates,AmericanOpt,...
Spread, Settle, Maturity)

11 Functions — Alphabetical List

11-1686



Price = 2×1

    4.9230
    5.1887

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x5 cell}
     AITree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree specified as a structure by using cirtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with
values of 'call' or 'put' | string array with values 'call' or 'put'

Definition of option, specified as a NINST-by-1 cell array of character vectors or string
arrays with values of 'call' or 'put'.
Data Types: cell | char | string

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values, specified as nonnegative integers using an NINST-by-
NSTRIKES vector of strike price values.
Data Types: single | double
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ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors | string array | datetime

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers, date character vectors, string arrays, or datetime arrays using a NINST-by-
NSTRIKES or NINST-by-2 vector of for the option exercise dates.

• For a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-
by-NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, the ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell | string | datetime

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of CIR tree (default) | serial date number | vector of serial date numbers
| date character vector | cell array of date character vectors | string array | datetime

Settlement dates of floating-rate note specified as serial date numbers, date character
vectors, string arrays, or datetime arrays using a NINST-by-1 vector of dates.
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Note The Settle date for every floating-rate note is set to the ValuationDate of the
CIR tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char | string

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors | string array | datetime

Floating-rate note maturity date specified as serial date numbers, date character vectors,
string arrays, or datetime arrays using a NINST-by-1 vector of dates.
Data Types: double | cell | char | string | datetime

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optfloatbybk(CIRTree,OptSpec,Strike,ExerciseDates,AmericanOpt,Spread
,Settle,Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

 optfloatbycir

11-1689



Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts.
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When using a NINST-by-1 cell array, each element is a NumDates-by-2 cell array where
the first column is dates, and the second column is associated principal amount. The date
indicates the last day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and the output from derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:
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• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
instoptfloat | oasbycir | optbndbycir | optembndbycir | optemfloatbycir |
rangefloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
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“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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optfloatbyhjm
Price options on floating-rate notes for Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = optfloatbyhjm(HJMTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbyhjm(HJMTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity) prices options on
floating-rate notes from a Heath-Jarrow-Morton interest rate tree. optfloatbyhjm
computes prices of options on vanilla floating-rate notes.

[Price,PriceTree] = optfloatbyhjm( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate
Note

Define the interest-rate term structure.

Rates = [0.03;0.035;0.040;0.045];
ValuationDate = 'Jan-1-2012';
StartDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.
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RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: [4x1 double]
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HJM tree.

VolSpec = hjmvolspec('Constant', 0.01);
TimeSpec = hjmtimespec(RateSpec.ValuationDate, EndDates, Compounding);
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec)

HJMTree = struct with fields:
      FinObj: 'HJMFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
        TFwd: {[4x1 double]  [3x1 double]  [2x1 double]  [3]}
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
     FwdTree: {[4x1 double]  [3x1x2 double]  [2x2x2 double]  [1x4x2 double]}

The floater instrument has a spread of 10, a period of one year, and matures on
Jan-1-2015.

Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2015';
Period = 1;

Define the option for the floating-rate note.
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OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2015';
AmericanOpt = [0;1];

Compute the price of the call options.

Price= optfloatbyhjm(HJMTree,  OptSpec, Strike, ExerciseDates,AmericanOpt,...
Spread, Settle, Maturity)

Price = 2×1

    4.5098
    5.2811

Input Arguments
HJMTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hjmtree.
Data Types: struct

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers

Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double
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ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

Settle — Settlement dates of floating-rate note
ValuationDate of HJM tree (default) | serial date number | vector of serial date
numbers | date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
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Note The Settle date for every floating-rate note is set to the ValuationDate of the
HJM tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optfloatbyhjm(HJMTree,OptSpec,Strike,ExerciseDates,AmericanOpt,Sprea
d,Settle,Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.

Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.
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Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
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Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an
NINST-by-1 vector.

PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PBush contains the clean prices.
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• PriceTree.AIBush contains the accrued interest.
• PriceTree.tObs contains the observation times.

See Also
bondbyhjm | capbyhjm | cfbyhjm | floatbyhjm | floorbyhw | hjmtree |
instoptfloat | swapbyhjm

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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optfloatbyhw
Price options on floating-rate notes for Hull-White interest-rate tree

Syntax
[Price,PriceTree] = optfloatbyhw(HWTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity)
[Price,PriceTree] = optfloatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = optfloatbyhw(HWTree,OptSpec,Strike,
ExerciseDates,AmericanOpt,Spread,Settle,Maturity) prices options on
floating-rate notes from a Hull-White interest rate tree. optfloatbyhw computes prices
of options on vanilla floating-rate notes.

[Price,PriceTree] = optfloatbyhw( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Compute the Price of American and European Call Options on a Floating-Rate
Note

Define the interest-rate term structure.

Rates = [0.03;0.034;0.038;0.04];
ValuationDate = 'Jan-1-2012';
StartDates = ValuationDate;
EndDates = {'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'; 'Jan-1-2016'};
Compounding = 1;

Create the RateSpec.
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RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x1 double]
            Rates: [4x1 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the HW tree using the following:

VolDates = ['1-Jan-2013'; '1-Jan-2014'; '1-Jan-2015';'1-Jan-2016'];
VolCurve = 0.01;
AlphaDates = '01-01-2016';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
            AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec)

HWT = struct with fields:
      FinObj: 'HWFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3]
        dObs: [734869 735235 735600 735965]
      CFlowT: {[4x1 double]  [3x1 double]  [2x1 double]  [4]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]}
     Connect: {[2]  [2 3 4]  [2 3 4 5 6]}
     FwdTree: {[1.0300]  [1.0562 1.0381 1.0202]  [1x5 double]  [1x7 double]}

The floater instrument has a spread of 10, a period of one year, and matures on
Jan-1-2016.
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Spread = 10;
Settle = 'Jan-1-2012';
Maturity =  'Jan-1-2016';
Period = 1;

Define the option for the floating-rate note.

OptSpec = {'call'};
Strike = 95;
ExerciseDates = 'Jan-1-2016';
AmericanOpt = [0;1];

Compute the price of the call options.

Price= optfloatbyhw(HWT,  OptSpec, Strike, ExerciseDates,AmericanOpt,...
Spread, Settle, Maturity)

Price = 2×1

    4.2740
    5.3655

Input Arguments
HWTree — Interest-rate tree structure
binomial tree structure

Interest-rate tree specified as a structure by using hwtree.
Data Types: struct

OptSpec — Definition of option
character vector | cell array of character vectors

Definition of option as 'call' or 'put' specified as a NINST-by-1 cell array of character
vectors for 'call' or 'put'.
Data Types: cell | char

Strike — Option strike price values
nonnegative integer | vector of nonnegative integers
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Option strike price values specified nonnegative integers using as NINST-by-NSTRIKES
vector of strike price values.
Data Types: single | double

ExerciseDates — Exercise date for option (European, Bermuda, or American)
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Exercise date for option (European, Bermuda, or American) specified as serial date
numbers or date character vectors using a NINST-by-NSTRIKES or NINST-by-2 vector of
for the option exercise dates.

• If a European or Bermuda option, the ExerciseDates is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermuda) vector of exercise dates. For a European option, there is only
one ExerciseDate on the option expiry date.

• If an American option, then ExerciseDates is a 1-by-2 vector of exercise date
boundaries. The option exercises on any date between or including the pair of dates on
that row. If there is only one non-NaN date, or if ExerciseDates is 1-by-1, the option
exercises between the Settle date and the single listed ExerciseDate.

Data Types: double | char | cell

AmericanOpt — Option type
scalar | vector of positive integers[0,1]

Option type specified as NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: single | double

Spread — Number of basis points over the reference rate
nonnegative integer | vector of nonnegative integers

Number of basis points over the reference rate specified as a vector of nonnegative
integers for the number of instruments (NINST)-by-1).
Data Types: single | double

 optfloatbyhw

11-1705



Settle — Settlement dates of floating-rate note
ValuationDate of HW tree (default) | serial date number | vector of serial date numbers
| date character vector | cell array of date character vectors

Settlement dates of floating-rate note specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.

Note The Settle date for every floating-rate note is set to the ValuationDate of the
HW tree. The floating-rate note argument Settle is ignored.

Data Types: double | cell | char

Maturity — Floating-rate note maturity date
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Floating-rate note maturity date specified as serial date numbers or date character
vectors using a NINST-by-1 vector of dates.
Data Types: double | cell | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example:
[Price,PriceTree]=optfloatbyhw(HWTree,OptSpec,Strike,ExerciseDates,A
mericanOpt,Spread,Settle,Maturity,'FloatReset',4,'Basis',7)

FloatReset — Frequency of payments per year
1 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of payments per year, specified as the comma-separated pair consisting of
'FloatReset' and positive integers for the values [1,2,3,4,6,12] in a NINST-by-1
vector.
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Note Payments on floating-rate notes (FRNs) are determined by the effective interest-
rate between reset dates. If the reset period for an FRN spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there will be more than one possible path for connecting the two
payment dates.

Data Types: double

Basis — Day-count basis of the instrument
0 (actual/actual) (default) | positive integers of the set [1...13] | vector of positive
integers of the set [1...13]

Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a positive integer using a NINST-by-1 vector. The Basis value represents
the basis used when annualizing the input forward-rate tree.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Principal values
100 (default) | vector of nonnegative values | cell array of nonnegative values

Principal values, specified as the comma-separated pair consisting of 'Principal' and
nonnegative values using a NINST-by-1 vector or NINST-by-1 cell array of notional
principal amounts. When using a NINST-by-1 cell array, each element is a NumDates-by-2
cell array where the first column is dates and the second column is associated principal
amount. The date indicates the last day that the principal value is valid.
Data Types: double | cell

Options — Structure containing derivatives pricing options
structure

Structure containing derivatives pricing options, specified as the comma-separated pair
consisting of 'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 vector. This rule
applies only when Maturity is an end-of-month date for a month having 30 or fewer
days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
Price — Expected prices of the floating-rate note option at time 0
scalar | vector

Expected prices of the floating-rate note option at time 0 is returned as a scalar or an
NINST-by-1 vector.
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PriceTree — Structure of trees containing vectors of option prices at each node
tree structure

Structure of trees containing vectors of instrument prices and accrued interest and a
vector of observation times for each node returned as:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

See Also
bondbyhw | capbyhw | cfbyhw | floatbyhw | floorbyhw | hwtree | instoptfloat |
swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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optsensbysabr
Calculate option sensitivities using SABR model

Syntax
Sens = optsensbysabr(ZeroCurve,Alpha,Beta,Rho,Nu,Settle,
ExerciseDate,ForwardValue,Strike,OptSpec)
Sens = optsensbysabr( ___ ,Name,Value)

Description
Sens = optsensbysabr(ZeroCurve,Alpha,Beta,Rho,Nu,Settle,
ExerciseDate,ForwardValue,Strike,OptSpec) returns the sensitivities of an
option value by using the SABR stochastic volatility model.

Sens = optsensbysabr( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the input arguments in the previous syntax.

Examples

Calculate the Sensitivity Values for an Interest-Rate Swaption

Define the interest rate and the model parameters.

SwapRate = 0.0357; 
Strike = 0.03; 
Alpha = 0.036; 
Beta = 0.5; 
Rho = -0.25; 
Nu = 0.35; 
Rates = 0.05;

Define the Settle, ExerciseDate, and OptSpec for an interest-rate swaption.
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Settle = datenum('15-Sep-2013'); 
ExerciseDate = datenum('15-Sep-2015'); 
OptSpec = 'call';

Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', ExerciseDate, 'Rates', Rates, 'Compounding', -1, 'Basis', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.0500
         EndTimes: 2
       StartTimes: 0
         EndDates: 736222
       StartDates: 735492
    ValuationDate: 735492
            Basis: 1
     EndMonthRule: 1

Calculate the Delta and Vega sensitivity values for the interest-rate swaption.

[SABRDelta, SABRVega] = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, Settle, ...
ExerciseDate, SwapRate, Strike, OptSpec, 'OutSpec',  {'Delta', 'Vega'})

SABRDelta = 0.7025

SABRVega = 0.0772

Calculate the Sensitivity Values for a Swaption Using the Shifted SABR Model

Define the interest rate and the model parameters.

SwapRate = 0.0002;
Strike = -0.001;  % -0.1% strike.
Alpha = 0.01;
Beta = 0.5;
Rho = -0.1;
Nu = 0.15;
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Shift = 0.005;  % 0.5 percent shift
Rates = 0.0002;

Define the Settle, ExerciseDate, and OptSpec for the swaption.

Settle = datenum('1-Mar-2016');
ExerciseDate = datenum('1-Mar-2017');
OptSpec = 'call';

Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle, ...
'EndDates',ExerciseDate,'Rates',Rates,'Compounding',-1,'Basis', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9998
            Rates: 2.0000e-04
         EndTimes: 1
       StartTimes: 0
         EndDates: 736755
       StartDates: 736390
    ValuationDate: 736390
            Basis: 1
     EndMonthRule: 1

Calculate the Delta and Vega sensitivity values for the swaption.

[ShiftedSABRDelta,ShiftedSABRVega] = optsensbysabr(RateSpec, ...
Alpha,Beta,Rho,Nu,Settle,ExerciseDate,SwapRate,Strike,OptSpec, ...
'OutSpec',{'Delta','Vega'},'Shift',Shift)

ShiftedSABRDelta = 0.9628

ShiftedSABRVega = 0.0060
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Calculate the Sensitivity Values for an Interest-Rate Swaption with Normal
(Bachelier) Implied Volatility

This example shows how to use optsensbysabr to calculate sensitivities for an interest-
rate swaption using the Normal model for the case where the Beta parameter is > 0 and
where Beta = 0.

For the case where the Beta parameter is > 0, select the Normal (Bachelier) implied
volatility model in optsensbysabr, specify the 'Model' name-value pair to 'normal'.

% Define the interest rate and the model parameters.

SwapRate = 0.025;
Strike = 0.02;
Alpha = 0.044;
Beta = 0.5;
Rho = -0.21;
Nu = 0.31;
Rates = 0.028;

% Define the Settle, ExerciseDate, and OptSpec for the swaption.

Settle = datenum('7-Mar-2018');
ExerciseDate = datenum('7-Mar-2020');
OptSpec = 'call';

% Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', ExerciseDate, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

% Calculate the Delta and Vega sensitivity values for the swaption. Set the
% 'Model' name-value pair to 'normal' in order to select the Normal
% (Bachelier) implied volatility model.

[SABRDelta, SABRVega] = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, ...
    Settle, ExerciseDate, SwapRate, Strike, OptSpec, ...
    'OutSpec',  {'Delta', 'Vega'}, 'Model', 'normal')

SABRDelta = 0.7171

SABRVega = 0.0686
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Calculate Sensitivities for a Swaption with Normal Implied Volatility Using the
Normal SABR Model

When the Beta parameter is set to zero, the SABR model becomes the Normal SABR
model. Negative interest rates are allowed when the Normal SABR model is used in
combination with Normal (Bachelier) implied volatility. To select the Normal (Bachelier)
implied volatility model in optsensbysabr, specify the 'Model' name-value pair to
'normal'.

% Define the interest rate and the model parameters. 

SwapRate = -0.00254;
Strike = -0.002;
Alpha = 0.0047;
Beta = 0;  % Set the Beta parameter to zero to use the Normal SABR model
Rho = -0.20;
Nu = 0.28;
Rates = 0.0001;

% Define the Settle, ExerciseDate, and OptSpec for the swaption.

Settle = datenum('11-Apr-2018');
ExerciseDate = datenum('11-Apr-2019');
OptSpec = 'call';

% Define the RateSpec for the interest-rate curve.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
    'EndDates', ExerciseDate, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

% Calculate the Delta and Vega sensitivity values for the swaption. Set the
% 'Model' name-value pair to 'normal' in order to select the Normal
% (Bachelier) implied volatility model.

[SABRDelta, SABRVega] = optsensbysabr(RateSpec, Alpha, Beta, Rho, Nu, ...
    Settle, ExerciseDate, SwapRate, Strike, OptSpec, ...
    'OutSpec',  {'Delta', 'Vega'}, 'Model', 'normal')

SABRDelta = 0.4644
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SABRVega = 0.3987

Input Arguments
ZeroCurve — Annualized interest-rate term structure for zero-coupon bonds
structure

Annualized interest-rate term structure for zero-coupon bonds, specified by using the
RateSpec obtained from intenvset or an IRDataCurve with multiple rates using the
IRDataCurve constructor.
Data Types: struct

Alpha — Current SABR volatility
scalar numeric

Current SABR volatility, specified as a scalar numeric.
Data Types: double

Beta — SABR constant elasticity of variance (CEV) exponent
scalar numeric

SABR CEV exponent, specified as a scalar numeric.
Data Types: double

Rho — Correlation between forward value and volatility
scalar numeric

Correlation between forward value and volatility, specified as a scalar numeric.
Data Types: double

Nu — Volatility of volatility
scalar numeric

Volatility of volatility, specified as a scalar numeric.
Data Types: double

Settle — Settlement date
scalar for serial nonnegative date number | scalar for date character vector
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Settlement date, specified as a scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ExerciseDate — Option exercise date
scalar for serial nonnegative date number | scalar for date character vector

Option exercise date, specified as a scalar using a serial nonnegative date number or date
character vector.
Data Types: double | char

ForwardValue — Current forward value of underlying asset
scalar numeric | vector

Current forward value of the underlying asset, specified as a scalar numeric or vector of
size NINST-by-1.
Data Types: double

Strike — Option strike price values
scalar numeric | vector

Option strike price values, specified as a scalar numeric or a vector of size NINST-by-1.
Data Types: double

OptSpec — Definition of option
character vector with value of 'call' or 'put'

Definition of the option, specified as 'call' or 'put' using a character vector.
Data Types: char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ModifiedSABRDelta =
optsensbysabr(RateSpec,Alpha,Beta,Rho,Nu,Settle,ExerciseDate,Forward
Value,Strike,OptSpec,'OutSpec','ModifiedDelta')
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OutSpec — Sensitivity outputs
'Delta' (default) | character vector with values 'Delta', 'Vega', 'ModifiedDelta',
'ModifiedVega', 'dSigmadF', 'dSigmadAlpha' | cell array of character vectors with
values 'Delta', 'Vega', 'ModifiedDelta', 'ModifiedVega', 'dSigmadF',
'dSigmadAlpha'

Sensitivity outputs, specified as the comma-separated pair consisting of 'OutSpec' and
an NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of
'Delta', 'Vega', 'ModifiedDelta', 'ModifiedVega', 'dSigmadF', and
'dSigmadAlpha' where:

• 'Delta' is SABR Delta by Hagan et al. (2002).
• 'Vega' is SABR Vega by Hagan et al. (2002).
• 'ModifiedDelta' is SABR Delta modified by Bartlett (2006).
• 'ModifiedVega' is SABR Vega modified by Bartlett (2006).
• 'dSigmadF' is the sensitivity of implied volatility with respect to the underlying

current forward value, F. The implied volatility type depends on Shift and Model.
• 'dSigmadAlpha' is the sensitivity of implied volatility with respect to the Alpha

parameter. The implied volatility type depends on Shift and Model.

Example: OutSpec =
{'Delta','Vega','ModifiedDelta','ModifiedVega','dSigmadF','dSigmadAl
pha'}

Data Types: char | cell

Shift — Shift in decimals for shifted SABR model
0 (no shift) (default) | scalar positive decimal

Shift in decimals for the shifted SABR model (to be used with the Shifted Black model),
specified as the comma-separated pair consisting of 'Shift' and a scalar positive
decimal value. Set this parameter to a positive shift in decimals to add a positive shift to
ForwardValue and Strike, which effectively sets a negative lower bound for
ForwardValue and Strike. For example, a Shift value of 0.01 is equal to a 1%
positive shift.

Note If the Model is set to 'normal', the Shift parameter must be 0.

Data Types: double
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Model — Model used by the implied volatility sigma
'lognormal' (default) | character vector with value 'lognormal' or 'normal' | string
with value "lognormal" or "normal"

Model used by the implied volatility sigma, specified as the comma-separated pair
consisting of 'Model' and a character vector with a value of 'lognormal' or
'normal', or a string with a value of "lognormal" or "normal".

Note The setting for Model affects the interpretation of the implied volatility “sigma”.
Depending on the setting for Model, the “sigma” has the following interpretations:

• If Model is 'lognormal' (default), “sigma” can be either Implied Black (no shift) or
Implied Shifted Black volatility.

• If Model is 'normal', “sigma” is the Implied Normal (Bachelier) volatility and Shift
must be zero.

Data Types: char | string

Output Arguments
Sens — Sensitivity values
array

Sensitivity values, returned as an NINST-by-1 array as defined by the OutSpec.

Algorithms
In the SABR model, an option with value V is defined by the modified Black formula B,

where s B  is the SABR implied Black volatility.

V B F K T F K T
B

= ( , , , ( , , , , , , ))s a b r n

The Delta and Vega sensitivities under the SABR model are expressed in terms of partial
derivatives in the original paper by Hagan (2002).
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Later, Bartlett (2006) made better use of the model dynamics by incorporating the
correlated changes between F and α
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where 
∂

∂

B

F  is the classic Black Delta and 
∂

∂

B

B
s  is the classic Black Vega. The Black

implied volatility s B  is computed internally by calling blackvolbysabr, while its partial

derivatives 
∂

∂

s B

F  and 
∂

∂

s

a

B

 are computed using closed-form expressions by
optsensbysabr.

Similar expressions apply to the implied Normal volatility σN. For more information, see
normalvolbysabr.

References
[1] Hagan, P. S., D. Kumar. A. S. Lesniewski, and D. E. Woodward. “Managing Smile Risk.”

Wilmott Magazine, 2002.

[2] Bartlett, B. “Hedging under SABR Model.” Wilmott Magazine, 2006.

See Also
IRDataCurve | blackvolbysabr | intenvset | normalvolbysabr | toRateSpec
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Topics
“Calibrate the SABR Model” on page 2-36
“Price a Swaption Using the SABR Model” on page 2-42
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-27
“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2014b
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optstockbybaw
Calculate American options prices using Barone-Adesi and Whaley option pricing model

Syntax
Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)

Description
Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) calculates American options prices using the Barone-Adesi and Whaley option
pricing model.

Examples

Compute American Option Prices Using the Barone-Adesi and Whaley Option
Pricing Model

Consider an American call option with an exercise price of $120. The option expires on
Jan 1, 2018. The stock has a volatility of 14% per annum, and the annualized continuously
compounded risk-free rate is 4% per annum as of Jan 1, 2016. Using this data, calculate
the price of the American call, assuming the price of the stock is $125 and pays a
dividend of 2%.

StartDate  = 'Jan-1-2016';
EndDate = 'jan-1-2018';
Basis = 1;
Compounding = -1;
Rates = 0.04;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',StartDate,'StartDate',StartDate,'EndDate',EndDate, ...
'Rates',Rates,'Basis',Basis,'Compounding',Compounding)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9231
            Rates: 0.0400
         EndTimes: 2
       StartTimes: 0
         EndDates: 737061
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

Dividend = 0.02;
AssetPrice = 125;
Volatility = 0.14;

StockSpec = stockspec(Volatility,AssetPrice,'Continuous',Dividend)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 125
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Define the American option.

OptSpec = 'call';
Strike = 120;
Settle = 'Jan-1-2016';
Maturity = 'jan-1-2018';

Compute the price for the American option.

Price = optstockbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike)

Price = 14.5180
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector | datetime object

Settlement date for the American option, specified as a NINST-by-1 matrix using a serial
date number, a date character vector, or a datetime object.
Data Types: double | char | datetime

Maturity — Maturity date
serial date number | date character vector | datetime object

Maturity date for the American option, specified as a NINST-by-1 matrix using a serial
date number, a date character vector, or a datetime object.
Data Types: double | char | datetime

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors with
values 'call' or 'put' | string array with values 'call' or 'put'
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Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors or string arrays with values 'call' or 'put'.
Data Types: char | cell | string

Strike — American option strike price value
nonnegative scalar | nonnegative vector

American Option strike price value, specified as a nonnegative scalar or NINST-by-1
matrix of strike price values. Each row is the schedule for one option.
Data Types: single | double

Output Arguments
Price — Expected prices for American options
vector

Expected prices for American options, returned as a NINST-by-1 vector.

References
[1] Barone-Aclesi, G. and Robert E. Whaley. “Efficient Analytic Approximation of American

Option Values.” The Journal of Finance. Volume 42, Issue 2 (June 1987), 301–320.

[2] Haug, E. The Complete Guide to Option Pricing Formulas. Second Edition. McGraw-
Hill Education, January 2007.

See Also
impvbybaw | optstocksensbybaw

Topics
“Supported Equity Derivatives” on page 3-24

Introduced in R2017a
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optstocksensbybaw
Calculate American options prices and sensitivities using Barone-Adesi and Whaley option
pricing model

Syntax
PriceSens = optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike)
PriceSens = optstocksensbybaw( ___ ,Name,Value)

Description
PriceSens = optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike) calculates American options prices using the Barone-Adesi and
Whaley option pricing model.

PriceSens = optstocksensbybaw( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Compute an American Option Price and Sensitivities Using the Barone-Adesi and
Whaley Option Pricing Model

Consider an American call option with an exercise price of $120. The option expires on
Jan 1, 2018. The stock has a volatility of 14% per annum, and the annualized continuously
compounded risk-free rate is 4% per annum as of Jan 1, 2016. Using this data, calculate
the price of the American call, assuming the price of the stock is $125 and pays a
dividend of 2%.

StartDate  = 'Jan-1-2016';
EndDate = 'jan-1-2018';
Basis = 1;

 optstocksensbybaw

11-1725



Compounding = -1;
Rates = 0.04;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',StartDate,'StartDate',StartDate,'EndDate',EndDate, ...
'Rates',Rates,'Basis',Basis,'Compounding',Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9231
            Rates: 0.0400
         EndTimes: 2
       StartTimes: 0
         EndDates: 737061
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

Dividend = 0.02;
AssetPrice = 125;
Volatility = 0.14;

StockSpec = stockspec(Volatility,AssetPrice,'Continuous',Dividend)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1400
         AssetPrice: 125
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Define the American option.

OptSpec = 'call';
Strike = 120;
Settle = 'Jan-1-2016';
Maturity = 'jan-1-2018';
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Compute the price and sensitivities for the American option.

OutSpec = {'price';'delta';'theta'};

[Price,Delta,Theta] = optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'OutSpec',OutSpec)

Price = 14.5180

Delta = 0.6672

Theta = -3.1861

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date
serial date number | date character vector | datetime object

Settlement date for the American option, specified as a NINST-by-1 matrix using a serial
date number, a date character vector, or a datetime object.
Data Types: double | char | datetime
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Maturity — Maturity date
serial date number | date character vector | datetime object

Maturity date for the American option, specified as a NINST-by-1 matrix using a serial
date number, a date character vector, or a datetime object.
Data Types: double | char | datetime

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors or string arrays with values 'call' or 'put'.
Data Types: char | string

Strike — American option strike price value
nonnegative scalar | nonnegative vector

American option strike price value, specified as a nonnegative scalar or NINST-by-1
matrix of strike price values. Each row is the schedule for one option.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,Delta,Theta] =
optstocksensbybaw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
'OutSpec',OutSpec)

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the same as specifying OutSpec to include each
sensitivity.
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities for American options
matrix

Expected prices or sensitivities for American options, returned as a NINST-by-1 matrix.

Note All sensitivities are evaluated by computing a discrete approximation of the partial
derivative. This means that the option is revalued with a fractional change for each
relevant parameter. The change in the option value divided by the increment is the
approximated sensitivity value.

References
[1] Barone-Aclesi, G. and Robert E. Whaley. “Efficient Analytic Approximation of American

Option Values.” The Journal of Finance. Volume 42, Issue 2 (June 1987), 301–320.

[2] Haug, E. The Complete Guide to Option Pricing Formulas. Second Edition. McGraw-
Hill Education, January 2007.

See Also
impvbybaw | optstockbybaw
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Topics
“Supported Equity Derivatives” on page 3-24

Introduced in R2017a
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optstockbybjs
Price American options using Bjerksund-Stensland 2002 option pricing model

Syntax
Price = optstockbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)

Description
Price = optstockbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) computes American option prices with continuous dividend yield using the
Bjerksund-Stensland 2002 option pricing model.

Note optstockbybjs computes prices of American options with continuous dividend
yield using the Bjerksund-Stensland option pricing model.

Examples

Compute the American Option Prices With Continuous Dividend Yield Using the
Bjerksund-Stensland 2002 Option Pricing Model

This example shows how to compute the American option prices with continuous dividend
yield using the Bjerksund-Stensland 2002 option pricing model. Consider two American
stock options (a call and a put) with an exercise price of $100. The options expire on April
1, 2008. Assume the underlying stock pays a continuous dividend yield of 4% as of
January 1, 2008. The stock has a volatility of 20% per annum and the annualized
continuously compounded risk-free rate is 8% per annum. Using this data, calculate the
price of the American call and put, assuming the following current prices of the stock:
$90 (for the call) and $120 (for the put).

Settle = 'Jan-1-2008';
Maturity = 'April-1-2008';
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Strike = 100;
AssetPrice = [90;120];
DivYield = 0.04;
Rate = 0.08;
Sigma = 0.20;

% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

% define the option type
OptSpec = {'call'; 'put'};

Price = optstockbybjs(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2×1

    0.8420
    0.1108

The first element of the Price vector represents the price of the call ($0.84); the second
element represents the price of the put option ($0.11).

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.
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stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as a NINST-by-1 vector.
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Data Types: double

References
[1] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.”

Scandinavian Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[2] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.”
Discussion paper 2002 (https://www.scribd.com/doc/215619796/Closed-form-
Valuation-of-American-Options-by-Bjerksund-and-Stensland#scribd)

See Also
IRDataCurve | blackvolbysabr | intenvset | toRateSpec

Topics
“Calibrate the SABR Model” on page 2-36
“Price a Swaption Using the SABR Model” on page 2-42
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2008b
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optstockbyblk
Price options on futures and forwards using Black option pricing model

Syntax
Price = optstockbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)
Price = optstockbyblk( ___ ,Name,Value)

Description
Price = optstockbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) computes option prices on futures using the Black option pricing model.

Note optstockbyblk calculates option prices on futures and forwards. If
ForwardMaturity is not passed, the function calculates prices of future options. If
ForwardMaturity is passed, the function computes prices of forward options. This
function handles several types of underlying assets, for example, stocks and commodities.
For more information on the underlying asset specification, see stockspec.

Price = optstockbyblk( ___ ,Name,Value) adds an optional name-value pair
argument for ForwardMaturity to compute option prices on forwards using the Black
option pricing model.

Examples

Compute Option Prices on Futures Using the Black Option Pricing Model

This example shows how to compute option prices on futures using the Black option
pricing model. Consider two European call options on a futures contract with exercise
prices of $20 and $25 that expire on September 1, 2008. Assume that on May 1, 2008 the
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contract is trading at $20, and has a volatility of 35% per annum. The risk-free rate is 4%
per annum. Using this data, calculate the price of the call futures options using the Black
model.

Strike = [20; 25];
AssetPrice = 20;
Sigma = .35;
Rates = 0.04;
Settle = 'May-01-08';
Maturity = 'Sep-01-08';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
 'EndDates', Maturity, 'Rates', Rates, 'Compounding', -1);

StockSpec = stockspec(Sigma, AssetPrice);

% define the call options
OptSpec = {'call'};

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike)

Price = 2×1

    1.5903
    0.3037

Compute Option Prices on a Forward

This example shows how to compute option prices on forwards using the Black pricing
model. Consider two European options, a call and put on the Brent Blend forward
contract that expires on January 1, 2015. The options expire on October 1, 2014 with an
exercise price of $200 and $90 respectively. Assume that on January 1, 2014 the forward
price is at $107, the annualized continuously compounded risk-free rate is 3% per annum
and volatility is 28% per annum. Using this data, compute the price of the options.

Define the RateSpec.

ValuationDate = 'Jan-1-2014';
EndDates = 'Jan-1-2015';
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Rates = 0.03;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, ...
'StartDates', ValuationDate, 'EndDates', EndDates, 'Rates', Rates,....
'Compounding', Compounding, 'Basis', Basis')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9704
            Rates: 0.0300
         EndTimes: 1
       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 107;
Sigma = 0.28;
StockSpec  = stockspec(Sigma, AssetPrice);

Define the options.

Settle = 'Jan-1-2014';
Maturity = 'Oct-1-2014';  %Options maturity
Strike = [200;90];
OptSpec = {'call'; 'put'};

Price the forward call and put options.

ForwardMaturity = 'Jan-1-2015';  % Forward contract maturity
Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike,...
'ForwardMaturity', ForwardMaturity)

Price = 2×1

    0.0535
    3.2111
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Compute the Option Price on a Future

Consider a call European option on the Crude Oil Brent futures. The option expires on
December 1, 2014 with an exercise price of $120. Assume that on April 1, 2014 futures
price is at $105, the annualized continuously compounded risk-free rate is 3.5% per
annum and volatility is 22% per annum. Using this data, compute the price of the option.

Define the RateSpec.

ValuationDate = 'January-1-2014';
EndDates = 'January-1-2015';
Rates = 0.035;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis')

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 735965
       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Define the StockSpec.

AssetPrice = 105;
Sigma = 0.22;
StockSpec  = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 105
       DividendType: []
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    DividendAmounts: 0
    ExDividendDates: []

Define the option.

Settle = 'April-1-2014';
Maturity = 'Dec-1-2014'; 
Strike = 120;
OptSpec = {'call'};

Price the futures call option.

Price = optstockbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2.5847

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector
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Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | cell

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | cell

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optstockbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,'For
wardMaturity',ForwardMaturity)

ForwardMaturity — Maturity date or delivery date of forward contract
Maturity of option (default) | serial date number | date character vector
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Maturity date or delivery date of forward contract, specified as the comma-separated pair
consisting of 'ForwardMaturity' and a NINST-by-1 vector using serial date numbers or
date character vectors.
Data Types: double | cell

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as a NINST-by-1 vector.

See Also
impvbyblk | intenvset | optstocksensbyblk | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Black Model” on page 3-154
“Forwards Option” on page 3-51
“Futures Option” on page 3-52
“Black Model” on page 3-149
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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optstockbybls
Price options using Black-Scholes option pricing model

Syntax
Price = optstockbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike)

Description
Price = optstockbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,
Strike) returns option prices using the Black-Scholes option pricing model.

Note When using StockSpec with optstockbybls, you can modify StockSpec to
handle other types of underliers when pricing instruments that use the Black-Scholes
model.

When pricing Futures (Black model), enter the following in StockSpec:

DivType = 'Continuous'; 
DivAmount = RateSpec.Rates;

For example, see “Compute Option Prices Using the Black-Scholes Option Pricing Model”
on page 11-1743.

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in
StockSpec:

DivType = 'Continuous'; 
DivAmount = ForeignRate; 

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country. For example, see “Compute Option Prices on Foreign Currencies
Using the Garman-Kohlhagen Option Pricing Model” on page 11-1743.
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Examples

Compute Option Prices Using the Black-Scholes Option Pricing Model

This example shows how to compute option prices using the Black-Scholes option pricing
model. Consider two European options, a call and a put, with an exercise price of $29 on
January 1, 2008. The options expire on May 1, 2008. Assume that the underlying stock for
the call option provides a cash dividend of $0.50 on February 15, 2008. The underlying
stock for the put option provides a continuous dividend yield of 4.5% per annum. The
stocks are trading at $30 and have a volatility of 25% per annum. The annualized
continuously compounded risk-free rate is 5% per annum. Using this data, compute the
price of the options using the Black-Scholes model.

Strike = 29;
AssetPrice = 30;
Sigma = .25;
Rates = 0.05;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1);

DividendType = {'cash';'continuous'};
DividendAmounts = [0.50; 0.045];
ExDividendDates = {'Feb-15-2008';NaN};

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts,...
ExDividendDates);

OptSpec = {'call'; 'put'};

Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 2×1

    2.2030
    1.2025
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Compute Option Prices on Foreign Currencies Using the Garman-Kohlhagen
Option Pricing Model

This example shows how to compute option prices on foreign currencies using the
Garman-Kohlhagen option pricing model. Consider a European put option on a currency
with an exercise price of $0.50 on October 1, 2015. The option expires on June 1, 2016.
Assume that the current exchange rate is $0.52 and has a volatility of 12% per annum.
The annualized continuously compounded domestic risk-free rate is 4% per annum and
the foreign risk-free rate is 8% per annum. Using this data, compute the price of the
option using the Garman-Kohlhagen model.

Settle = 'October-01-2015';
Maturity = 'June-01-2016';
AssetPrice = 0.52;
Strike = 0.50;
Sigma = .12;
Rates = 0.04;
ForeignRate = 0.08;

Define the RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9737
            Rates: 0.0400
         EndTimes: 0.6667
       StartTimes: 0
         EndDates: 736482
       StartDates: 736238
    ValuationDate: 736238
            Basis: 0
     EndMonthRule: 1

Define the StockSpec.

DividendType = 'Continuous';
DividendAmounts = ForeignRate;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts)
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StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 0.5200
       DividendType: {'continuous'}
    DividendAmounts: 0.0800
    ExDividendDates: []

Price the European put option.

OptSpec = {'put'};
Price = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike)

Price = 0.0162

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector
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Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected option prices
vector

Expected option prices, returned as a NINST-by-1 vector.
Data Types: double

See Also
impvbybls | intenvset | optstocksensbybls | stockspec
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Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing European Call Options Using Different Equity Models”
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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optstockbycrr
Price stock option from Cox-Ross-Rubinstein tree

Syntax
[Price,PriceTree] = optstockbycrr(CRRTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbycrr( ___ ,AmericanOpt)

Description
[Price,PriceTree] = optstockbycrr(CRRTree,OptSpec,Strike,Settle,
ExerciseDates) returns the price of a European, Bermuda, or American stock option
from a Cox-Ross-Rubinstein tree.

[Price,PriceTree] = optstockbycrr( ___ ,AmericanOpt) adds an optional
argument for AmericanOpt.

Examples

Price an American Stock Option Using a CRR Binomial Tree

This example shows how to price an American stock option using a CRR binomial tree by
loading the file deriv.mat, which provides CRRTree. The CRRTree structure contains
the stock specification and time information needed to price the American option.

load deriv.mat;

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2005';
AmericanOpt = 1;
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Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt)

Price = 8.2863

Price a Bermudan Stock Option Using a CRR Binomial Tree

Load the file deriv.mat, which provides CRRTree. The CRRTree structure contains the
stock specification and time information needed to price the Bermudan option.

load deriv.mat;

% Option
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDatesBerm={'01-Jan-2004', '01-Jul-2004','01-Jan-2005','01-Jul-2005'};

Price the Bermudan option.

Price = optstockbycrr(CRRTree, OptSpec, Strike, Settle, ExerciseDatesBerm)

Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated.

Price = 9.6381

Input Arguments
CRRTree — Stock tree structure
structure

Stock tree structure, specified by using crrtree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'
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Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending
on the option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is

the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American option, use a NINST-by-1 of strike prices.

Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date, specified as a NINST-by-1 vector of date character vectors
or serial date numbers.

Note The Settle date for every option is set to the ValuationDate of the stock tree.
The option argument Settle is ignored.

Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector
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Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.

Data Types: double | char

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

(Optional) Option type, specified as NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.
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PriceTree — Structure containing trees of vectors of instrument prices for each
node
structure

Structure containing trees of vectors of instrument prices and a vector of observation
times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

See Also
crrtree | instoptstock

Topics
“Computing Prices Using CRR” on page 3-129
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Computing Instrument Prices” on page 3-128
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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optstockbyeqp
Price stock option from Equal Probabilities binomial tree

Syntax
[Price,PriceTree] = optstockbyeqp(EQPTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbyeqp( ___ ,AmericanOpt)

Description
[Price,PriceTree] = optstockbyeqp(EQPTree,OptSpec,Strike,Settle,
ExerciseDates) returns the price of a European, Bermuda, or American stock option
from an Equal Probabilities binomial tree.

[Price,PriceTree] = optstockbyeqp( ___ ,AmericanOpt) adds an optional
argument for AmericanOpt.

Examples

Price an American Stock Option Using an EQP Equity Tree

This example shows how to price an American stock option using an EQP equity tree by
loading the file deriv.mat, which provides EQPTree. The EQPTree structure contains
the stock specification and time information needed to price the American option.

load deriv.mat

OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDates = '01-Jan-2006';
AmericanOpt = 1;
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Price = optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ... 
ExerciseDates, AmericanOpt)

Price = 12.2632

Price a Bermudan Stock Option Using a EQP Equity Tree

Load the file deriv.mat, which provides EQPTree. The EQPTree structure contains the
stock specification and time information needed to price the Bermudan option.

load deriv.mat;

% Option
OptSpec = 'Call';
Strike = 105;
Settle = '01-Jan-2003';
ExerciseDatesBerm={'15-Jan-2004','15-Jul-2004','15-Jan-2005','15-Jul-2005'};

Price the Bermudan option.

Price= optstockbyeqp(EQPTree, OptSpec, Strike, Settle, ExerciseDatesBerm)

Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated.

Price = 12.0255

Input Arguments
EQPTree — Stock tree structure
structure

Stock tree structure, specified by using eqptree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'
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Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending
on the option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is

the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American option, use a NINST-by-1 of strike prices.

Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date, specified as a NINST-by-1 vector of date character vectors
or serial date numbers.

Note The Settle date for every option is set to the ValuationDate of the stock tree.
The option argument Settle is ignored.

Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector
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Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.

Data Types: double | char

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

(Optional) Option type, specified as NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.
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PriceTree — Structure containing trees of vectors of instrument prices for each
node
structure

Structure containing trees of vectors of instrument prices and a vector of observation
times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

See Also
eqptree | instoptstock

Topics
“Computing Prices Using EQP” on page 3-131
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Computing Instrument Prices” on page 3-128
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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optstockbyfd
Calculate vanilla option prices using finite difference method

Syntax
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates)
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd( ___ ,Name,Value)

Description
[Price,PriceGrid,AssetPrices,Times] = optstockbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates) calculates vanilla option
prices using the finite difference method.

[Price,PriceGrid,AssetPrices,Times] = optstockbyfd( ___ ,Name,Value)
adds optional name-value pair arguments.

Examples

Price a Vanilla Call Option Using Finite Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
 
RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity,'Rates',Rate,'Compounding',-1,'Basis',Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price of a European vanilla call option using the finite difference method.

ExerciseDates = 'may-1-2015';
OptSpec = 'Call';
Price = optstockbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates)

Price = 6.7350

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
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Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or vector.

• For a European option, use a scalar of strike price.
• For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
• For an American option, use a scalar of strike price.

Data Types: single | double

Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
serial date number | date character vector | datetime object

11 Functions — Alphabetical List

11-1760



Option exercise dates, specified as a serial date number, a date character vector, or a
datetime object:

• For a European option, use a 1-by-1 vector of dates, specified as a nonnegative scalar
integer, a date character vector, or a datetime object. For a Bermuda option, use a 1-
by-NSTRIKES vector of dates, specified as a nonnegative scalar integer, date character
vector, or datetime object.

• For an American option, use a 1-by-2 cell array of date character vectors. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or a cell array of date character vectors, the option can be exercised between
Settle and the single listed date in ExerciseDates.

Data Types: double | char | cell | datetime

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optstockbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,
'AssetGridSize',1000)

AssetGridSize — Size of asset grid used for finite difference grid
400 (default) | positive scalar

Size of the asset grid used for a finite difference grid, specified as the comma-separated
pair consisting of 'AssetGridSize' and a positive scalar.
Data Types: double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated using asset distributions at maturity
(default) | positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMax' as a positive scalar.
Data Types: single | double
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TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive scalar

Size of the time grid used for a finite difference grid, specified as the comma-separated
pair consisting of 'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European/Bermuda) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:

• 0 — European/Bermuda
• 1 — American

Data Types: double

Output Arguments
Price — Expected prices for vanilla options
scalar

Expected prices for vanilla options, returned as a 1-by-1 matrix.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a grid that
is two-dimensional with size PriceGridSize*length(Times). The number of columns
does not have to be equal to the TimeGridSize, because ex-dividend dates in the
StockSpec are added to the time grid. The price for t = 0 is contained in
PriceGrid(:, end).

AssetPrices — Prices of asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of
PriceGrid, returned as a vector.
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Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

References
[1] Haug, E. G., J. Haug, and A. Lewis. "Back to basics: a new approach to the discrete

dividend problem." Vol. 9, Wilmott magazine, 2003, pp. 37–47.

[2] Wu, L. and Y. K. Kwok. "A front-fixing finite difference method for the valuation of
American options." Journal of Financial Engineering. Vol. 6.4, 1997, pp. 83–97.

See Also
optstockbyblk | optstockbylr | optstockbyls | optstocksensbyfd

Topics
“Supported Equity Derivatives” on page 3-24

Introduced in R2016b
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optstocksensbyfd
Calculate vanilla option prices or sensitivities using finite difference method

Syntax
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates)
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd( ___ ,
Name,Value)

Description
[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd(RateSpec,
StockSpec,OptSpec,Strike,Settle,ExerciseDates) calculates vanilla option
prices or sensitivities using the finite difference method.

[PriceSens,PriceGrid,AssetPrices,Times] = optstocksensbyfd( ___ ,
Name,Value) adds optional name-value pair arguments.

Examples

Calculate the Price and Sensitivities for a Vanilla Call Option Using Finite
Difference Method

Create a RateSpec.

AssetPrice = 50;
Strike = 45;
Rate = 0.035;
Volatility = 0.30;
Settle = '01-Jan-2015';
Maturity = '01-Jan-2016';
Basis = 1;
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RateSpec = intenvset('ValuationDate',Settle,'StartDates',Settle,'EndDates',...
Maturity,'Rates',Rate,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9656
            Rates: 0.0350
         EndTimes: 1
       StartTimes: 0
         EndDates: 736330
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

StockSpec = stockspec(Volatility,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3000
         AssetPrice: 50
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Calculate the price and sensitivities for of a European vanilla call option using the finite
difference method.

ExerciseDates = 'may-1-2015';
OptSpec = 'Call';
OutSpec = {'price'; 'delta'; 'theta'};
[PriceSens, Delta, Theta] = optstocksensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,...
ExerciseDates,'OutSpec',OutSpec)

PriceSens = 6.7350

Delta = 0.7766

Theta = -4.9998
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | string array with values 'call' or
'put'

Definition of the option as 'call' or 'put', specified as a character vector or string
array with values 'call' or 'put'.
Data Types: char | string

Strike — Option strike price value
nonnegative scalar | nonnegative vector

Option strike price value, specified as a nonnegative scalar or vector.

• For a European option, use a scalar of strike price.
• For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
• For an American option, use a scalar of strike price.

Data Types: single | double

11 Functions — Alphabetical List

11-1766



Settle — Settlement or trade date
serial date number | date character vector | datetime object

Settlement or trade date for the barrier option, specified as a serial date number, a date
character vector, or a datetime object.
Data Types: double | char | datetime

ExerciseDates — Option exercise dates
date character vector | nonnegative scalar integer | datetime object

Option exercise dates, specified as a nonnegative scalar integer, date character vector, or
datetime object:

• For a European option, use a 1-by-1 vector of dates, specified as a nonnegative scalar
integer, a date character vector, or a datetime object. For a Bermuda option, use a 1-
by-NSTRIKES vector of dates, specified as a nonnegative scalar integer, date character
vector, or datetime object.

• For an American option, use a 1-by-2 cell array of date character vectors. The option
can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or a cell array of date character vectors, the option can be exercised between
Settle and the single listed date in ExerciseDates.

Data Types: double | char | cell | datetime

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
optstocksensbyfd(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDa
tes,'OutSpec',{'All'},'AssetGridSize',1000)

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or a 1-by-NOUT cell array of character vectors with possible values of
'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output is Delta, Gamma, Vega, Lambda, Rho,
Theta, and Price, in that order. This is the same as specifying OutSpec to include each
sensitivity.
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

AssetGridSize — Size of asset grid used for finite difference grid
400 (default) | positive scalar

Size of asset grid used for finite difference grid, specified as the comma-separated pair
consisting of 'AssetGridSize' and a positive scalar.
Data Types: double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated using asset distributions at maturity
(default) | positive scalar

Maximum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMax' and a positive scalar.
Data Types: single | double

TimeGridSize — Size of time grid used for finite difference grid
100 (default) | positive scalar

Size of the time grid used for a finite difference grid, specified as the comma-separated
pair consisting of 'TimeGridSize' and a positive scalar.
Data Types: double

AmericanOpt — Option type
0 (European/Bermuda) (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:
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• 0 — European/Bermuda
• 1 — American

Data Types: double

Output Arguments
PriceSens — Expected prices or sensitivities for vanilla options
scalar

Expected price or sensitivities (defined by OutSpec) of the vanilla option, returned as a 1-
by-1 array.

PriceGrid — Grid containing prices calculated by finite difference method
grid

Grid containing prices calculated by the finite difference method, returned as a two-
dimensional grid with size PriceGridSize*length(Times). The number of columns
does not have to be equal to the TimeGridSize, because ex-dividend dates in the
StockSpec are added to the time grid. The price for t = 0 is contained in
PriceGrid(:, end).

AssetPrices — Prices of asset defined by StockSpec
vector

Prices of the asset defined by the StockSpec corresponding to the first dimension of
PriceGrid, returned as a vector.

Times — Times corresponding to second dimension of PriceGrid
vector

Times corresponding to second dimension of the PriceGrid, returned as a vector.

References
[1] Haug, E. G., J. Haug, and A. Lewis. "Back to basics: a new approach to the discrete

dividend problem." Vol. 9, Wilmott magazine, 2003, pp. 37–47.

[2] Wu, L. and Y. K. Kwok. "A front-fixing finite difference method for the valuation of
American options." Journal of Financial Engineering. Vol. 6.4, 1997, pp. 83–97.
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See Also
optstockbyblk | optstockbyfd | optstockbylr | optstockbyls

Topics
“Supported Equity Derivatives” on page 3-24

Introduced in R2016b
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optstockbyitt
Price options on stocks using implied trinomial tree (ITT)

Syntax
[Price,PriceTree] = optstockbyitt(ITTTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbyitt( ___ ,AmericanOpt)

Description
[Price,PriceTree] = optstockbyitt(ITTTree,OptSpec,Strike,Settle,
ExerciseDates) returns the price of a European, Bermuda, or American stock option
from an implied trinomial tree (ITT).

[Price,PriceTree] = optstockbyitt( ___ ,AmericanOpt) adds an optional
argument for AmericanOpt.

Examples

Price an American Stock Option Using an ITT Equity Tree

This example shows how to price an American stock option using an ITT equity tree by
loading the file deriv.mat, which provides the ITTTree. The ITTTree structure
contains the stock specification and time information needed to price the American
option.

load deriv.mat

OptSpec = 'Put';
Strike = 30;
Settle = '01-Jan-2006';
ExerciseDates = ' 01-Jan-2010 ';
AmericanOpt = 1;
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Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle,ExerciseDates, AmericanOpt)

Price = 0.1271

Price a Bermudan Stock Option Using an ITT Equity Tree

Load the file deriv.mat, which provides an ITTTree. The ITTTree structure contains
the stock specification and time information needed to price the Bermudan option.
load deriv.mat;

% Option
OptSpec = 'Put';
Strike = 30;
Settle = '01-Jan-2006';
ExerciseDatesBerm={'1-Jan-2007','1-Jul-2007','1-Jan-2008','1-Jul-2008'};

Price the Bermudan option.
Price = optstockbyitt(ITTTree, OptSpec, Strike, Settle, ExerciseDatesBerm)

Warning: Some ExerciseDates are not aligned with tree nodes. Result will be approximated. 
> In procoptions at 171
  In optstockbystocktree at 22
  In optstockbyitt at 68 

Price =

    0.0664

Input Arguments
ITTTree — Stock tree structure
structure

Stock tree structure, specified by using itttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'
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Definition of option, specified as 'call' or 'put' using a NINST-by-1 cell array of
character vectors.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending
on the option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is

the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American option, use a NINST-by-1 of strike prices.

Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date, specified as a NINST-by-1 vector of date character vectors
or serial date numbers.

Note The Settle date for every option is set to the ValuationDate of the stock tree.
The option argument Settle is ignored.

Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector
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Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Note The interpretation of the Strike and ExerciseDates arguments depends upon
the setting of the AmericanOpt argument. If AmericanOpt = 0, NaN, or is unspecified,
the option is a European or Bermuda option. If AmericanOpt = 1, the option is an
American option.

Data Types: double | char

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

(Optional) Option type, specified as NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.
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PriceTree — Structure containing trees of vectors of instrument prices for each
node
structure

Structure containing trees of vectors of instrument prices and a vector of observation
times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

References
[1] Chriss, Neil A., E. Derman, and I. Kani. “Implied trinomial trees of the volatility smile.”

Journal of Derivatives. 1996.

See Also
instoptstock | itttree

Topics
“Computing Prices Using ITT” on page 3-133
“Examining Output from the Pricing Functions” on page 3-137
“Computing Equity Instrument Sensitivities” on page 3-142
“Graphical Representation of Equity Derivative Trees” on page 3-140
“Computing Instrument Prices” on page 3-128
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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optstockbylr
Price options on stocks using Leisen-Reimer binomial tree model

Syntax
[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbylr( ___ ,Name,Value)

Description
[Price,PriceTree] = optstockbylr(LRTree,OptSpec,Strike,Settle,
ExerciseDates) computes option prices on stocks using the Leisen-Reimer binomial
tree model.

[Price,PriceTree] = optstockbylr( ___ ,Name,Value) adds an optional name-
value pair argument for AmericanOpt.

Examples

Price Options on Stocks Using the Leisen-Reimer Binomial Tree Model

This example shows how to price options on stocks using the Leisen-Reimer binomial tree
model. Consider European call and put options with an exercise price of $95 that expire
on July 1, 2010. The underlying stock is trading at $100 on January 1, 2010, provides a
continuous dividend yield of 3% per annum and has a volatility of 20% per annum. The
annualized continuously compounded risk-free rate is 8% per annum. Using this data,
compute the price of the options using the Leisen-Reimer model with a tree of 15 and 55
time steps.

AssetPrice  = 100;
Strike = 95;

ValuationDate = 'Jan-1-2010';
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Maturity = 'July-1-2010'; 

% define StockSpec
Sigma = 0.2;
DividendType = 'continuous'; 
DividendAmounts = 0.03;

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts);

% define RateSpec
Rates = 0.08;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% build the Leisen-Reimer (LR) tree with 15 and 55 time steps
LRTimeSpec15  = lrtimespec(ValuationDate, Maturity, 15); 
LRTimeSpec55  = lrtimespec(ValuationDate, Maturity, 55); 

% use the PP2 method
LRMethod  = 'PP2';

LRTree15 = lrtree(StockSpec, RateSpec, LRTimeSpec15, Strike, 'method', LRMethod);
LRTree55 = lrtree(StockSpec, RateSpec, LRTimeSpec55, Strike, 'method', LRMethod);

% price the call and the put options using the LR model:
OptSpec = {'call'; 'put'}; 

PriceLR15 = optstockbylr(LRTree15, OptSpec, Strike, Settle, Maturity);
PriceLR55 = optstockbylr(LRTree55, OptSpec, Strike, Settle, Maturity);

% calculate price using the Black-Scholes model (BLS) to compare values with
% the LR model:
PriceBLS = optstockbybls(RateSpec, StockSpec, Settle, Maturity, OptSpec, Strike);

% compare values of BLS and LR
[PriceBLS PriceLR15 PriceLR55]

ans = 2×3

    9.7258    9.7252    9.7257
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    2.4896    2.4890    2.4895

% use treeviewer to display LRTree of 15 time steps
treeviewer(LRTree15)

Input Arguments
LRTree — Stock tree structure
structure
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Stock tree structure, specified by lrtree.
Data Types: struct

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price values
vector of nonnegative integers

Option strike price value, specified with nonnegative integer:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use a NINST-by-NSTRIKES vector of strike prices. Each row is

the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American option, use a NINST-by-1 vector of strike prices.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a vector of date character vectors or serial date
numbers where each row is the schedule for one option and the last element of each row
must be the same as the maturity of the tree.

• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDate on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKEDATES vector of dates.
• For an American option, use a NINST-by-1 vector of exercise dates. For the American

type, the option can be exercised on any tree data between the ValuationDate and
tree maturity.

Data Types: double | char
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates,'AmericanOpt
','1')

AmericanOpt — Option type
0 European or Bermuda (default) | values: [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 vector of flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: double

Output Arguments
Price — Expected prices at time 0
vector

expected prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure
structure

Tree structure, returned as a vector of instrument prices at each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.
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References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and

Improving Convergence.” Applied Mathematical Finance. Number 3, 1996, pp.
319–346.

See Also
instoptstock | lrtree

Topics
“Pricing Equity Derivatives Using Trees” on page 3-128
“Pricing European Call Options Using Different Equity Models”
“Supported Equity Derivatives” on page 3-24

Introduced in R2010b
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optstockbyls
Price European, Bermudan, or American vanilla options using Monte Carlo simulations

Syntax
Price = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates)
Price = optstockbyls( ___ ,Name,Value)

[Price,Path,Times,Z] = optstockbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates)
[Price,Path,Times,Z] = optstockbyls( ___ ,Name,Value)

Description
Price = optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,
ExerciseDates) returns vanilla option prices using the Longstaff-Schwartz model.
optstockbyls computes prices of European, Bermudan, and American vanilla options.

For American and Bermudan options, the Longstaff-Schwartz least squares method is
used to calculate the early exercise premium.

Price = optstockbyls( ___ ,Name,Value)adds optional name-value pair arguments.

[Price,Path,Times,Z] = optstockbyls(RateSpec,StockSpec,OptSpec,
Strike,Settle,ExerciseDates) returns vanilla option prices using the Longstaff-
Schwartz model.

[Price,Path,Times,Z] = optstockbyls( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples
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Compute the Price of a Vanilla Option

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.05;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9060
            Rates: 0.0500
         EndTimes: 4
       StartTimes: 0
         EndDates: 735965
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.1;
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1000
         AssetPrice: 100
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Define the vanilla option.

OptSpec = 'put';
Settle = 'Jan-1-2013';
ExerciseDates = 'Jan-1-2015';
Strike = 105;
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Compute the vanilla option price using the Longstaff-Schwartz model.

Antithetic = true;
Price = optstockbyls(RateSpec, StockSpec, OptSpec, Strike, Settle, ...
ExerciseDates, 'Antithetic', Antithetic)

Price = 3.2292

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

Strike — Option strike price values
nonnegative scalar integer

Option strike price value, specified with nonnegative scalar integer:
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• For a European option, use a scalar of strike price.
• For a Bermuda option, use a 1-by-NSTRIKES vector of strike prices.
• For an American option, use a scalar of strike price.

Data Types: single | double

Settle — Settlement date or trade date
date character vector | nonnegative scalar integer

Settlement date or trade date for the vanilla option, specified as a date character vector
or nonnegative scalar integer.
Data Types: double | char

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a date character vector or serial date number:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a 1-by-NSTRIKES vector of dates.
• For an American option, use a 1-by-2 vector of exercise date boundaries. The option

can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or cell array of character vectors, the option can be exercised between
Settle and the single listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optstockbyls(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates,
'AmericanOpt','1','NumTrials','2000')
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AmericanOpt — Option type
0 European or Bermuda (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
positive integer scalar flags with values:

• 0 — European or Bermuda
• 1 — American

Note For American and Bermudan options, the Longstaff-Schwartz least squares method
is used to calculate the early exercise premium. For more information on the least
squares method, see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, specified as a scalar number of independent sample paths.
Data Types: double

NumPeriods — Simulation periods per trial
100 (default) | scalar

Simulation periods per trial, specified as a scalar number. NumPeriods is considered only
when pricing European vanilla options. For American and Bermuda vanilla options,
NumPeriod is equal to the number of Exercise days during the life of the option.
Data Types: double

Z — Dependent random variates
scalar | nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener
processes) that drive the simulation, specified as a be NumPeriods-by-1-by-NumTrials
3-D time series array.
Data Types: single | double
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Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified with a value of true or false.
Data Types: logical

Output Arguments
Price — Expected price of vanilla option
scalar

Expected price of the vanilla option, returned as a 1-by-1 scalar.

Path — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1) -by-1-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NumPeriods + 1)-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, if Z is specified as an optional input argument, the same
value is returned. Otherwise, Z contains the random variates generated internally.

See Also
optstocksensbyls

Topics
“Pricing Asian Options”
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“Vanilla Option” on page 3-46
“Supported Equity Derivatives” on page 3-24

Introduced in R2013b
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optstocksensbyls
Calculate price and sensitivities for European, Bermudan, or American vanilla options
using Monte Carlo simulations

Syntax
PriceSens = optstocksensbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates)
PriceSens = optstocksensbyls( ___ ,Name,Value)

[PriceSens,Path,Times,Z] = optstocksensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates)
[PriceSens,Path,Times,Z] = optstocksensbyls( ___ ,Name,Value)

Description
PriceSens = optstocksensbyls(RateSpec,StockSpec,OptSpec,Strike,
Settle,ExerciseDates) returns vanilla option prices or sensitivities using the
Longstaff-Schwartz model. optstocksensbyls computes prices or sensitivities of
European, Bermudan, and American vanilla options.

For American and Bermudan options, the Longstaff-Schwartz least squares method is
used to calculate the early exercise premium.

PriceSens = optstocksensbyls( ___ ,Name,Value)adds optional name-value pair
arguments.

[PriceSens,Path,Times,Z] = optstocksensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates) returns vanilla option prices or
sensitivities using the Longstaff-Schwartz model.

[PriceSens,Path,Times,Z] = optstocksensbyls( ___ ,Name,Value) adds
optional name-value pair arguments.
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Examples

Compute the Price and Sensitivities of a Vanilla Option

Define the RateSpec.

StartDates = 'Jan-1-2013';
EndDates = 'Jan-1-2015';
Rates = 0.05;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates, ...
'EndDates', EndDates, 'Rates', Rates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: 0.9060
            Rates: 0.0500
         EndTimes: 4
       StartTimes: 0
         EndDates: 735965
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Define the StockSpec for the asset.

AssetPrice = 100;
Sigma = 0.1;
DivType = 'continuous';
DivAmounts = 0.04;
StockSpec = stockspec(Sigma, AssetPrice, DivType, DivAmounts)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1000
         AssetPrice: 100
       DividendType: {'continuous'}
    DividendAmounts: 0.0400
    ExDividendDates: []

Define the vanilla option.
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OptSpec = 'call';  
Settle = 'jan-1-2013';
ExerciseDates = 'jan-1-2015';
Strike = 105;

Compute the Delta sensitivity for the vanilla option using the Longstaff-Schwartz model.

Antithetic = true;
OutSpec = {'Delta'};
PriceSens = optstocksensbyls(RateSpec, StockSpec, OptSpec, Strike, ...
Settle, ExerciseDates,'Antithetic', Antithetic, 'OutSpec', OutSpec)

PriceSens = 0.3945

To display the output for Price, Delta, Path, and Times, use the following:

OutSpec = {'Price','Delta'};
[Price, Delta, Path, Times] = optstocksensbyls(RateSpec, StockSpec, OptSpec, Strike, ...
Settle, ExerciseDates,'Antithetic', Antithetic, 'OutSpec', OutSpec);

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities.
Data Types: struct
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OptSpec — Definition of option
character vector values 'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified with a nonnegative scalar integer:

• For a European option, use a scalar of strike price.
• For a Bermuda option, use a 1-by-NSTRIKES vector of strike price.
• For an American option, use a scalar of strike price.

Data Types: single | double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the vanilla option, specified as a date character vector
or a serial date number.
Data Types: double | char

ExerciseDates — Option exercise date
serial date number | date character vector

Option exercise date, specified as a date character vector or serial date number:

• For a European option, use a 1-by-1 vector of dates. For a European option, there is
only one ExerciseDates on the option expiry date.

• For a Bermuda option, use a 1-by-NSTRIKES vector of dates.
• For an American option, use a 1-by-2 vector of exercise date boundaries. The option

can be exercised on any date between or including the pair of dates on that row. If
only one non-NaN date is listed, or if ExerciseDates is a 1-by-1 vector of serial date
numbers or cell array of character vectors, the option can be exercised between
Settle and the single listed ExerciseDates.

Data Types: double | char
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price = optstocksensbyls(RateSpec,StockSpec,
OptSpec,Strike,Settle,ExerciseDates,'AmericanOpt','1','NumTrials','2
000','OutSpec',{'Price','Delta','Gamma'})

AmericanOpt — Option type
0 European or Bermuda (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
positive integer scalar flag with values:

• 0 — European or Bermuda
• 1 — American

Note For American and Bermudan options, the Longstaff-Schwartz least squares method
is used to calculate the early exercise premium. For more information on the least
squares method, see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Simulation trials
1000 (default) | scalar

Simulation trials, specified as the comma-separated pair consisting of 'NumTrials' and
a scalar number of independent sample paths.
Data Types: double

NumPeriods — Simulation periods per trial
100 (default) | scalar

Simulation periods per trial, specified as the comma-separated pair consisting of
'NumPeriods' and a scalar number. NumPeriods is considered only when pricing
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European vanilla options. For American and Bermuda vanilla options, NumPeriod is equal
to the number of Exercise days during the life of the option.
Data Types: double

Z — Dependent random variates
scalar | nonnegative integer

Dependent random variates used to generate the Brownian motion vector (that is, Wiener
processes) that drive the simulation, specified as the comma-separated pair consisting of
'Z' and a NumPeriods-by-1-by-NumTrials 3-D time series array.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values: 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell
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Output Arguments
PriceSens — Expected price or sensitivities of vanilla option
scalar

Expected price or sensitivities (defined by OutSpec) of the vanilla option, returned as a 1-
by-1 array.

Path — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a (NumPeriods + 1)-by-1-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a (NumPeriods + 1)-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Dependent random variates
vector

Dependent random variates, if Z is specified as an optional input argument, the same
value is returned. Otherwise, Z contains the random variates generated internally.

See Also
optstockbyls

Topics
“Pricing Asian Options”
“Vanilla Option” on page 3-46
“Supported Equity Derivatives” on page 3-24

Introduced in R2013b
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optstockbyrgw
Determine American call option prices using Roll-Geske-Whaley option pricing model

Syntax
Price = optstockbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike)

Description
Price = optstockbyrgw(RateSpec,StockSpec,Settle,Maturity,Strike)
computes the American call option prices using the Roll-Geske-Whaley option pricing
model.

Note optstockbyrgw computes prices of American calls with a single cash dividend
using the Roll-Geske-Whaley option pricing model.

Examples

Determine American Call Option Prices Using Roll-Geske-Whaley Option Pricing
Model

This example shows how to determine American call option prices using Roll-Geske-
Whaley option pricing model. Consider an American call option with an exercise price of
$22 that expires on February 1, 2009. The underlying stock is trading at $20 on June 1,
2008 and has a volatility of 20% per annum. The annualized continuously compounded
risk-free rate is 6.77% per annum. The stock pays a single dividend of $2 on September 1,
2008. Using this data, compute price of the American call option using the Roll-Geske-
Whaley option pricing model.

Settle = 'Jun-01-2008';
Maturity = 'Feb-01-2009';
AssetPrice = 20;
Strike = 22;
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Sigma  = 0.2;
Rate = 0.0677; 
DivAmount = 2;
DivDate = 'Sep-01-2008';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 0);

StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

Price  = optstockbyrgw(RateSpec, StockSpec, Settle, Maturity,Strike)

Price = 0.3359

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector
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Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected call option prices
vector

Expected call option prices, returned as a NINST-by-1 vector.
Data Types: double

See Also
impvbyrgw | intenvset | optstocksensbyrgw | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Roll-Geske-Whaley Model” on page 3-155
“Roll-Geske-Whaley Model” on page 3-150
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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optstocksensbybjs
Determine American option prices or sensitivities using Bjerksund-Stensland 2002 option
pricing model

Syntax
PriceSens = optstocksensbybjs(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike)
PriceSens = optstocksensbybjs( ___ ,Name,Value)

Description
PriceSens = optstocksensbybjs(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike) computes American option prices or sensitivities using the Bjerksund-
Stensland 2002 option pricing model.

Note optstocksensbybjs computes prices of American options with continuous
dividend yield using the Bjerksund-Stensland option pricing model. All sensitivities are
evaluated by computing a discrete approximation of the partial derivative. This means
that the option is revalued with a fractional change for each relevant parameter, and the
change in the option value divided by the increment, is the approximated sensitivity
value.

PriceSens = optstocksensbybjs( ___ ,Name,Value) adds an optional name-value
pair argument for OutSpec.

Examples

Compute American Option Prices and Sensitivities Using the Bjerksund-
Stensland 2002 Option Pricing Model

This example shows how to compute American option prices and sensitivities using the
Bjerksund-Stensland 2002 option pricing model. Consider four American put options with
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an exercise price of $100. The options expire on October 1, 2008. Assume the underlying
stock pays a continuous dividend yield of 4% and has a volatility of 40% per annum. The
annualized continuously compounded risk-free rate is 8% per annum. Using this data,
calculate the delta, gamma, and price of the American put options, assuming the
following current prices of the stock on July 1, 2008: $90, $100, $110 and $120.

Settle = 'July-1-2008';
Maturity = 'October-1-2008';
Strike = 100;
AssetPrice = [90;100;110;120];
Rate = 0.08;
Sigma = 0.40;
DivYield = 0.04;

% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'continuous'}, DivYield);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1);

% define the option type
OptSpec = {'put'};

OutSpec = {'Delta', 'Gamma', 'Price'};

[Delta, Gamma, Price] = optstocksensbybjs(RateSpec, StockSpec, Settle, Maturity,...
OptSpec, Strike, 'OutSpec', OutSpec)

Delta = 4×1

   -0.6572
   -0.4434
   -0.2660
   -0.1442

Gamma = 4×1

    0.0217
    0.0202
    0.0150
    0.0095
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Price = 4×1

   12.9467
    7.4571
    3.9539
    1.9495

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector
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Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Delta,Gamma,Price] =
optstocksensbybjs(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
'OutSpec',OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
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Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

References
[1] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.”

Scandinavian Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[2] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.”
Discussion paper 2002 (https://www.scribd.com/doc/215619796/Closed-form-
Valuation-of-American-Options-by-Bjerksund-and-Stensland#scribd)

See Also
impvbybjs | intenvset | optstockbybjs | stockspec

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Bjerksund-Stensland Model” on page 3-156
“Bjerksund-Stensland 2002 Model” on page 3-151
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b
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optstocksensbyblk
Determine option prices or sensitivities using Black-Scholes option pricing model

Syntax
PriceSens = optstocksensbyblk(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike)
PriceSens = optstocksensbyblk( ___ ,Name,Value)

Description
PriceSens = optstocksensbyblk(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike) computes option prices on futures using the Black option pricing
model.

Note optstocksensbyblk calculates option prices or sensitivities on futures and
forwards. If ForwardMaturity is not passed, the function calculates prices or
sensitivities of future options. If ForwardMaturity is passed, the function computes
prices or sensitivities of forward options. This function handles several types of
underlying assets, for example, stocks and commodities. For more information on the
underlying asset specification, see stockspec.

PriceSens = optstocksensbyblk( ___ ,Name,Value) adds optional name-value
pair arguments for ForwardMaturity and OutSpec to compute option prices or
sensitivities on forwards using the Black option pricing model.

Examples

Compute Option Prices and Sensitivities on Futures Using the Black Pricing
Model

This example shows how to compute option prices and sensitivities on futures using the
Black pricing model. Consider a European put option on a futures contract with an
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exercise price of $60 that expires on June 30, 2008. On April 1, 2008 the underlying stock
is trading at $58 and has a volatility of 9.5% per annum. The annualized continuously
compounded risk-free rate is 5% per annum. Using this data, compute delta, gamma, and
the price of the put option.

AssetPrice = 58;
Strike = 60;
Sigma = .095;
Rates = 0.05;
Settle = 'April-01-08';
Maturity = 'June-30-08';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding', -1, 'Basis', 1);

StockSpec = stockspec(Sigma, AssetPrice);

% define the options
OptSpec = {'put'};

OutSpec = {'Delta','Gamma','Price'};
[Delta, Gamma, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)

Delta = -0.7469

Gamma = 0.1130

Price = 2.3569

Compute Forward Option Prices and Delta Sensitivities

This example shows how to compute option prices and sensitivities on forwards using the
Black pricing model. Consider two European call options on the Brent Blend forward
contract that expires on January 1, 2015. The options expire on October 1, 2014 and Dec
1, 2014 with an exercise price % of $120 and $150 respectively. Assume that on January
1, 2014 the forward price is at $107, the annualized continuously compounded risk-free
rate is 3% per annum and volatility is 28% per annum. Using this data, compute the price
and delta of the options.

Define the RateSpec.
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ValuationDate = 'Jan-1-2014';
EndDates = 'Jan-1-2015';
Rates = 0.03;
Compounding = -1;
Basis = 1;
RateSpec  = intenvset('ValuationDate', ValuationDate, 'StartDates', ...
ValuationDate, 'EndDates', EndDates, 'Rates', Rates, ...
'Compounding', Compounding, 'Basis', Basis');

Define the StockSpec.

AssetPrice = 107;
Sigma = 0.28;
StockSpec  = stockspec(Sigma, AssetPrice);

Define the options.

Settle = 'Jan-1-2014';
Maturity = {'Oct-1-2014'; 'Dec-1-2014'}; %Options maturity
Strike = [120;150];
OptSpec = {'call'; 'call'};

Price the forward call options and return the Delta sensitivities.

ForwardMaturity = 'Jan-1-2015';  % Forward contract maturity
OutSpec = {'Delta'; 'Price'};
[Delta, Price] = optstocksensbyblk(RateSpec, StockSpec, Settle, Maturity, OptSpec, ...
Strike, 'ForwardMaturity', ForwardMaturity, 'OutSpec', OutSpec)

Delta = 2×1

    0.3518
    0.1262

Price = 2×1

    5.4808
    1.6224
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
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Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Delta,Gamma,Price] =
optstocksensbyblk(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
'OutSpec',OutSpec)

ForwardMaturity — Maturity date or delivery date of forward contract
Maturity of option (default) | serial date number | date character vector

Maturity date or delivery date of forward contract, specified as the comma-separated pair
consisting of 'ForwardMaturity' and a NINST-by-1 vector using serial date numbers or
date character vectors.
Data Types: double | cell

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}
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Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

See Also
impvbyblk | intenvset | optstockbyblk | stockspec

Topics
“Pricing Asian Options”
“Forwards Option” on page 3-51
“Futures Option” on page 3-52
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-43

Introduced in R2008b
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optstocksensbybls
Determine option prices or sensitivities using Black-Scholes option pricing model

Syntax
PriceSens = optstocksensbybls(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike)
PriceSens = optstocksensbybls( ___ ,Name,Value)

Description
PriceSens = optstocksensbybls(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike) computes option prices or sensitivities using the Black-Scholes option
pricing model.

Note When using StockSpec with optstocksensbybls, you can modify StockSpec to
handle other types of underliers when pricing instruments that use the Black-Scholes
model.

When pricing Futures (Black model), enter the following in StockSpec:

DivType = 'Continuous'; 
DivAmount = RateSpec.Rates;

When pricing Foreign Currencies (Garman-Kohlhagen model), enter the following in
StockSpec:

DivType = 'Continuous'; 
DivAmount = ForeignRate; 

where ForeignRate is the continuously compounded, annualized risk free interest rate
in the foreign country.

PriceSens = optstocksensbybls( ___ ,Name,Value) adds an optional name-value
pair argument for OutSpec.
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Examples

Compute Option Prices and Sensitivities Using the Black-Scholes Option Pricing
Model

This example shows how to compute option prices and sensitivities using the Black-
Scholes option pricing model. Consider a European call and put options with an exercise
price of $30 that expires on June 1, 2008. The underlying stock is trading at $30 on
January 1, 2008 and has a volatility of 30% per annum. The annualized continuously
compounded risk-free rate is 5% per annum. Using this data, compute the delta, gamma,
and price of the options using the Black-Scholes model.

AssetPrice = 30;
Strike = 30;
Sigma = .30;
Rates = 0.05;
Settle = 'January-01-2008';
Maturity = 'June -01-2008';

% define the RateSpec and StockSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, 'EndDates',...
Maturity, 'Rates', Rates, 'Compounding',-1, 'Basis', 1);

StockSpec = stockspec(Sigma, AssetPrice);

% define the options
OptSpec = {'call', 'put'};

OutSpec = {'Delta','Gamma','Price'};
[Delta, Gamma, Price] = optstocksensbybls(RateSpec, StockSpec, Settle,...
Maturity, OptSpec, Strike,'OutSpec', OutSpec)

Delta = 2×1

    0.5810
   -0.4190

Gamma = 2×1

    0.0673
    0.0673
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Price = 2×1

    2.6126
    1.9941

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
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Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Delta,Gamma,Price] =
optstocksensbybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
'OutSpec',OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell
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Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

See Also
impvbybls | intenvset | optstockbybls | stockspec

Topics
“Pricing Asian Options”
“Forwards Option” on page 3-51
“Futures Option” on page 3-52
“Supported Equity Derivatives” on page 3-24
“Supported Energy Derivatives” on page 3-43

Introduced in R2008b
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optstocksensbylr
Determine option prices or sensitivities using Leisen-Reimer binomial tree model

Syntax
PriceSens = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)
PriceSens = optstockbylr( ___ ,Name,Value)

Description
PriceSens = optstockbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates)
calculates option prices or sensitivities using a Leisen-Reimer binomial tree model.

PriceSens = optstockbylr( ___ ,Name,Value) adds optional name-value pair
arguments for AmericanOpt and OutSpec.

Examples

Compute Option Prices and Sensitivities Using a Leisen-Reimer Binomial Tree
Model

This example shows how to compute option prices and sensitivities using a Leisen-Reimer
binomial tree model. Consider European call and put options with an exercise price of
$100 that expire on December 1, 2010. The underlying stock is trading at $100 on June 1,
2010 and has a volatility of 30% per annum. The annualized continuously compounded
risk-free rate is 7% per annum. Using this data, compute the price, delta and gamma of
the options using the Leisen-Reimer model with a tree of 25 time steps and the PP2
method.

AssetPrice  = 100;
Strike = 100;

ValuationDate = 'June-1-2010';
Maturity = 'December-1-2010'; 
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% define StockSpec
Sigma = 0.3;

StockSpec = stockspec(Sigma, AssetPrice);

% define RateSpec
Rates = 0.07;
Settle = ValuationDate;
Basis = 1;
Compounding = -1;

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% build the Leisen-Reimer (LR) tree with 25 time steps
LRTimeSpec  = lrtimespec(ValuationDate, Maturity, 25); 

% use the PP2 method
LRMethod  = 'PP2';  

TreeLR = lrtree(StockSpec, RateSpec, LRTimeSpec, Strike, 'method', LRMethod);

% compute prices and sensitivities using the LR model:
OptSpec = {'call'; 'put'}; 
OutSpec = {'Price', 'Delta', 'Gamma'};

[Price, Delta, Gamma] = optstocksensbylr(TreeLR, OptSpec, Strike, Settle, ... 
Maturity, 'OutSpec', OutSpec)

Price = 2×1

   10.1332
    6.6937

Delta = 2×1

    0.6056
   -0.3944

Gamma = 2×1

    0.0185
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    0.0185

Input Arguments
LRTree — Stock tree structure
structure

Stock tree structure, specified by lrtree.
Data Types: struct

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price values
vector of nonnegative integers

Option strike price value, specified with nonnegative integer:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use a NINST-by-NSTRIKES vector of strike prices. Each row is

the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

• For an American option, use a NINST-by-1 vector of strike prices.

Data Types: double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a vector of date character vectors or serial date
numbers where each row is the schedule for one option and the last element of each row
must be the same as the maturity of the tree.
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• For a European option, use a NINST-by-1 vector of dates. For a European option, there
is only one ExerciseDate on the option expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKEDATES vector of dates.
• For an American option, use a NINST-by-1 vector of exercise dates. For the American

type, the option can be exercised on any tree data between the ValuationDate and
tree maturity.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,Delta,Gamma] =
optstocksensbylr(LRTree,OptSpec,Strike,Settle,ExerciseDates,'OutSpec
',OutSpec)

AmericanOpt — Option type
0 European or Bermuda (default) | values: [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 vector of flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: double

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.
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OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

References
[1] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and

Improving Convergence.” Applied Mathematical Finance. Number 3, 1996, pp.
319–346.

See Also
lrtree | optstockbylr

Topics
“Pricing Equity Derivatives Using Trees” on page 3-128
“Pricing European Call Options Using Different Equity Models”
“Supported Equity Derivatives” on page 3-24

Introduced in R2010b
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optstocksensbyrgw
Determine American call option prices or sensitivities using Roll-Geske-Whaley option
pricing model

Syntax
PriceSens = optstocksensbyrgw(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike)
PriceSens = optstocksensbyrgw( ___ ,Name,Value)

Description
PriceSens = optstocksensbyrgw(RateSpec,StockSpec,Settle,Maturity,
OptSpec,Strike) computes American call option prices or sensitivities using the Roll-
Geske-Whaley option pricing model.

Note optstocksensbyrgw computes prices of American calls with a single cash
dividend using the Roll-Geske-Whaley option pricing model. All sensitivities are evaluated
by computing a discrete approximation of the partial derivative. This means that the
option is revalued with a fractional change for each relevant parameter, and the change in
the option value divided by the increment, is the approximated sensitivity value.

PriceSens = optstocksensbyrgw( ___ ,Name,Value) adds an optional name-value
pair argument for OutSpec.

Examples

Compute American Call Option Prices and Sensitivities Using the Roll-Geske-
Whaley Option Pricing Model

This example shows how to compute American call option prices and sensitivities using
the Roll-Geske-Whaley option pricing model. Consider an American stock option with an
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exercise price of $82 on January 1, 2008 that expires on May 1, 2008. Assume the
underlying stock pays dividends of $4 on April 1, 2008. The stock is trading at $80 and
has a volatility of 30% per annum. The risk-free rate is 6% per annum. Using this data,
calculate the price and the value of delta and gamma of the American call using the Roll-
Geske-Whaley option pricing model.

AssetPrice = 80;
Settle = 'Jan-01-2008';
Maturity = 'May-01-2008';
Strike = 82;
Rate = 0.06;
Sigma  = 0.3;
DivAmount = 4;
DivDate = 'Apr-01-2008';

% define the RateSpec and StockSpec
StockSpec = stockspec(Sigma, AssetPrice, {'cash'}, DivAmount, DivDate);

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rate, 'Compounding', -1, 'Basis', 1);

% define the OutSpec
OutSpec = {'Price', 'Delta', 'Gamma'};

[Price, Delta, Gamma]  = optstocksensbyrgw(RateSpec, StockSpec, Settle,...
Maturity, Strike,'OutSpec', OutSpec)

Price = 4.3860

Delta = 0.5022

Gamma = 0.0336

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
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Data Types: struct

StockSpec — Stock specification for underlying asset
structure

Stock specification for the underlying asset. For information on the stock specification,
see stockspec.

stockspec handles several types of underlying assets. For example, for physical
commodities the price is StockSpec.Asset, the volatility is StockSpec.Sigma, and the
convenience yield is StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement or trade date
serial date number | date character vector

Settlement or trade date, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

Maturity — Maturity date for option
serial date number | date character vector

Maturity date for option, specified as serial date number or date character vector using a
NINST-by-1 vector.
Data Types: double | char

OptSpec — Definition of option
cell array of character vectors with values 'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors with values 'call' or 'put'.
Data Types: char | cell

Strike — Option strike price value
nonnegative vector

Option strike price value, specified as a nonnegative NINST-by-1 vector.
Data Types: double
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Delta,Gamma,Price] =
optstocksensbyrgw(RateSpec,StockSpec,Settle,Maturity,OptSpec,Strike,
'OutSpec',OutSpec)

OutSpec — Define outputs
{'Price'} (default) | cell array of character vectors with values: 'Price', 'Delta',
'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected future prices or sensitivities values
vector

Expected future prices or sensitivities values, returned as a NINST-by-1 vector.
Data Types: double

See Also
impvbyrgw | intenvset | optstockbyrgw | stockspec
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Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing Using the Roll-Geske-Whaley Model” on page 3-155
“Supported Equity Derivatives” on page 3-24

Introduced in R2008b

11 Functions — Alphabetical List

11-1824



optstockbystt
Price vanilla options on stocks using standard trinomial tree

Syntax
[Price,PriceTree] = optstockbystt(STTTree,OptSpec,Strike,Settle,
ExerciseDates)
[Price,PriceTree] = optstockbystt( ___ ,Name,Value)

Description
[Price,PriceTree] = optstockbystt(STTTree,OptSpec,Strike,Settle,
ExerciseDates) returns vanilla option (American, European, or Bermudan) prices on
stocks using a standard trinomial (STT) tree.

[Price,PriceTree] = optstockbystt( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price Call and Put Stock Options Using the Standard Trinomial Tree Model

Create a RateSpec.

StartDates = 'Jan-1-2009'; 
EndDates = 'Jan-1-2013'; 
Rates = 0.035; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: -1
             Disc: 0.8694
            Rates: 0.0350
         EndTimes: 4
       StartTimes: 0
         EndDates: 735235
       StartDates: 733774
    ValuationDate: 733774
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 85; 
Sigma = 0.15; 
StockSpec = stockspec(Sigma, AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1500
         AssetPrice: 85
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create an STTTree.

NumPeriods = 4;
TimeSpec = stttimespec(StartDates, EndDates, 4);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 1 2 3 4]
         dObs: [733774 734139 734504 734869 735235]
        STree: {1x5 cell}
        Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Define the call and put options and compute the price.
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Settle = '1/1/09';
ExerciseDates = [datenum('1/1/11');datenum('1/1/12')];
OptSpec =  {'call';'put'};
Strike =[100;80];

Price = optstockbystt(STTTree, OptSpec, Strike, Settle, ExerciseDates)

Price = 2×1

    4.5025
    3.0603

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

OptSpec — Definition of option
character vector with value 'call' or 'put' | cell array of character vectors with values
'call' or 'put'

Definition of option, specified as 'call' or 'put' using a character vector.
Data Types: char | cell

Strike — Option strike price values
nonnegative integer

Option strike price value, specified with a NINST-by-1 or NINST-by-NSTRIKES depending
on the option type:

• For a European option, use a NINST-by-1 vector of strike prices.
• For a Bermuda option, use aNINST-by-NSTRIKES matrix of strike prices. Each row is

the schedule for one option. If an option has fewer than NSTRIKES exercise
opportunities, the end of the row is padded with NaNs.

 optstockbystt

11-1827



• For an American option, use a NINST-by-1 of strike prices.

Data Types: double

Settle — Settlement date or trade date
serial date number | date character vector

Settlement date or trade date for the vanilla option, specified as a NINST-by-1 vector of
date character vectors or serial date numbers.

Note The Settle date for every vanilla option is set to the ValuationDate of the stock
tree. The vanilla option argument Settle is ignored.

Data Types: char | double

ExerciseDates — Option exercise dates
serial date number | date character vector

Option exercise dates, specified as a NINST-by-1,NINST-by-2, or NINST-by-NSTRIKES
using serial date numbers or date character vectors, depending on the option type:

• For a European option, use a NINST-by-1 vector of dates. Each row is the schedule for
one option. For a European option, there is only one ExerciseDates on the option
expiry date.

• For a Bermuda option, use a NINST-by-NSTRIKES vector of dates. Each row is the
schedule for one option.

• For an American option, use a NINST-by-2 vector of exercise date boundaries. The
option can be exercised on any date between or including the pair of dates on that
row. If only one non-NaN date is listed, or if ExerciseDates is a NINST-by-1 vector,
the option can be exercised between ValuationDate of the stock tree and the single
listed ExerciseDates.

Data Types: double | char

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: Price =
optstockbystt(RateSpec,StockSpec,OptSpec,Strike,Settle,ExerciseDates
,'AmericanOpt','1')

AmericanOpt — Option type
0 European or Bermuda (default) | integer with values of 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
NINST-by-1 vector of integer flags with values:

• 0 — European or Bermuda
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected price of vanilla option at time 0
vector

Expected price of the vanilla option at time 0, returned as a NINST-by-1 vector.

PriceTree — Structure containing trees of vectors of instrument prices and
accrued interest for each node
structure

Structure containing trees of vectors of instrument prices and accrued interest, and a
vector of observation times for each node. Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.dObs contains the observation dates.

See Also
instoptstock | sttprice | sttsens | stttimespec | stttree

Topics
“Vanilla Option” on page 3-46
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“Supported Equity Derivatives” on page 3-24

Introduced in R2015b
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optpricebysim
Price option given simulated underlying values

Syntax
Price = optpricebysim(RateSpec,SimulatedPrices,Times,OptSpec,Strike,
ExerciseTimes)
Price = optpricebysim( ___ ,Name,Value)

Description
Price = optpricebysim(RateSpec,SimulatedPrices,Times,OptSpec,Strike,
ExerciseTimes) calculates the price of European, American, and Berumdan call/put
options based on risk-neutral simulation of the underlying asset. For American and
Bermudan options, the Longstaff-Schwartz least squares method calculates the early
exercise premium.

Price = optpricebysim( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price of an American Option Using Monte Carlo Simulation Based
on Geometric Brownian Motion

Define the option.

S0 = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
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Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian
Motion (GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price an American option.

SimulatedPrices = squeeze(Paths);
OptPrice = optpricebysim(RateSpec, SimulatedPrices, Times, OptSpec, ...
           Strike, T, 'AmericanOpt', 1)

OptPrice = 6.2028
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Compute the Price of an American Asian Option Using Monte Carlo Simulation
Based on Geometric Brownian Motion

Define the option.

S0 = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian
Motion (GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1
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Price an American Asian option (arithmetic mean) by finding the average price over
periods.

AvgPrices = zeros(NPERIODS+1, NTRIALS);
    for i = 1:NPERIODS+1
        AvgPrices(i,:) = mean(squeeze(Paths(1:i,:,:)));
    end
    AsianPrice = optpricebysim(RateSpec, AvgPrices, Times, OptSpec, ...
        Strike, T, 'AmericanOpt', 1)

AsianPrice = 1.8540

Compute the Price of an American Lookback Option Using Monte Carlo
Simulation Based on Geometric Brownian Motion

Define the option.

S0 = 100; % Initial price of underlying asset
Sigma = .2; % Volatility of underlying asset
Strike = 110; % Strike
OptSpec = 'call'; % Call option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian
Motion (GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price an American lookback option by finding the maximum price over periods.

MaxPrices = zeros(NPERIODS+1, NTRIALS);
    LastPrice = squeeze(Paths(1,:,:))';
    for i = 1:NPERIODS+1;
        MaxPrices(i,:) = max([LastPrice; Paths(i,:)]);
        LastPrice = MaxPrices(i,:);
    end
    LookbackPrice = optpricebysim(RateSpec, MaxPrices, Times, OptSpec, ...
        Strike, T, 'AmericanOpt', 1)

LookbackPrice = 10.4084

Compute the Price of a Bermudan Option Using Monte Carlo Simulation Based on
Geometric Brownian Motion

Define the option.

S0 = 80; % Initial price of underlying asset
Sigma = .3; % Volatility of underlying asset
Strike = 75; % Strike
OptSpec = 'put'; % Put option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
ExerciseDates = {'1-Jun-2013', '1-Jan-2014'}; % Exercise dates of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
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T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years
ExerciseTimes = yearfrac(Settle, ExerciseDates, Basis)'; % Exercise times

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian
Motion (GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
OptionGBM = gbm(r, Sigma, 'StartState', S0);
[Paths, Times, Z] = simBySolution(OptionGBM, NPERIODS, ...
'NTRIALS',NTRIALS, 'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price the Bermudan option.

SimulatedPrices = squeeze(Paths);
BermudanPrice = optpricebysim(RateSpec, SimulatedPrices, Times, ...
OptSpec, Strike, ExerciseTimes)

BermudanPrice = 5.3950
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Compute the Price of an American Spread Option Using Monte Carlo Simulation
Based on Geometric Brownian Motion

Define the option.

S1 = 110; % Price of first underlying asset
S2 = 100; % Price of second underlying asset
Sigma1 = .1;  % Volatility of first underlying asset
Sigma2 = .15; % Volatility of second underlying asset
Strike = 15; % Strike
Rho = .3; % Correlation between underlyings
OptSpec = 'put'; % Put option
Settle = '1-Jan-2013'; % Settlement date of option
Maturity = '1-Jan-2014'; % Maturity date of option
r = .05; % Risk-free rate (annual, continuous compounding)
Compounding = -1; % Continuous compounding
Basis = 0; % Act/Act day count convention
T = yearfrac(Settle, Maturity, Basis); % Time to expiration in years

Set up the gbm object and run the Monte Carlo simulation based on Geometric Brownian
Motion (GBM) using the simBySolution method from Financial Toolbox™.

NTRIALS = 1000;
NPERIODS = daysact(Settle, Maturity);
dt = T/NPERIODS;
SpreadGBM = gbm(r*eye(2), diag([Sigma1;Sigma2]),'Correlation',...
[1 Rho;Rho 1],'StartState',[S1;S2]);
[Paths, Times, Z] = simBySolution(SpreadGBM, NPERIODS,'NTRIALS',NTRIALS,...
'DeltaTime',dt,'Antithetic',true);

Create the interest-rate term structure to define RateSpec.

RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
           'EndDates', Maturity, 'Rate', r, 'Compounding', Compounding, ...
           'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9512
            Rates: 0.0500
         EndTimes: 1
       StartTimes: 0
         EndDates: 735600
       StartDates: 735235
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    ValuationDate: 735235
            Basis: 0
     EndMonthRule: 1

Price the American spread option.

Spread = squeeze(Paths(:,1,:) - Paths(:,2,:));
SpreadPrice = optpricebysim(RateSpec, Spread, Times, OptSpec, Strike, ...
T, 'AmericanOpt', 1)

SpreadPrice = 9.0007

Input Arguments
RateSpec — Interest-rate term structure of risk-free rates
structure

Interest-rate term structure of risk-free rates (annualized and continuously compounded),
specified by the RateSpec obtained from intenvset. The valuation date must be at the
settlement date of the option, and the day-count basis and end-of-month rule must be the
same as those used to calculate the Times input. For information on the interest-rate
specification, see intenvset.
Data Types: struct

SimulatedPrices — Simulated prices
matrix

Simulated prices, specified using a (NumPeriods + 1)-by-NumTrials matrix of risk-
neutral simulated prices. The first element of SimulatedPrices is the initial value at
time 0.
Data Types: single | double

Times — Annual time factors associated with simulated prices
vector

Annual time factors associated with simulated prices, specified using a (NumPeriods
+ 1)-by-1 column vector. Each element of Times is associated with the corresponding row
of SimulatedPrices. The first element of Times must be 0 (current time).
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Data Types: single | double

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike — Option strike price values
scalar | function handle

Option strike price values, specified as a scalar value Strike price. Strike for
Bermudan options can be specified as a 1-by-NSTRIKES vector or a function handle that
returns the value of the strike given the time of the strike.
Data Types: single | double | function_handle

ExerciseTimes — Exercise time for option
vector of exercise times

Exercise time for the option, specified as a vector of exercise times as follows:

• For a European or Bermudan option, ExerciseTimes is a 1-by-1 (European) or 1-by-
NSTRIKES (Bermudan) vector of exercise times. For a European option, there is only
one ExerciseTimes on the option expiry date.

• For an American option, ExerciseTimes is a 1-by-2 vector of exercise time
boundaries. The option exercises on any date between, or including, the pair of times
on that row. If ExerciseTimes is 1-by-1, the option exercises between time 0 and the
single listed ExerciseTimes.

Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
optpricebysim(RateSpec,Prices,Times,OptSpec,Settle,Strike,ExerciseTi
mes,'AmericanOpt',1)
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AmericanOpt — Option type
0 European or Bermudan (default) | scalar flag with value [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an
integer scalar flag with values:

• 0 — European or Bermudan
• 1 — American

For American options, the Longstaff-Schwartz least squares method calculates the early
exercise premium.
Data Types: single | double

Output Arguments
Price — Price of option
scalar

Price of the option, returned as a scalar value.

See Also
gbm | intenvset | simBySolution

Topics
“Pricing Asian Options”
“Creating Geometric Brownian Motion (GBM) Models” (Financial Toolbox)
Supported Equity Derivatives on page 3-24

Introduced in R2014a
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rangefloatbybdt
Price range floating note using Black-Derman-Toy tree

Syntax
[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbybdt(BDTTree,Spread,Settle,Maturity,
RateSched) prices range floating note using a Black-Derman-Toy tree.

Payments on range floating notes are determined by the effective interest-rate between
reset dates. If the reset period for a range spans more than one tree level, calculating the
payment becomes impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates cannot be uniquely determined because
there is more than one possible path for connecting the two payment dates.

[Price,PriceTree] = rangefloatbybdt( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of a Range Note Using a Black-Derman-Toy Tree

This example shows how to compute the price of a range note using a Black-Derman-Toy
tree with the following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};

 rangefloatbybdt

11-1841



Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
% assume the volatility is 10%.
Sigma = 0.1;  
BDTTS = bdttimespec(ValuationDate, EndDates, Compounding);
BDTVS = bdtvolspec(ValuationDate, EndDates, Sigma*ones(1, length(EndDates))');
BDTT = bdttree(BDTVS, RS, BDTTS);

% price the instrument 
Price = rangefloatbybdt(BDTT, Spread, Settle, Maturity, RateSched)

Price = 97.5267

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors
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Settlement date for the floating range note, specified as a NINST-by-1 vector of serial
date numbers or date character vectors. The Settle date for every range floating
instrument is set to the ValuationDate of the BDT tree. The floating range note
argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of
structures. Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range
schedule.

• RateSched.Rates — NDates-by-2 array with the first column containing the lower
bound of the range and the second column containing the upper bound of the range.
Cash flow for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
rangefloatbybdt(BDTTree,Spread,Settle,Maturity,RateSched,'Reset',
4,'Basis',5,'Principal',10000)

Reset — Frequency payment per year
1 (default) | numeric
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Frequency of payments per year, specified as the comma-separated pair consisting of
'Reset' and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double
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Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer with a value of 0 or 1 using a NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of
instrument prices and accrued interest, and a vector of observation times for each node.
Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
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Definitions

Range Note Instrument
A range note is a structured (market-linked) security whose coupon rate is equal to the
reference rate as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type
of instrument entitles the holder to cash flows that depend on the level of some reference
interest rate and are floored to be positive. The note holder gets direct exposure to the
reference rate. In return for the drawback that no interest is paid for the time the range
is left, they offer higher coupon rates than comparable standard products, like vanilla
floating notes.

References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.”

Stanford Economics and Finance. 2nd Edition. 2002.

See Also
bdttree | bondbybdt | cfbybdt | fixedbybdt | floatbybdt | floorbybdt |
instrangefloat | rangefloatbybk | rangefloatbyhjm | rangefloatbyhw |
swapbybdt

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2012a
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rangefloatbybk
Price range floating note using Black-Karasinski tree

Syntax
[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbybk(BKTree,Spread,Settle,Maturity,
RateSched) prices range floating note using a Black-Karasinski tree.

Payments on range floating notes are determined by the effective interest-rate between
reset dates. If the reset period for a range spans more than one tree level, calculating the
payment becomes impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates cannot be uniquely determined because
there is more than one possible path for connecting the two payment dates.

[Price,PriceTree] = rangefloatbybk( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of a Range Note Using a Black-Karasinski Tree

This example shows how to compute the price of a range note using a Black-Karasinski
tree with the following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
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Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

BKVS = bkvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTS = bktimespec(RS.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVS, RS, BKTS);

% price the instrument 
Price = rangefloatbybk(BKT, Spread, Settle, Maturity, RateSched)

Price = 102.7574

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
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Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial
date numbers or date character vectors. The Settle date for every range floating
instrument is set to the ValuationDate of the BK tree. The floating range note
argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of
structures. Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range
schedule.

• RateSched.Rates — NDates-by-2 array with the first column containing the lower
bound of the range and the second column containing the upper bound of the range.
Cash flow for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [Price,PriceTree] =
rangefloatbybk(BKTree,Spread,Settle,Maturity,RateSched,'Reset',
4,'Basis',5,'Principal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of
'Reset' and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer with a value of 0 or 1 using a NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a structure containing trees of vectors of
instrument prices and accrued interest, and a vector of observation times for each node.
Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

Definitions
Range Note Instrument
A range note is a structured (market-linked) security whose coupon rate is equal to the
reference rate as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type
of instrument entitles the holder to cash flows that depend on the level of some reference
interest rate and are floored to be positive. The note holder gets direct exposure to the
reference rate. In return for the drawback that no interest is paid for the time the range
is left, they offer higher coupon rates than comparable standard products, like vanilla
floating notes.

References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.”

Stanford Economics and Finance. 2nd Edition. 2002.

See Also
bktree | bondbybk | capbybk | cfbybk | fixedbybk | floorbybk | instrangefloat |
rangefloatbybdt | rangefloatbyhjm | rangefloatbyhw | swapbybk

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2
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Introduced in R2012a
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rangefloatbycir
Price range floating note using Cox-Ingersoll-Ross tree

Syntax
[Price,PriceTree] = rangefloatbycir(CIRTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbycir(CIRTree,Spread,Settle,Maturity,
RateSched) prices range floating note with a Cox-Ingersoll-Ross (CIR) interest-rate tree
using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = rangefloatbycir( ___ ,Name,Value) adds additional
name-value pair arguments.

Examples

Price a Range Floating-Rate Note Using a CIR Interest-Rate Tree

Create a RateSpec using the intenvset function.

Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
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Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2020'; 
CIRTimeSpec = cirtimespec(Settle, Maturity, 3); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2]
        dObs: [736696 737061 737426]
     FwdTree: {[1.0350]  [1.0790 1.0500 1.0298]  [1x5 double]}
     Connect: {[3x1 double]  [3x3 double]}
       Probs: {[3x1 double]  [3x3 double]}

Define the range note instrument that matures in Jan-1-2014 and has the following
RateSchedule:

Spread = 100;
Settle = 'Jan-1-2017';
Maturity = 'Jan-1-2020';
RateSched(1).Dates = {'Jan-1-2018'; 'Jan-1-2019'  ; 'Jan-1-2020'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

Compute the price of the range floating note.

[Price,PriceTree] = rangefloatbycir(CIRT,Spread,Settle,Maturity,RateSched)

Price = 91.6849

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
      PTree: {1x4 cell}
     AITree: {[0]  [0 0 0]  [0 0 0 0 0]  [0 0 0 0 0]}
       tObs: [0 1 2 3]
    Connect: {[3x1 double]  [3x3 double]}
      Probs: {[3x1 double]  [3x3 double]}
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Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial
date numbers, date character vectors, string arrays, or datetime arrays. The Settle date
for every range floating instrument is set to the ValuationDate of the CIR tree. The
floating range note argument Settle is ignored.
Data Types: double | char | cell | string | datetime

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date
numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | string | datetime

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of
structures. Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range
schedule.
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• RateSched.Rates — NDates-by-2 array with the first column containing the lower
bound of the range and the second column containing the upper bound of the range.
Cash flow for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
rangefloatbycir(CIRTree,Spread,Settle,Maturity,RateSched,'Reset',
4,'Basis',5,'Principal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of
'Reset' and a NINST-by-1 vector.

Note Payments on range floating notes are determined by the effective interest-rate
between reset dates. If the reset period for a range spans more than one tree level,
calculating the payment becomes impossible due to the recombining nature of the tree.
That is, the tree path connecting the two consecutive reset dates cannot be uniquely
determined because there is more than one possible path for connecting the two payment
dates.

Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.
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• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer with a value of 0 or 1 using a NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

11 Functions — Alphabetical List

11-1858



Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of
instrument prices and accrued interest, and a vector of observation times for each node.
Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

Definitions
Range Note Instrument
A range note is a structured (market-linked) security whose coupon rate is equal to the
reference rate as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type
of instrument entitles the holder to cash flows that depend on the level of some reference
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interest rate and are floored to be positive. The note holder gets direct exposure to the
reference rate. In return for the drawback that no interest is paid for the time the range
is left, they offer higher coupon rates than comparable standard products, vanilla floating
notes.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
instrangefloat | oasbycir | optbndbycir | optembndbycir | optemfloatbycir |
optfloatbycir | swapbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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rangefloatbyhjm
Price range floating note using Heath-Jarrow-Morton tree

Syntax
[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbyhjm( ___ Name,Value)

Description
[Price,PriceTree] = rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,
RateSched) prices range floating note using a Heath-Jarrow-Morton tree.

Payments on range floating notes are determined by the effective interest-rate between
reset dates. If the reset period for a range spans more than one tree level, calculating the
payment becomes impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates cannot be uniquely determined because
there is more than one possible path for connecting the two payment dates.

[Price,PriceTree] = rangefloatbyhjm( ___ Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of a Range Note Using a Heath-Jarrow-Morton Tree

This example shows how to compute the price of a range note using a Heath-Jarrow-
Morton tree with the following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
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Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
Volatility = [.2; .19; .18; .17];
CurveTerm = [ 1;  2;   3;   4];
MaTree = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
HJMTS = hjmtimespec(ValuationDate, MaTree);
HJMVS = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVS, RS, HJMTS);

% price the instrument  
Price = rangefloatbyhjm(HJMT, Spread, Settle, Maturity, RateSched)

Price = 90.2348

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double
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Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial
date numbers or date character vectors. The Settle date for every range floating
instrument is set to the ValuationDate of the HJM tree. The floating range note
argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of
structures. Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range
schedule.

• RateSched.Rates — NDates-by-2 array with the first column containing the lower
bound of the range and the second column containing the upper bound of the range.
Cash flow for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] =
rangefloatbyhjm(HJMTree,Spread,Settle,Maturity,RateSched,'Reset',
4,'Basis',5,'Principal',10000)
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Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of
'Reset' and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
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Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer with a value of 0 or 1 using a NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a structure containing trees of vectors of
instrument prices and accrued interest, and a vector of observation times for each node.
Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
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• PriceTree.tObs contains the observation times.

Definitions

Range Note Instrument
A range note is a structured (market-linked) security whose coupon rate is equal to the
reference rate as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type
of instrument entitles the holder to cash flows that depend on the level of some reference
interest rate and are floored to be positive. The note holder gets direct exposure to the
reference rate. In return for the drawback that no interest is paid for the time the range
is left, they offer higher coupon rates than comparable standard products, like vanilla
floating notes.

References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.”

Stanford Economics and Finance. 2nd Edition. 2002.

See Also
bondbyhjm | cfbyhjm | fixedbyhjm | floatbyhjm | floorbyhjm | hjmtree |
instrangefloat | rangefloatbybdt | rangefloatbybk | rangefloatbyhw |
swapbyhjm

Topics
“Computing Instrument Prices” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2012a
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rangefloatbyhw
Price range floating note using Hull-White tree

Syntax
[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle,Maturity,
RateSched)
[Price,PriceTree] = rangefloatbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = rangefloatbyhw(HWTree,Spread,Settle,Maturity,
RateSched) prices range floating note using a Hull-White tree.

Payments on range floating notes are determined by the effective interest-rate between
reset dates. If the reset period for a range spans more than one tree level, calculating the
payment becomes impossible due to the recombining nature of the tree. That is, the tree
path connecting the two consecutive reset dates cannot be uniquely determined because
there is more than one possible path for connecting the two payment dates.

[Price,PriceTree] = rangefloatbyhw( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Compute the Price of a Range Note Using a Hull-White Tree

This example shows how to compute the price of a range note using a Hull-White tree
with the following interest-rate term structure data.

Rates = [0.035; 0.042147; 0.047345; 0.052707];
ValuationDate = 'Jan-1-2011';
StartDates = ValuationDate;
EndDates = {'Jan-1-2012'; 'Jan-1-2013'; 'Jan-1-2014'; 'Jan-1-2015'};
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Compounding = 1;

% define RateSpec
RS = intenvset('ValuationDate', ValuationDate, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding);
                       
% range note instrument matures in Jan-1-2014 and has the following RateSchedule:
Spread = 100;
Settle = 'Jan-1-2011';
Maturity = 'Jan-1-2014';
RateSched(1).Dates = {'Jan-1-2012'; 'Jan-1-2013'  ; 'Jan-1-2014'};
RateSched(1).Rates = [0.045 0.055 ; 0.0525  0.0675; 0.06 0.08];

% data to build the tree is as follows:
VolDates = ['1-Jan-2012'; '1-Jan-2013'; '1-Jan-2014';'1-Jan-2015'];
VolCurve = 0.01;
AlphaDates = '01-01-2015';
AlphaCurve = 0.1;

HWVS = hwvolspec(RS.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTS = hwtimespec(RS.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVS, RS, HWTS);

% price the instrument  
Price = rangefloatbyhw(HWT, Spread, Settle, Maturity, RateSched)

Price = 96.6107

Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
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Data Types: double

Settle — Settlement date for floating range note
serial date number | date character vector | cell array of date character vectors

Settlement date for the floating range note, specified as a NINST-by-1 vector of serial
date numbers or date character vectors. The Settle date for every range floating
instrument is set to the ValuationDate of the HW tree. The floating range note
argument Settle is ignored.
Data Types: double | char | cell

Maturity — Maturity date for floating range note
serial date number | date character vector | cell array of date character vectors

Maturity date for the floating-rate note, specified as a NINST-by-1 vector of serial date
numbers or date character vectors.
Data Types: double | char | cell

RateSched — Range of rates within which cash flows are nonzero
structure

Range of rates within which cash flows are nonzero, specified as a NINST-by-1 vector of
structures. Each element of the structure array contains two fields:

• RateSched.Dates — NDates-by-1 cell array of dates corresponding to the range
schedule.

• RateSched.Rates — NDates-by-2 array with the first column containing the lower
bound of the range and the second column containing the upper bound of the range.
Cash flow for date RateSched.Dates(n) is nonzero for rates in the range
RateSched.Rates(n,1) < Rate < RateSched.Rate (n,2).

Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [Price,PriceTree] =
rangefloatbyhw(HWTree,Spread,Settle,Maturity,RateSched,'Reset',
4,'Basis',5,'Principal',10000)

Reset — Frequency payment per year
1 (default) | numeric

Frequency of payments per year, specified as the comma-separated pair consisting of
'Reset' and a NINST-by-1 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate
tree, specified as the comma-separated pair consisting of 'Basis' and a NINST-by-1
vector of integers.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating caplet dates
1 (in effect) (default) | nonnegative integer with value 0 or 1

End-of-month rule flag, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer with a value of 0 or 1 using a NINST-by-1
vector.

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

Output Arguments
Price — Expected prices of range floating notes at time 0
vector

Expected prices of the range floating notes at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a structure containing trees of vectors of
instrument prices and accrued interest, and a vector of observation times for each node.
Values are:

• PriceTree.PTree contains the clean prices.
• PriceTree.AITree contains the accrued interest.
• PriceTree.tObs contains the observation times.

Definitions
Range Note Instrument
A range note is a structured (market-linked) security whose coupon rate is equal to the
reference rate as long as the reference rate is within a certain range.

If the reference rate is outside of the range, the coupon rate is 0 for that period. This type
of instrument entitles the holder to cash flows that depend on the level of some reference
interest rate and are floored to be positive. The note holder gets direct exposure to the
reference rate. In return for the drawback that no interest is paid for the time the range
is left, they offer higher coupon rates than comparable standard products, like vanilla
floating notes.

References
[1] Jarrow, Robert. “Modelling Fixed Income Securities and Interest Rate Options.”

Stanford Economics and Finance. 2nd Edition. 2002.

See Also
bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree | instrangefloat |
rangefloatbybdt | rangefloatbybk | rangefloatbyhjm | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
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“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2012a
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rate2disc
Discount factors from interest rates

Syntax
Usage 1: Interval points are input as times in periodic units.

Disc = rate2disc(Compounding,Rates,EndTimes)

Disc = rate2disc(Compounding,Rates,EndTimes,StartTimes)

Usage 2: ValuationDate is passed and interval points are input as dates.

[Disc,EndTimes,StartTimes] = rate2disc(Compounding,Rates,EndDates,StartDates,ValuationDate)

[Disc,EndTimes,StartTimes] = rate2disc(Compounding,Rates,EndDates,StartDates,ValuationDate,Basis,EndMonthRule)
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Arguments
Compounding Scalar value representing the rate at which the input zero rates

were compounded when annualized. This argument determines
the formula for the discount factors (Disc):

• Compounding = 0 for simple interest

• Disc = 1/(1 + Z * T), where T is time in years and
simple interest assumes annual times F = 1.

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the compounding
frequency, Z is the zero rate, and T is the time in periodic
units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of
days in the basis year and T is a number of days elapsed
computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.
Rates Number of points (NPOINTS) by number of curves (NCURVES)

matrix of rates in decimal form. For example, 5% is 0.05 in
Rates. Rates are the yields over investment intervals from
StartTimes, when the cash flow is valued, to EndTimes, when
the cash flow is received.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units ending
the interval to discount over.

Note When ValuationDate is not passed, the third and
fourth arguments (EndTimes and StartTimes) are
interpreted as times.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in periodic
units starting the interval to discount over. Default = 0.
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EndDates NPOINTS-by-1 vector or scalar of serial maturity dates ending
the interval to discount over.

Note : When ValuationDate is passed, the third and fourth
arguments (EndDates and StartDates) are interpreted as
dates. The date ValuationDate is used as the zero point for
computing the times.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates
starting the interval to discount over. StartDates must be
earlier than EndDates.

Default = ValuationDate.
ValuationDate Scalar value in serial date number form representing the

observation date of the investment horizons entered in
StartDates and EndDates. Required in Usage 2. Omitted or
passed as an empty matrix to invoke Usage 1.

11 Functions — Alphabetical List

11-1876



Basis (Optional) Day-count basis of the instrument when using Usage
2. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule when using Usage 2. A vector.

This rule applies only when Maturity is an end-of-month date
for a month having 30 or fewer days. 0 = ignore rule, meaning
that a bond's coupon payment date is always the same
numerical day of the month. 1 = set rule on (default), meaning
that a bond's coupon payment date is always the last actual day
of the month.

Description
Usage 1: Disc = rate2disc(Compounding,Rates,EndTimes) or Disc =
rate2disc(Compounding, Rates,EndTimes,StartTimes) where interval points are
input as times in periodic units.

Usage 2: [Disc,EndTimes,StartTimes] =
rate2disc(Compounding,Rates,EndDates,StartDates, ValuationDate) or
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[Disc,EndTimes,StartTimes] =
rate2disc(Compounding,Rates,EndDates,StartDates,ValuationDate,Basis,
EndMonthRule) where ValuationDate is passed and interval points are input as dates.

rate2disc computes the discounts over a series of NPOINTS time intervals given the
annualized yield over those intervals. NCURVES different rate curves can be translated at
once if they have the same time structure. The time intervals can represent a zero curve
or a forward curve.

The output Disc is an NPOINTS-by-NCURVES column vector of discount factors in decimal
form representing the value at time StartTime of a unit cash flow received at time
EndTime.

You can specify the investment intervals either with input times (Usage 1) or with input
dates (Usage 2). Entering ValuationDate invokes the date interpretation; omitting
ValuationDate invokes the default time interpretations.

For Usage 1:

• StartTimes is an NPOINTS-by-1 column vector of times starting the interval to
discount over, measured in periodic units.

• EndTimes is an NPOINTS-by-1 column vector of times ending the interval to discount
over, measured in periodic units.

For Usage 2:

• StartDates is an NPOINTS-by-1 column vector of serial dates starting the interval to
discount over, measured in days.

• EndDates is an NPOINTS-by-1 column vector of serial dates ending the interval to
discount over, measured in days.

If Compounding = 365 (daily), StartDates and EndDates are measured in days as in
Usage 2. Otherwise, in Usage 1, the arguments contain values, T, computed from SIA
semiannual time factors, Tsemi, by the formula T = Tsemi/2*F, where F is the
compounding frequency.
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Examples
Example 1 demonstrates Usage 1. Compute discounts from a zero curve at 6 months, 12
months, and 24 months. The times to the cash flows are 1, 2, and 4. You are computing
the present value (at time 0) of the cash flows.

Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndTimes   = [1; 2; 4];
Disc = rate2disc(Compounding, Rates, EndTimes)

Disc =
    0.9756
    0.9426
    0.8799

Example 2 demonstrates Usage 2. Compute discounts from a zero curve at 6 months, 12
months, and 24 months. Use dates to specify the ending time horizon.
Compounding = 2;
Rates = [0.05; 0.06; 0.065];
EndDates = ['10/15/97'; '04/15/98'; '04/15/99'];
ValuationDate = '4/15/97'; 
Disc = rate2disc(Compounding, Rates, EndDates, [], ValuationDate)

Disc =
    0.9756
    0.9426
    0.8799

Example 3 demonstrates Usage 1. Compute discounts from the 1-year forward rates
beginning now, in six months, and in 12 months. Use monthly compounding. The times to
the cash flows are 12, 18, 24, and the forward times are 0, 6, 12.

Compounding = 12;
Rates = [0.05; 0.04; 0.06];
EndTimes = [12; 18; 24];
StartTimes = [0; 6; 12];
Disc = rate2disc(Compounding, Rates, EndTimes, StartTimes)

Disc =
    0.9513
    0.9609
    0.9419
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See Also
disc2rate | ratetimes

Topics
“Modeling the Interest-Rate Term Structure” on page 2-67
“Interest-Rate Term Conversions” on page 2-62
“Interest Rates Versus Discount Factors” on page 2-55
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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ratetimes
Change time intervals defining interest-rate environment

Syntax
Usage 1: ValuationDate not passed; third through sixth arguments are interpreted as
times.

[Rates,EndTimes,StartTimes] = ratetimes(Compounding,RefRates,RefEndTimes,RefStartTimes,EndTimes,StartTimes)

Usage 2: ValuationDate passed and interval points input as dates.

[Rates,EndTimes,StartTimes] = ratetimes(Compounding,RefRates,RefEndDates,RefStartDates,EndDates,StartDates,ValuationDate)
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Arguments
Compounding Scalar value representing the rate at which the input zero

rates were compounded when annualized. This argument
determines the formula for the discount factors (Disc):

• Compounding = 0 for simple interest

• Disc = 1/(1 + Z * T), where T is time in years and
simple interest assumes annual times F = 1.

• Compounding = 1, 2, 3, 4, 6, 12

• Disc = (1 + Z/F)^(-T), where F is the
compounding frequency, Z is the zero rate, and T is the
time in periodic units, for example, T = F is one year.

• Compounding = 365

• Disc = (1 + Z/F)^(-T), where F is the number of
days in the basis year and T is a number of days elapsed
computed by basis.

• Compounding = -1

• Disc = exp(-T*Z), where T is time in years.
RefRates NREFPTS-by-NCURVES matrix of reference rates in decimal

form. RefRates are the yields over investment intervals from
RefStartTimes, when the cash flow is valued, to
RefEndTimes, when the cash flow is received.

RefEndTimes NREFPTS-by-1 vector or scalar of times in periodic units
ending the intervals corresponding to RefRates.

RefStartTimes (Optional) NREFPTS-by-1 vector or scalar of times in periodic
units starting the intervals corresponding to RefRates.
Default = 0.

EndTimes NPOINTS-by-1 vector or scalar of times in periodic units
ending the interval to discount over.

StartTimes (Optional) NPOINTS-by-1 vector or scalar of times in periodic
units starting the interval to discount over. Default = 0.
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RefEndDates NREFPTS-by-1 vector or scalar of serial dates ending the
intervals corresponding to RefRates.

RefStartDates (Optional) NREFPTS-by-1 vector or scalar of serial dates
starting the intervals corresponding to RefRates. Default =
ValuationDate.

EndDates NPOINTS-by-1 vector or scalar of serial maturity dates ending
the interval to discount over.

StartDates (Optional) NPOINTS-by-1 vector or scalar of serial dates
starting the interval to discount over. StartDates must be
earlier than EndDates.

Default = ValuationDate.
ValuationDate Scalar value in serial date number form representing the

observation date of the investment horizons entered in
StartDates and EndDates. Required in Usage 2. Omitted or
passed as an empty matrix to invoke Usage 1.

Description
[Rates, EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndTimes, RefStartTimes, EndTimes, StartTimes) and [Rates,
EndTimes, StartTimes] = ratetimes(Compounding, RefRates,
RefEndDates, RefStartDates, EndDates, StartDates, ValuationDate)
change time intervals defining an interest-rate environment.

ratetimes takes an interest-rate environment defined by yields over one collection of
time intervals and computes the yields over another set of time intervals. The zero rate is
assumed to be piecewise linear in time.

Rates is an NPOINTS-by-NCURVES matrix of rates implied by the reference interest-rate
structure and sampled at new intervals.

StartTimes is an NPOINTS-by-1 column vector of times starting the new intervals where
rates are desired, measured in periodic units.

EndTimes is an NPOINTS-by-1 column vector of times ending the new intervals,
measured in periodic units.
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If Compounding = 365 (daily), StartTimes and EndTimes are measured in days. The
arguments otherwise contain values, T, computed from SIA semiannual time factors,
Tsemi, by the formula T = Tsemi/2 * F, where F is the compounding frequency.

You can specify the investment intervals either with input times (Usage 1) or with input
dates (Usage 2). Entering the argument ValuationDate invokes the date interpretation;
omitting ValuationDate invokes the default time interpretations.

Examples
Example 1. The reference environment is a collection of zero rates at 6, 12, and 24
months. Create a collection of 1-year forward rates beginning at 0, 6, and 12 months.

RefRates = [0.05; 0.06; 0.065];
RefEndTimes = [1; 2; 4];
StartTimes = [0; 1; 2];
EndTimes   = [2; 3; 4];
Rates = ratetimes(2, RefRates, RefEndTimes, 0, EndTimes,... 
StartTimes)

Rates =
    0.0600
    0.0688
    0.0700

Example 2. Interpolate a zero yield curve to different dates. Zero curves start at the
default date of ValuationDate.

RefRates = [0.04; 0.05; 0.052];
RefDates = [729756; 729907; 730121];
Dates    = [730241; 730486];
ValuationDate   = 729391;
Rates = ratetimes(2, RefRates, RefDates, [], Dates, [],... 
ValuationDate)

Rates =
    0.0520
    0.0520

See Also
disc2rate | rate2disc
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Topics
“Modeling the Interest-Rate Term Structure” on page 2-67
“Interest-Rate Term Conversions” on page 2-62
“Interest Rates Versus Discount Factors” on page 2-55
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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spreadbykirk
Price European spread options using Kirk pricing model

Syntax
Price = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)

Description
Price = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the price for a European spread option using the Kirk
pricing model.

Examples

Compute the Price of a Spread Option Using the Kirk Model

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

   Price1gallon = 2.85;          % $/gallon
   Price1 = Price1gallon * 42;   % $/barrel
   Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.
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Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
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              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the European spread option price based on the Kirk model.

Price = spreadbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)

Price = 11.1904

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure
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Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates for the spread option, specified as date character vectors or as serial
date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
date character vectors

Maturity date for spread option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: cell | char

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.

If Strike is equal to 0, the function computes the price of an exchange option.
Data Types: single | double
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Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1
vector.
Data Types: single | double

Output Arguments
Price — Expected prices of spread option
vector

Expected prices of the spread option, returned as a NINST-by-1 vector.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

See Also
spreadbybjs | spreadbyfd | spreadbyls | spreadsensbykirk

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadbybjs
Price European spread options using Bjerksund-Stensland pricing model

Syntax
Price = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)

Description
Price = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the price for a European spread option using the
Bjerksund-Stensland pricing model.

Examples

Compute the Price of a Spread Option Using the Bjerksund-Stensland Model

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.
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Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
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              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the European spread option price based on the Bjerksund-Stensland model.

Price = spreadbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)

Price = 11.2000

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure
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Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates for the spread option, specified as date character vectors or as serial
date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Maturity date for spread option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.

If Strike is equal to zero, the function computes the price of an exchange option.
Data Types: single | double
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Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1
vector.
Data Types: single | double

Output Arguments
Price — Expected prices of spread option
vector

Expected prices of the spread option, returned as a NINST-by-1 vector.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

[2] Bjerksund, Petter, Stensland, Gunnar. “Closed form spread option valuation.”
Department of Finance, NHH, 2006.

See Also
spreadbybjs | spreadbyfd | spreadbyls | spreadsensbykirk

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadbyfd
Price European or American spread options using finite difference method

Syntax
Price = spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
Price = spreadbyfd( ___ ,Name,Value)

[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(
RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr)
[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd( ___ ,
Name,Value)

Description
Price = spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the price of European or American call or put spread
options using the Alternate Direction Implicit (ADI) finite difference method. The spread
is between the asset defined in StockSpec1 minus the asset defined in StockSpec2.

Price = spreadbyfd( ___ ,Name,Value) adds optional name-value pair arguments.

[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd(
RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,Strike,Corr)
returns the Price, PriceGrid, AssetPrice1, AssetPrice2, and Times for a
European or American call or put spread options using the Alternate Direction Implicit
(ADI) finite difference method. The spread is between the asset defined in StockSpec1
minus the asset defined in StockSpec2.

[Price,PriceGrid,AssetPrice1,AssetPrice2,Times] = spreadbyfd( ___ ,
Name,Value) returns the Price, PriceGrid, AssetPrice1, AssetPrice2, and Times
and adds optional name-value pair arguments.
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Examples

Compute the Price of a Spread Option Using the Alternate Direction Implicit
(ADI) Finite Difference Method

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel  
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
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         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price based on the Alternate Direction Implicit (ADI) finite
difference method.

[Price, PriceGrid, AssetPrice1, AssetPrice2, Times] = ...
 spreadbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
 Maturity, OptSpec, Strike, Corr);

Display the price.

Price

Price = 11.1998
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Plot the finite difference grid.

mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
    title('Spread Option Prices for Range of Underlying Prices');
    xlabel('Price of underlying asset 1');
    ylabel('Price of underlying asset 2');
    zlabel('Price of spread option');

Input Arguments
RateSpec — Interest-rate term structure
structure
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Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates for the spread option, specified as date character vectors or as serial
date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors
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Maturity date for spread option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: double | char | cell

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1
vector.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,St
rike,Corr,'AssetPriceMin','AssetPriceMax','PriceGridSize','TimeGridS
ize','AmericanOpt',0)

AssetPriceMin — Minimum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity
(default) | array
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Minimum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMin' and a 1-by-2 array. The first entry in the array corresponds to the
first asset defined by StockSpec1 and the second entry corresponds to the second asset
defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional arguments
AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the
composition of the grid to ensure the quality of the output and a reasonable execution
time.
Data Types: single | double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity
(default) | array

Maximum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMax' and a 1-by-2 array. The first entry in the array corresponds to the
first asset defined by StockSpec1 and the second entry corresponds to the second asset
defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional arguments
AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the
composition of the grid to ensure the quality of the output and a reasonable execution
time.
Data Types: single | double

PriceGridSize — Size for finite difference grid
[300,300] (default) | array

Size for finite difference grid, specified as the comma-separated pair consisting of
'PriceGridSize' and a 1-by-2 array. The first entry corresponds to the first asset
defined by StockSpec1 and the second entry corresponds to the second asset defined by
StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional
argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the
composition of the grid to ensure the quality of the output and a reasonable execution
time.
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Data Types: single | double

TimeGridSize — Size of the time grid for finite difference grid
100 (default) | scalar | nonnegative integer

Size of the time grid for finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a nonnegative integer.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional
argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the
composition of the grid to ensure the quality of the output and a reasonable execution
time.
Data Types: single | double

AmericanOpt — Option type
0 European (default) | scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:

• 0 — European
• 1 — American

Data Types: single | double

Output Arguments
Price — Expected prices of spread option
vector

Expected prices of the spread option, returned as a NINST-by-1 vector.

PriceGrid — Grid containing prices calculated by finite difference method
array

Grid containing prices calculated by finite difference method, returned as a 3-D grid with
a size of PriceGridSize(1) * PriceGridSize(2) * TimeGridSize. The price for t =
0 is contained in PriceGrid(:, :, 1).
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AssetPrice1 — Prices for first asset defined by StockSpec1
vector

Prices for first asset defined by StockSpec1, corresponding to the first dimension of
PriceGrid, returned as a vector.

AssetPrice2 — Prices for second asset defined by StockSpec2
vector

Prices for second asset defined by StockSpec2, corresponding to the second dimension
of PriceGrid, returned as a vector.

Times — Times corresponding to third dimension of PriceGrid
vector

Times corresponding to third dimension of PriceGrid, returned as a vector.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

[2] Villeneuve, S., Zanette, A. “Parabolic ADI Methods for Pricing American Options on
Two Stocks.” Mathematics of Operations Research. Vol. 27, No. 1, pp. 121–149,
INFORMS, 2002.

[3] Ikonen, S., Toivanen, J. Efficient Numerical Methods for Pricing American Options
Under Stochastic Volatility. Wiley InterScience, 2007.

See Also
spreadbybjs | spreadbykirk | spreadbyls | spreadsensbyfd

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43
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External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b

 spreadbyfd
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spreadbyls
Price European or American spread options using Monte Carlo simulations

Syntax
Price = spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
Price = spreadbyls( ___ ,Name,Value)

[Price,Paths,Times,Z] = spreadbyls(RateSpec,StockSpec1,StockSpec2,
Settle,Maturity,OptSpec,Strike,Corr)
[Price,Paths,Times,Z] = spreadbyls( ___ ,Name,Value)

Description
Price = spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the price of a European or American call or put spread
option using Monte Carlo simulations.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

Price = spreadbyls( ___ ,Name,Value) returns the price of a European or
American call or put spread option using Monte Carlo simulations using optional name-
value pair arguments.

[Price,Paths,Times,Z] = spreadbyls(RateSpec,StockSpec1,StockSpec2,
Settle,Maturity,OptSpec,Strike,Corr) returns the Price, Paths, Times, and Z
of a European or American call or put spread option using Monte Carlo simulations.

[Price,Paths,Times,Z] = spreadbyls( ___ ,Name,Value) returns the Price,
Paths, Times, and Z of a European or American call or put spread option using Monte
Carlo simulations using optional name-value pair arguments.
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Examples

Compute the Price of a Spread Option Using Monte Carlo Simulation

Define the spread option dates.

Settle = '01-Jan-2012';
Maturity = '01-April-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
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       StartTimes: 0
         EndDates: 734960
       StartDates: 734869
    ValuationDate: 734869
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price using Monte Carlo simulation based on the Longstaff-
Schwartz model.

Price = spreadbyls(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr)

Price = 11.0799
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement date for spread option
date character vector | nonnegative scalar integer

Settlement date for the spread option specified, as a date character vector or nonnegative
scalar integer.
Data Types: char | double
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Maturity — Maturity date for spread option
date character vector | nonnegative scalar integer

Maturity date for spread option, specified as a date character vector or a nonnegative
scalar integer.
Data Types: char | double

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified, as a nonnegative scalar integer.
Data Types: single | double

Corr — Correlation between underlying asset prices
scalar integer

Correlation between underlying asset prices, specified as a scalar integer.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,St
rike,Corr,'AmericanOpt',1)

AmericanOpt — Option type
0 European (default) | scalar with value [0,1]
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Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and an
integer scalar flag with value:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Scalar number of independent sample paths
1000 (default) | nonnegative scalar integer

Scalar number of independent sample paths (simulation trials), specified as the comma-
separated pair consisting of 'NumTrials' and a nonnegative integer.
Data Types: single | double

NumPeriods — Scalar number of simulation periods per trial
100 (default) | nonnegative scalar integer

Scalar number of simulation periods per trial, specified as the comma-separated pair
consisting of 'NumPeriods' and a nonnegative integer. NumPeriods is considered only
when pricing European basket options. For American spread options, NumPeriod is equal
to the number of exercise days during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, specified as the comma-separated pair
consisting of 'Z' and a NumPeriods-by-2-by-NumTrials 3-D array. The Z value
generates the Brownian motion vector (that is, Wiener processes) that drives the
simulation.
Data Types: single | double
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Antithetic — Indicator for antithetic sampling
false (default) | scalar logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

Output Arguments
Price — Expected price of spread option
scalar

Expected price of the spread option, returned as a 1-by-1 scalar.

Paths — Simulated paths of correlated state variables
vector

Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-2-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-2-by-
NumTrials 3-D array when Z is specified as an input argument. If the Z input argument
is not specified, then the Z output argument contains the random variates generated
internally.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.
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See Also
spreadbybjs | spreadbyfd | spreadbykirk | spreadsensbyls

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b

 spreadbyls
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spreadsensbykirk
Calculate European spread option prices or sensitivities using Kirk pricing model

Syntax
PriceSens = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr)
PriceSens = spreadsensbykirk( ___ ,Name,Value)

Description
PriceSens = spreadbykirk(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr) returns the European spread option prices or
sensitivities using the Kirk pricing model.

PriceSens = spreadsensbykirk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using the Kirk Model

Define the spread option dates.

 Settle = '01-Jun-2012';
 Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil
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   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
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    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price and sensitivities based on the Kirk model.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma] = spreadsensbykirk(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

Price = 11.1904

Delta = 1×2

    0.6722   -0.6067

Gamma = 1×2

    0.0191    0.0217

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct
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StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates for the spread option, specified as date character vectors or as serial
date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Maturity date for spread option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using as NINST-by-1 vector of strike
price values.

If Strike is equal to zero, this function computes the price and sensitivities of an
exchange option.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using as NINST-by-1
vector.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
spreadsensbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptS
pec,Strike,Corr,OutSpec,{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities values of spread option
vector

Expected price or sensitivities values (defined by OutSpec) of the spread option, returned
as a NINST-by-1 or NINST-by-2 vector.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

See Also
spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)
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Introduced in R2013b
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spreadsensbybjs
Calculate European spread option prices or sensitivities using Bjerksund-Stensland
pricing model

Syntax
PriceSens = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr)
PriceSens = spreadsensbybjs( ___ ,Name,Value)

Description
PriceSens = spreadbybjs(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr) returns the European spread option prices or
sensitivities using the Bjerksund-Stensland pricing model.

PriceSens = spreadsensbybjs( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Compute the Price and Sensitivities of a Spread Option Using the Bjerksund-
Stensland Model

Define the spread option dates.

Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

   Price1gallon = 2.85;          % $/gallon
   Price1 = Price1gallon * 42;   % $/barrel
   Vol1 = 0.29;
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Define asset 2. Price and volatility of WTI crude oil

  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
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    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price and sensitivities based on the Kirk model.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma] = spreadsensbybjs(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

Price = 11.2000

Delta = 1×2

    0.6737   -0.6082

Gamma = 1×2

    0.0190    0.0216

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct
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StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates for the spread option, specified as date character vectors or as serial
date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Maturity date for spread option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.

If Strike is equal to zero the function computes the price and sensitivities of an
exchange option.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using a NINST-by-1
vector.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: PriceSens =
spreadsensbykirk(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptS
pec,Strike,Corr,OutSpec,{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected prices or sensitivities values of spread option
vector

Expected prices or sensitivities values (defined by OutSpec) of the spread option,
returned as a NINST-by-1 or NINST-by-2 vector.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options,” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

[2] Bjerksund, Petter, Stensland, Gunnar. “Closed form spread option valuation.”
Department of Finance, NHH, 2006.

See Also
spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43
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External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadsensbyls
Calculate price and sensitivities for European or American spread options using Monte
Carlo simulations

Syntax
PriceSens = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr)
PriceSens = spreadsensbyls( ___ ,Name,Value)

[PriceSens,Paths,Times,Z] = spreadsensbyls(RateSpec,StockSpec1,
StockSpec2,Settle,Maturity,OptSpec,Strike,Corr)
[PriceSens,Paths,Times,Z] = spreadsensbyls( ___ ,Name,Value)

Description
PriceSens = spreadsensbyls(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr) returns the price of a European or American call or
put spread option using Monte Carlo simulations.

For American options, the Longstaff-Schwartz least squares method is used to calculate
the early exercise premium.

PriceSens = spreadsensbyls( ___ ,Name,Value) adds optional name-value pair
arguments.

[PriceSens,Paths,Times,Z] = spreadsensbyls(RateSpec,StockSpec1,
StockSpec2,Settle,Maturity,OptSpec,Strike,Corr) returns the PriceSens,
Paths, Times, and Z of a European or American call or put spread option using Monte
Carlo simulations.

[PriceSens,Paths,Times,Z] = spreadsensbyls( ___ ,Name,Value) returns the
PriceSens, Paths, Times, and Z and adds optional name-value pair arguments.
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Examples

Compute the Price and Sensitivities of a Spread Option Using Monte Carlo
Simulation

Define the spread option dates.

Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

  Price2 = 93.20;         % $/barrel
  Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
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         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price and sensitivities using Monte Carlo simulation based on
the Longstaff-Schwartz model.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma] = spreadsensbyls(RateSpec, StockSpec1, StockSpec2, ...
Settle, Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec)

Price = 11.0799

Delta = 1×2

    0.6626   -0.5972

11 Functions — Alphabetical List

11-1930



Gamma = 1×2

    0.0209    0.0240

Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct

StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct
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Settle — Settlement date for spread option
date character vector | nonnegative scalar integer

Settlement date for the spread option, specified as a date character vector or as a
nonnegative scalar integer.
Data Types: char | double

Maturity — Maturity date for spread option
date character vector | nonnegative scalar integer

Maturity date for spread option, specified as a date character vector or as a nonnegative
scalar integer.
Data Types: char | double

OptSpec — Definition of option
character vector with values 'call' or 'put'

Definition of option as 'call' or 'put', specified as a character vector.
Data Types: char

Strike — Option strike price value
nonnegative scalar integer

Option strike price value, specified as a scalar integer.
Data Types: single | double

Corr — Correlation between underlying asset prices
scalar integer

Correlation between underlying asset prices, specified as a scalar integer.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: PriceSens =
spreadbyls(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpec,St
rike,Corr,'AmericanOpt',1)

AmericanOpt — Option type
0 European (default) | scalar with values [0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and a
scalar integer flag with values:

• 0 — European
• 1 — American

Note For American options, the Longstaff-Schwartz least squares method is used to
calculate the early exercise premium. For more information on the least squares method,
see https://people.math.ethz.ch/%7Ehjfurrer/teaching/
LongstaffSchwartzAmericanOptionsLeastSquareMonteCarlo.pdf.

Data Types: single | double

NumTrials — Number of independent sample paths
1000 (default) | nonnegative scalar integer

Number of independent sample paths (simulation trials), specified as the comma-
separated pair consisting of 'NumTrials' and a nonnegative scalar integer.
Data Types: single | double

NumPeriods — Number of simulation periods per trial
100 (default) | nonnegative scalar integer

Number of simulation periods per trial, specified as the comma-separated pair consisting
of 'NumPeriods' and a nonnegative scalar integer. NumPeriods is considered only
when pricing European basket options. For American spread options, NumPeriods is
equal to the number of exercise days during the life of the option.
Data Types: single | double

Z — Time series array of dependent random variates
vector
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Time series array of dependent random variates, specified as the comma-separated pair
consisting of 'Z' and a NumPeriods-by-2-by-NumTrials 3-D array. The Z value
generates the Brownian motion vector (that is, Wiener processes) that drives the
simulation.
Data Types: single | double

Antithetic — Indicator for antithetic sampling
false (default) | logical flag with value of true or false

Indicator for antithetic sampling, specified as the comma-separated pair consisting of
'Antithetic' and a value of true or false.
Data Types: logical

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'

Define outputs, specified as the comma-separated pair consisting of 'OutSpec'and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

Output Arguments
PriceSens — Expected price or sensitivities of spread option
scalar

Expected price or sensitivities of the spread option, returned as a 1-by-1 array as defined
by OutSpec.

Paths — Simulated paths of correlated state variables
vector
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Simulated paths of correlated state variables, returned as a NumPeriods + 1-by-2-by-
NumTrials 3-D time series array. Each row of Paths is the transpose of the state vector
X(t) at time t for a given trial.

Times — Observation times associated with simulated paths
vector

Observation times associated with simulated paths, returned as a NumPeriods + 1-by-1
column vector of observation times associated with the simulated paths. Each element of
Times is associated with the corresponding row of Paths.

Z — Time series array of dependent random variates
vector

Time series array of dependent random variates, returned as a NumPeriods-by-2-by-
NumTrials 3-D array when Z is specified as an input argument. If the Z input argument
is not specified, then the Z output argument contains the random variates generated
internally.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.

See Also
spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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spreadsensbyfd
Calculate price and sensitivities of European or American spread options using finite
difference method

Syntax
PriceSens = spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr)
PriceSens = spreadsensbyfd( ___ ,Name,Value)

[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr)
[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd( ___ ,Name,Value)

Description
PriceSens = spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,
Maturity,OptSpec,Strike,Corr) returns the price and sensitivities of European or
American call or put spread options using the Alternate Direction Implicit (ADI) finite
difference method. The spread is between the asset defined in StockSpec1 minus the
asset defined in StockSpec2.

PriceSens = spreadsensbyfd( ___ ,Name,Value) adds optional name-value pair
arguments.

[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,
OptSpec,Strike,Corr) returns the PriceSens, PriceGrid, AssetPrice1,
AssetPrice2, and Times for European or American call or put spread options using the
Alternate Direction Implicit (ADI) finite difference method. The spread is between the
asset defined in StockSpec1 minus the asset defined in StockSpec2.
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[PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd( ___ ,Name,Value) returns the PriceSens, PriceGrid,
AssetPrice1, AssetPrice2, and Times and adds optional name-value pair arguments.

Examples

Compute the Price of a Spread Option Using the Alternate Direction Implicit
(ADI) Finite Difference Method

Define the spread option dates.

Settle = '01-Jun-2012';
Maturity = '01-Sep-2012';

Define asset 1. Price and volatility of RBOB gasoline

  Price1gallon = 2.85;          % $/gallon
  Price1 = Price1gallon * 42;   % $/barrel
  Vol1 = 0.29;

Define asset 2. Price and volatility of WTI crude oil

   Price2 = 93.20;         % $/barrel
   Vol2 = 0.36;

Define the correlation between the underlying asset prices of asset 1 and asset 2.

Corr = 0.42;

Define the spread option.

OptSpec = 'call';
Strike = 20;

Define the RateSpec.

rates = 0.05;
Compounding = -1;
Basis = 1;
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle, ...
'EndDates', Maturity, 'Rates', rates, ...
'Compounding', Compounding, 'Basis', Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9876
            Rates: 0.0500
         EndTimes: 0.2500
       StartTimes: 0
         EndDates: 735113
       StartDates: 735021
    ValuationDate: 735021
            Basis: 1
     EndMonthRule: 1

Define the StockSpec for the two assets.

StockSpec1 = stockspec(Vol1, Price1)

StockSpec1 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2900
         AssetPrice: 119.7000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

StockSpec2 = stockspec(Vol2, Price2)

StockSpec2 = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.3600
         AssetPrice: 93.2000
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Compute the spread option price and sensitivities based on the Alternate Direction
Implicit (ADI) finite difference method.

OutSpec = {'Price', 'Delta', 'Gamma'};
[Price, Delta, Gamma, PriceGrid, AssetPrice1, AssetPrice2, Times] = ...
spreadsensbyfd(RateSpec, StockSpec1, StockSpec2, Settle, ...
Maturity, OptSpec, Strike, Corr, 'OutSpec', OutSpec);
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Display the price and sensitivities.

Price

Price = 11.1998

Delta

Delta = 1×2

    0.6736   -0.6082

Gamma

Gamma = 1×2

    0.0190    0.0214

Plot the finite difference grid.

mesh(AssetPrice1, AssetPrice2, PriceGrid(:, :, 1)');
    title('Spread Option Prices for Range of Underlying Prices');
    xlabel('Price of underlying asset 1');
    ylabel('Price of underlying asset 2');
    zlabel('Price of spread option');
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Input Arguments
RateSpec — Interest-rate term structure
structure

Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.
Data Types: struct
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StockSpec1 — Stock specification for underlying asset 1
structure

Stock specification for underlying asset 1. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

StockSpec2 — Stock specification for underlying asset 2
structure

Stock specification for underlying asset 2. For information on the stock specification, see
stockspec.

stockspec can handle other types of underlying assets. For example, for physical
commodities the price is represented by StockSpec.Asset, the volatility is represented
by StockSpec.Sigma, and the convenience yield is represented by
StockSpec.DividendAmounts.
Data Types: struct

Settle — Settlement dates for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Settlement dates for the spread option, specified as date character vectors or as serial
date numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double

Maturity — Maturity date for spread option
serial date number | vector of serial date numbers | date character vector | cell array of
character vectors

Maturity date for spread option, specified as date character vectors or as serial date
numbers using a NINST-by-1 vector or cell array of character vector dates.
Data Types: char | cell | double
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OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vectors

Definition of option as 'call' or 'put', specified as a NINST-by-1 cell array of character
vectors.
Data Types: char | cell

Strike — Option strike price values
integer | vector of integers

Option strike price values, specified as an integer using a NINST-by-1 vector of strike
price values.
Data Types: single | double

Corr — Correlation between underlying asset prices
integer | vector of integers

Correlation between underlying asset prices, specified as an integer using aNINST-by-1
vector.
Data Types: single | double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [PriceSens,PriceGrid,AssetPrice1,AssetPrice2,Times] =
spreadsensbyfd(RateSpec,StockSpec1,StockSpec2,Settle,Maturity,OptSpe
c,Strike,Corr,
'AssetPriceMin','AssetPriceMax','PriceGridSize','TimeGridSize','Amer
icanOpt',0,'OutSpec',{'All'})

OutSpec — Define outputs
{'Price'} (default) | character vector with values 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', and 'All' | cell array of character vectors with
values 'Price', 'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'
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Define outputs, specified as the comma-separated pair consisting of 'OutSpec' and a
NOUT- by-1 or 1-by-NOUT cell array of character vectors with possible values of 'Price',
'Delta', 'Gamma', 'Vega', 'Lambda', 'Rho', 'Theta', and 'All'.

OutSpec = {'All'} specifies that the output should be Delta, Gamma, Vega, Lambda,
Rho, Theta, and Price, in that order. This is the same as specifying OutSpec to include
each sensitivity:
Example: OutSpec =
{'delta','gamma','vega','lambda','rho','theta','price'}

Data Types: char | cell

AssetPriceMin — Minimum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity
(default) | array

Minimum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMin' and a 1-by-2 array. The first entry in the array corresponds to the
first asset defined by StockSpec1 and the second entry corresponds to the second asset
defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional arguments
AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the
composition of the grid to ensure the quality of the output and a reasonable execution
time.
Data Types: single | double

AssetPriceMax — Maximum price for price grid boundary
if unspecified, StockSpec values are calculated based on asset distributions at maturity
(default) | array

Maximum price for price grid boundary, specified as the comma-separated pair consisting
of 'AssetPriceMax' and a 1-by-2 array. The first entry in the array corresponds to the
first asset defined by StockSpec1 and the second entry corresponds to the second asset
defined by StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional arguments
AssetPriceMin, AssetPriceMax, PriceGridSize, and TimeGridSize to control the
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composition of the grid to ensure the quality of the output and a reasonable execution
time.
Data Types: single | double

PriceGridSize — Size for finite difference grid
[300,300] (default) | array

Size for finite difference grid, specified as the comma-separated pair consisting of
'PriceGridSize' and a 1-by-2 array. The first entry corresponds to the first asset
defined by StockSpec1 and the second entry corresponds to the second asset defined by
StockSpec2.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional
argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the
composition of the grid to ensure the quality of the output and a reasonable execution
time.
Data Types: single | double

TimeGridSize — Size of time grid for finite difference grid
100 (default) | scalar | nonnegative integer

Size of time grid for finite difference grid, specified as the comma-separated pair
consisting of 'TimeGridSize' and a nonnegative integer.

For the finite difference method, the composition of the grid affects the quality of the
output and the execution time. It is highly recommended to use the optional
argumentsAssetPriceMax, PriceGridSize, and TimeGridSize to control the
composition of the grid to ensure the quality of the output and a reasonable execution
time.
Data Types: single | double

AmericanOpt — Option type
0 European (default) | scalar | vector of positive integers[0,1]

Option type, specified as the comma-separated pair consisting of 'AmericanOpt' and
NINST-by-1 positive integer scalar flags with values:

• 0 — European
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• 1 — American

Data Types: single | double

Output Arguments
PriceSens — Expected prices or sensitivities of spread option
scalar

Expected price or sensitivities of the spread option, returned as a 1-by-1 array as defined
by OutSpec.

PriceGrid — Grid containing prices calculated by finite difference method
array

Grid containing prices calculated by finite difference method, returned as a 3-D grid with
a size of PriceGridSize(1) * PriceGridSize(2) * TimeGridSize. The price for t =
0 is contained in PriceGrid(:, :, 1).

AssetPrice1 — Prices for first asset defined by StockSpec1
vector

Prices for first asset defined by StockSpec1, corresponding to the first dimension of
PriceGrid, returned as a vector.

AssetPrice2 — Prices for second asset defined by StockSpec2
vector

Prices for second asset defined by StockSpec2, corresponding to the second dimension
of PriceGrid, returned as a vector.

Times — Times corresponding to third dimension of PriceGrid
vector

Times corresponding to third dimension of PriceGrid, returned as a vector.

References
[1] Carmona, R., Durrleman, V. “Pricing and Hedging Spread Options.” SIAM Review. Vol.

45, No. 4, pp. 627–685, Society for Industrial and Applied Mathematics, 2003.
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[2] Villeneuve, S., Zanette, A. “Parabolic ADI Methods for Pricing American Options on
Two Stocks.” Mathematics of Operations Research. Vol. 27, No. 1, pp. 121–149,
INFORMS, 2002.

[3] Ikonen, S., Toivanen, J. Efficient Numerical Methods for Pricing American Options
Under Stochastic Volatility. Wiley InterScience, 2007.

See Also
spreadbybjs | spreadbyfd | spreadbykirk | spreadbyls

Topics
“Pricing European and American Spread Options”
“Pricing Asian Options”
“Spread Option” on page 3-48
“Supported Energy Derivatives” on page 3-43

External Websites
Energy Trading & Risk Management with MATLAB (47 min 31 sec)

Introduced in R2013b
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stockoptspec
Specify European stock option structure

Syntax
[StockOptSpec] =
stockoptspec(OptPrice,Strike,Settle,Maturity,OptSpec,InterpMethod)

Arguments
OptPrice NINST-by-1 vector of European option prices.
Strike NINST-by-1 vector of strike prices.
Settle Scalar date marking the settlement date.
Maturity NINST-by-1 vector of maturity dates.
OptSpec NINST-by-1 cell array of character vectors 'call' or 'put'.
InterpMethod (Optional) Method of interpolation to use for option prices.

InterpMethod is [{'price'} | 'vol']. The default is 'price'.
By specifying 'vol', implied volatilities are used for interpolation
purposes. The interpolated values are then used to calculate the
implicit interpolated prices.

Description
[StockOptSpec] =
stockoptspec(OptPrice,Strike,Settle,Maturity,OptSpec,InterpMethod)
creates a structure encapsulating the properties of a stock option structure.

Examples

 stockoptspec

11-1947



Specify a European Stock Option Structure

This example shows how to specify a European stock option structure using the following
data quoted from liquid options in the market with varying strikes and maturity.

Settle =   '01/01/06';

Maturity =    ['07/01/06';
    '07/01/06';
    '07/01/06';
    '07/01/06';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '01/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '07/01/07';
    '01/01/08';
    '01/01/08';
    '01/01/08';
    '01/01/08'];

Strike = [113;
   101;
   100;
    88;
   128;
   112;
   100;
    78;
   144;
   112;
   100;
    69;
   162;
   112;
   100;
    61];

OptPrice =[                 0;
   4.807905472659144;
   1.306321897011867;
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   0.048039195057173;
                   0;
   2.310953054191461;
   1.421950392866235;
   0.020414826276740;
                   0;
   5.091986935627730;
   1.346534812295291;
   0.005101325584140;
                   0;
   8.047628153217246;
   1.219653432150932;
   0.001041436654748];

OptSpec = { 'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put';
    'call';
    'call';
    'put';
    'put'};

StockOptSpec = stockoptspec(OptPrice, Strike, Settle, Maturity, OptSpec)

StockOptSpec = struct with fields:
          FinObj: 'StockOptSpec'
        OptPrice: [16x1 double]
          Strike: [16x1 double]
          Settle: 732678
        Maturity: [16x1 double]
         OptSpec: {16x1 cell}
    InterpMethod: 'price'
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See Also
ittprice | itttree | stockspec

Topics
“Building Implied Trinomial Trees” on page 3-8
“Examining Equity Trees” on page 3-18
“Understanding Equity Trees” on page 3-2
“Supported Equity Derivatives” on page 3-24

Introduced in R2007a
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stockspec
Create stock structure

Syntax
StockSpec = stockspec(Sigma,AssetPrice)
StockSpec = stockspec( ___ ,DividendType,DividendAmounts,
ExDividendDates)

Description
StockSpec = stockspec(Sigma,AssetPrice) creates a MATLAB structure
containing the properties of a stock.

Note StockSpec handles other types of underliers when pricing instruments other than
equities.

StockSpec = stockspec( ___ ,DividendType,DividendAmounts,
ExDividendDates) adds optional arguments for DividendType, DividendAmounts,
and ExDividendDates.

Examples

Create a StockSpec for Stocks With Cash Dividends

Consider a stock that provides four cash dividends of $0.50 on January 3, 2008, April 1,
2008, July 5, 2008 and October 1, 2008. The stock is trading at $50, and has a volatility of
20% per annum. Using this data, create the structure StockSpec:

AssetPrice = 50;
Sigma = 0.20;
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DividendType = {'cash'};
DividendAmounts = [0.50, 0.50, 0.50, 0.50];
ExDividendDates = {'03-Jan-2008', '01-Apr-2008', '05-July-2008', '01-Oct-2008'};
 
StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmounts, ExDividendDates)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2000
         AssetPrice: 50
       DividendType: {'cash'}
    DividendAmounts: [0.5000 0.5000 0.5000 0.5000]
    ExDividendDates: [733410 733499 733594 733682]

Examine the StockSpec structure.

datedisp(StockSpec.ExDividendDates)

03-Jan-2008   01-Apr-2008   05-Jul-2008   01-Oct-2008   

StockSpec.DividendType

ans = 1x1 cell array
    {'cash'}

The StockSpec structure encapsulates the information of the stock and its four cash
dividends.

Create a StockSpec for Stocks With Cash and Continuous Dividends

Consider two stocks that are trading at $40 and $35. The first one provides two cash
dividends of $0.25 on March 1, 2008 and June 1, 2008. The second stock provides a
continuous dividend yield of 3%. The stocks have a volatility of 30% per annum. Using
this data, create the structure StockSpec:

AssetPrice = [40; 35];
Sigma = .30;

DividendType = {'cash'; 'continuous'};
DividendAmount = [0.25, 0.25 ; 0.03 NaN];
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DividendDate1 = 'March-01-2008';
DividendDate2 = 'Jun-01-2008';

StockSpec = stockspec(Sigma, AssetPrice, DividendType, DividendAmount,...
{ DividendDate1, DividendDate2 ; NaN NaN})

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: [2x1 double]
         AssetPrice: [2x1 double]
       DividendType: {2x1 cell}
    DividendAmounts: [2x2 double]
    ExDividendDates: [2x2 double]

Examine the StockSpec structure.

datedisp(StockSpec.ExDividendDates)

01-Mar-2008   01-Jun-2008   
   NaN           NaN        

StockSpec.DividendType

ans = 2x1 cell array
    {'cash'      }
    {'continuous'}

The StockSpec structure encapsulates the information of the two stocks and their
dividends.

Input Arguments
Sigma — Annual price volatility of underlying security
decimal

Annual price volatility of underlying security, specified as a NINST-by-1 decimal.
Data Types: double
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AssetPrice — Underlying asset price values at time 0
vector

Underlying asset price values at time 0, specified as a NINST-by-1 vector.
Data Types: double

DividendType — Stock dividend type
cell array of date character vectors

(Optional) Stock dividend type, specified as a NINST-by-1 cell array of character vectors.

Dividend type must be either cash for actual dollar dividends, constant for constant
dividend yield, or continuous for continuous dividend yield. This function does not
handle stock option dividends.

Note Dividends are assumed to be paid in cash. Noncash dividends (stock) are not
allowed. When combining two or more types of dividends, shorter rows should be padded
with the value NaN.

Data Types: char | cell

DividendAmounts — Dividend amounts
matrix | vector

(Optional) Dividend amounts, specified as a NINST-by-NDIV matrix of cash dividends or
NINST-by-1 vector representing a constant or continuous annualized dividend yield.
Data Types: double

ExDividendDates — Ex-dividend dates
matrix | vector

(Optional) Ex-dividend dates, specified as a NINST-by-NDIV matrix of ex-dividend dates
for a cash DividendType or NINST-by-1 vector of ex-dividend dates for constant
DividendType. For continuous DividendType, this argument should be ignored.
Data Types: double | cell
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Output Arguments
StockSpec — Properties of stock structure
structure

Properties of stock structure, returned as a structure encapsulating the properties of a
stock.

See Also
crrprice | crrtree | intenvset | optstockbybjs | optstockbyblk |
optstockbybls | optstockbyls | optstockbyrgw | spreadbybjs | spreadbyfd |
spreadbykirk | spreadbyls

Topics
“Portfolio Creation” on page 1-8
“Supported Equity Derivatives” on page 3-24

Introduced before R2006a
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sttprice
Price instruments using standard trinomial tree

Syntax
[Price,PriceTree] = sttprice(STTTree,InstSet)
[Price,PriceTree] = sttprice( ___ ,Name,Value)

Description
[Price,PriceTree] = sttprice(STTTree,InstSet) prices instruments using a
standard trinomial (STT) tree.

[Price,PriceTree] = sttprice( ___ ,Name,Value) prices instruments using a
standard trinomial (STT) tree with an optional name-value pair argument for Options.

Examples

Price a stttree Instrument Set

Load the data into the MATLAB® workspace.

load deriv.mat

STTTree and STTInstSet are the input arguments required to call the function
sttprice. Use the command instdisp to examine the set of instruments contained in
the variable STTInstSet.

instdisp(STTInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    100    01-Jan-2009    01-Jan-2011    1           Call1 10      
2     OptStock put      80    01-Jan-2009    01-Jan-2012    0           Put1   5      
 
Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
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3     Barrier call    105    01-Jan-2009    01-Jan-2012    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     95      01-Jan-2009    01-Jan-2012    1            put      5       01-Jan-2009    01-Jan-2011    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    90     01-Jan-2009    01-Jan-2012    0           Lookback1 7       
6     Lookback call    95     01-Jan-2009    01-Jan-2013    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    100    01-Jan-2009    01-Jan-2012    0           arithmetic NaN      NaN     Asian1 4       
8     Asian call    100    01-Jan-2009    01-Jan-2013    0           arithmetic NaN      NaN     Asian2 6       
 

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Use sttprice to calculate the price of each instrument in the instrument set.

Price = sttprice(STTTree, STTInstSet)

Price = 8×1

    4.5025
    3.0603
    3.7977
    1.7090
   11.7296
   12.9120
    1.6905
    2.6203
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Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

InstSet — Variable containing a collection instruments
structure

Variable containing a collection of NINST instruments, specified as a structure.
Instruments are broken down by type and each type can have different data fields.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] = sttprice(STTTree,InstSet,'Options',deriv)

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
Data Types: struct

Output Arguments
Price — Expected prices for each instrument at time 0
matrix

Expected prices for each instrument at time 0, returned as a NINST-by-1 vector. The
prices are computed by backward dynamic programming on the standard trinomial (STT)
stock tree. If an instrument cannot be priced, a NaN is returned in that entry.
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PriceTree — Structure with vector of instrument prices at each node
tree structure

Structure with a vector of instrument prices at each node, returned as a tree structure.

PriceTree is a MATLAB structure of trees containing vectors of instrument prices and a
vector of observation times for each node.

PriceTree.PTree contains the prices.

PriceTree.tObs contains the observation times.

PriceTree.dObs contains the observation dates.

See Also
sttsens | stttimespec | stttree

Topics
“Convertible Bond” on page 2-3

Introduced in R2015b

 sttprice

11-1959



sttsens
Instrument sensitivities and prices using standard trinomial tree

Syntax
[Delta,Gamma,Vega,Price] = sttsens(STTTree,InstSet)
[Delta,Gamma,Vega,Price] = sttsens( ___ ,Name,Value)

Description
[Delta,Gamma,Vega,Price] = sttsens(STTTree,InstSet) to generate
instrument sensitivities and prices using a standard trinomial (STT) tree.

[Delta,Gamma,Vega,Price] = sttsens( ___ ,Name,Value) to generate instrument
sensitivities and prices using a standard trinomial (STT) tree with an optional name-value
pair argument for Options.

Examples

Determine the Price and Sensitivities for a stttree Instrument Set

Load the data into the MATLAB® workspace.

load deriv.mat

STTTree and STTInstSet are the input arguments required to call the function
sttprice. Use the command instdisp to examine the set of instruments contained in
the variable STTInstSet.

instdisp(STTInstSet)

Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name  Quantity
1     OptStock call    100    01-Jan-2009    01-Jan-2011    1           Call1 10      
2     OptStock put      80    01-Jan-2009    01-Jan-2012    0           Put1   5      
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Index Type    OptSpec Strike Settle         ExerciseDates  AmericanOpt BarrierSpec Barrier Rebate Name     Quantity
3     Barrier call    105    01-Jan-2009    01-Jan-2012    1           ui          115     0      Barrier1 1       
 
Index Type     UOptSpec UStrike USettle        UExerciseDates UAmericanOpt COptSpec CStrike CSettle        CExerciseDates CAmericanOpt Name      Quantity
4     Compound call     95      01-Jan-2009    01-Jan-2012    1            put      5       01-Jan-2009    01-Jan-2011    1            Compound1 3       
 
Index Type     OptSpec Strike Settle         ExerciseDates  AmericanOpt Name      Quantity
5     Lookback call    90     01-Jan-2009    01-Jan-2012    0           Lookback1 7       
6     Lookback call    95     01-Jan-2009    01-Jan-2013    0           Lookback2 9       
 
Index Type  OptSpec Strike Settle         ExerciseDates  AmericanOpt AvgType    AvgPrice AvgDate Name   Quantity
7     Asian call    100    01-Jan-2009    01-Jan-2012    0           arithmetic NaN      NaN     Asian1 4       
8     Asian call    100    01-Jan-2009    01-Jan-2013    0           arithmetic NaN      NaN     Asian2 6       
 

The instrument set contains eight instruments:

• Two vanilla options (Call1, Put1)
• One barrier option (Barrier1)
• One compound option (Compound1)
• Two lookback options (Lookback1, Lookback2)
• Two Asian options (Asian1, Asian2)

Use sttsens to calculate the price and sensitivities for each instrument in the
instrument set.

[Delta,Gamma,Vega,Price] = sttsens(STTTree, STTInstSet)

Delta = 8×1

    0.5267
   -0.0943
    0.4726
   -0.0624
    0.2313
    0.3266
    0.5706
    0.6646

Gamma = 8×1
105 ×
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    0.0000
    0.0000
    0.0000
    0.0000
   -1.8650
   -1.9119
    1.8650
    1.9119

Vega = 8×1

   52.8980
   42.4369
   25.9792
   -9.5266
   70.3758
   92.9226
   25.8122
   37.8757

Price = 8×1

    4.5025
    3.0603
    3.7977
    1.7090
   11.7296
   12.9120
    1.6905
    2.6203

Determine Price and Sensitivities for Convertible Bond Instruments Using a
stttree

Create a RateSpec.

StartDates = 'Jan-1-2015'; 
EndDates = 'Jan-1-2020'; 
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Rates = 0.025; 
Basis = 1; 

RateSpec = intenvset('ValuationDate',StartDates,'StartDates',StartDates,...
'EndDates',EndDates,'Rates',Rates,'Compounding',-1,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.8825
            Rates: 0.0250
         EndTimes: 5
       StartTimes: 0
         EndDates: 737791
       StartDates: 735965
    ValuationDate: 735965
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 80; 
Sigma = 0.12; 
StockSpec = stockspec(Sigma,AssetPrice)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.1200
         AssetPrice: 80
       DividendType: []
    DividendAmounts: 0
    ExDividendDates: []

Create a STTTree.

TimeSpec = stttimespec(StartDates, EndDates, 20);
STTTree = stttree(StockSpec, RateSpec, TimeSpec)

STTTree = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
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         tObs: [1x21 double]
         dObs: [1x21 double]
        STree: {1x21 cell}
        Probs: {1x20 cell}

Define the convertible bond. The convertible bond can be called starting on Jan 1, 2016
with a strike price of 95.

CouponRate = 0.03;
Settle = 'Jan-1-2015'; 
Maturity = 'April-1-2018'; 
Period = 1;
CallStrike = 95; 
CallExDates = [datenum('Jan-1-2016') datenum('April-1-2018')];
ConvRatio = 1;
Spread = 0.025;

Price the convertible bond using the standard trinomial tree model.

[Price,PriceTree,EqtTre,DbtTree] = cbondbystt(STTTree,CouponRate,Settle,Maturity,ConvRatio,...
'Period',Period,'Spread',Spread,'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall', 1)

Price = 90.2511

PriceTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]

EqtTre = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]

DbtTree = struct with fields:
    FinObj: 'TrinPriceTree'
     PTree: {1x21 cell}
      tObs: [1x21 double]
      dObs: [1x21 double]
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Compute the delta and gamma of the convertible bond.

InstSet= instcbond(CouponRate,Settle,Maturity,ConvRatio,'Spread',Spread,...
'CallExDates',CallExDates,'CallStrike',CallStrike,'AmericanCall',1);
[Delta,Gamma] = sttsens(STTTree,InstSet)

Delta = 0.3945

Gamma = 0.0324

Input Arguments
STTTree — Stock tree structure for standard trinomial tree
structure

Stock tree structure for a standard trinomial tree, specified by using stttree.
Data Types: struct

InstSet — Variable containing a collection instruments
structure

Variable containing a collection of NINST instruments, specified as a structure.
Instruments are broken down by type and each type can have different data fields.
Data Types: struct

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Delta,Gamma,Vega,Price] =
sttsens(STTTree,InstSet,'Options',deriv)

Options — Derivatives pricing options
structure

Derivatives pricing options, specified as the comma-separated pair consisting of
'Options' and a structure that is created with derivset.
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Data Types: struct

Output Arguments
Delta — Rate of change of instruments prices with respect to changes in the
stock price
vector of deltas

Rate of change of instrument prices with respect to changes in the stock price, returned
as a NINST-by-1 vector of deltas. For more information on the stock tree, see stttree.

Gamma — Rate of change of instrument deltas with respect to changes in the
stock price
vector of gammas

Rate of change of instrument deltas with respect to changes in the stock price, returned
as a NINST-by-1 vector of gammas.

Vega — Rate of change of instrument prices with respect to changes in the
volatility of the stock price
vector of vegas

Rate of change of instrument prices with respect to changes in the volatility of the stock
price, returned as a NINST-by-1 vector of vegas. For more information on the stock tree,
see stttree.

Price — Expected prices for each instrument at time 0
matrix

Expected prices for each instrument at time 0, returned as a NINST-by-1 vector. The
prices are computed by backward dynamic programming on the standard trinomial (STT)
stock tree. If an instrument cannot be priced, a NaN is returned in that entry.

See Also
derivset | sttsens | stttimespec | stttree

Topics
“Convertible Bond” on page 2-3
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Introduced in R2015b
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stttimespec
Specify time structure for standard trinomial tree

Syntax
TimeSpec = stttimespec(ValuationDate,Maturity,NumPeriods)

Description
TimeSpec = stttimespec(ValuationDate,Maturity,NumPeriods) creates a time
spec for a standard trinomial (STT) tree.

Examples

Create a stttimespec to Build a STTTree

Create a RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2018'; 
Rates = 0.025; 
Basis = 1; 
Compounding = -1;

RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,'EndDates',...
EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.0250
         EndTimes: 4
       StartTimes: 0
         EndDates: 737061
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       StartDates: 735600
    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 110; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma, AssetPrice, 'continuous', Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 110
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Create a STTTimespec and STTTree.

NumPeriods = length(cfdates(StartDates,EndDates,12));
TimeSpec = stttimespec(StartDates, EndDates, NumPeriods)

TimeSpec = struct with fields:
           FinObj: 'STTTimeSpec'
    ValuationDate: 735600
         Maturity: 737061
       NumPeriods: 48
            Basis: 0
     EndMonthRule: 1
             tObs: [1x49 double]
             dObs: [1x49 double]

STTT = stttree(StockSpec, RateSpec, TimeSpec)

STTT = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [1x49 double]
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         dObs: [1x49 double]
        STree: {1x49 cell}
        Probs: {1x48 cell}

Input Arguments
ValuationDate — Date marking the pricing date and first observation tree
serial date number | date character vector

Date marking the pricing date and first observation in the tree, specified as a scalar using
a serial date number or date character vector.
Data Types: double | char

Maturity — Date marking the depth of tree
serial date number | date character vector

Date marking the depth of the tree, specified as a scalar using a serial date number or
date character vector.
Data Types: double | char

NumPeriods — Determines how many time steps are in tree
nonnegative integer

Determines how many time steps are in tree, specified as a scalar using a nonnegative
integer value.
Data Types: double

Output Arguments
TimeSpec — Time layout for standard trinomial (STT) tree
structure

Time layout for standard trinomial (STT) tree, returned as a structure.
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See Also
stttree

Introduced in R2015b
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stttree
Build standard trinomial tree

Syntax
STTTree = stttree(StockSpec,RateSpec,TimeSpec)

Description
STTTree = stttree(StockSpec,RateSpec,TimeSpec) builds a standard trinomial
(STT) tree.

Examples

Build a STTTree

Create a RateSpec.

StartDates = 'Jan-1-2014'; 
EndDates = 'Jan-1-2018'; 
Rates = 0.025; 
Basis = 1; 
Compounding = -1;
RateSpec = intenvset('ValuationDate', StartDates, 'StartDates', StartDates,...
'EndDates', EndDates, 'Rates', Rates,'Compounding', Compounding, 'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: 0.9048
            Rates: 0.0250
         EndTimes: 4
       StartTimes: 0
         EndDates: 737061
       StartDates: 735600
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    ValuationDate: 735600
            Basis: 1
     EndMonthRule: 1

Create a StockSpec.

AssetPrice = 55; 
Sigma = 0.22; 
Div = 0.02; 
StockSpec = stockspec(Sigma, AssetPrice, 'continuous', Div)

StockSpec = struct with fields:
             FinObj: 'StockSpec'
              Sigma: 0.2200
         AssetPrice: 55
       DividendType: {'continuous'}
    DividendAmounts: 0.0200
    ExDividendDates: []

Create a Standard Trinomial Tree (STTTree).

NumSteps = 8;
TimeSpec = stttimespec(StartDates, EndDates, NumSteps);
STTT = stttree(StockSpec, RateSpec, TimeSpec)

STTT = struct with fields:
       FinObj: 'STStockTree'
    StockSpec: [1x1 struct]
     TimeSpec: [1x1 struct]
     RateSpec: [1x1 struct]
         tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]
         dObs: [1x9 double]
        STree: {1x9 cell}
        Probs: {1x8 cell}

Input Arguments
StockSpec — Stock specification for underlying asset
structure
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Stock specification for underlying asset, specified using StockSpec obtained from
stockspec. For information on the stock specification, see stockspec.

stockspec can handle other types of underlying assets. For example, stocks, stock
indices, and commodities. If dividends are not specified in StockSpec, dividends are
assumed to be 0.
Data Types: struct

RateSpec — Interest-rate term specification of initial risk-free rate curve
structure

Interest-rate term specification of initial risk-free rate curve, specified by the RateSpec
obtained from intenvset. For information on the interest-rate specification, see
intenvset.
Data Types: struct

TimeSpec — Tree time layout specification
structure

Tree time layout specification, specified using stttimespec to define the observation
dates of the standard trinomial (STT) tree.
Data Types: struct

Output Arguments
STTTree — Tree specifying stock and time information for a standard trinomial
(STT) tree
tree structure

Tree specifying stock and time information for a standard trinomial (STT) tree, returned
as a tree structure.

See Also
stttimespec

Introduced in R2015b
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supersharebybls
Calculate price of supershare digital options using Black-Scholes model

Syntax
Price =
supersharebybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,StrikeLow
,StrikeHigh)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
StrikeLow NINST-by-1 vector of low strike price values.
StrikeHigh NINST-by-1 vector of high strike price values.

Description
Price =
supersharebybls(RateSpec,StockSpec,Settle,Maturity,OptSpec,StrikeLow
,StrikeHigh) computes supershare digital option prices using the Black-Scholes model.

Price is a NINST-by-1 vector of expected option prices.

Examples
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Compute the Price of Supershare Digital Options Using Black-Scholes Model

This example shows how to compute the price of supershare digital options using Black-
Scholes model. Consider a supershare based on a portfolio of nondividend paying stocks
with a lower strike of 350 and an upper strike of 450. The value of the portfolio on
November 1, 2008 is 400. The risk-free rate is 4.5% and the volatility is 18%. Using this
data, calculate the price of the supershare option on February 1, 2009.

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';
Rates = 0.045;
Basis = 1;
Compounding = -1;

% create the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% define the StockSpec
AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

% define the high and low strike points
StrikeLow = 350;
StrikeHigh = 450;

% calculate the price
Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)

Pssh = 0.9411

See Also
assetbybls | cashbybls | gapbybls | supersharesensbybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing European Call Options Using Different Equity Models”
“Pricing Using the Black-Scholes Model” on page 3-152
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“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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supersharesensbybls
Calculate price or sensitivities of supershare digital options using Black-Scholes model

Syntax
PriceSens =
supersharesensbybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,Str
ikeHigh)
PriceSens =
supersharesensbybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,Str
ikeHigh,OutSpec)

Arguments
RateSpec The annualized, continuously compounded rate term structure.

For information on the interest rate specification, see
intenvset.

StockSpec Stock specification. See stockspec.
Settle NINST-by-1 vector of settlement or trade dates.
Maturity NINST-by-1 vector of maturity dates.
StrikeLow NINST-by-1 vector of low strike price values.
StrikeHigh NINST-by-1 vector of high strike price values.

11 Functions — Alphabetical List

11-1978



OutSpec (Optional) All optional inputs are specified as matching
parameter name-value pairs. The parameter name is specified
as a character vector, followed by the corresponding parameter
value. You can specify parameter name-value pairs in any order.
Names are case-insensitive and partial matches are allowed
provided no ambiguities exist. Valid parameter names are:

• NOUT-by-1 or 1-by-NOUT cell array of character vectors
indicating the nature and order of the outputs for the
function. Possible values are 'Price', 'Delta', 'Gamma',
'Vega', 'Lambda', 'Rho', 'Theta', or 'All'.

For example, OutSpec = {'Price'; 'Lambda';
'Rho'} specifies that the output should be Price, Lambda,
and Rho, in that order.

To invoke from a function: [Price, Lambda, Rho] =
supersharesensbybls(..., 'OutSpec', {'Price',
'Lambda', 'Rho'})

OutSpec = {'All'} specifies that the output should be
Delta, Gamma, Vega, Lambda, Rho, Theta, and Price, in
that order. This is the same as specifying OutSpec as
OutSpec = {'Delta', 'Gamma', 'Vega', 'Lambda',
'Rho', 'Theta', 'Price'};.

• Default is OutSpec = {'Price'}.

Description
PriceSens =
supersharesensbybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,Str
ikeHigh) computes supershare option prices using the Black-Scholes option pricing
model.

PriceSens =
supersharesensbybls(RateSpec,StockSpec,Settle,Maturity,StrikeLow,Str
ikeHigh,OutSpec) includes an OutSpec argument defined as parameter/value pairs,
and computes supershare option prices or sensitivities using the Black-Scholes option
pricing model.
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PriceSens is a NINST-by-1 vector of expected option prices and sensitivities.

Examples

Compute Price and Sensitivities of Supershare Digital Options Using Black-
Scholes Model

This example shows how to compute price and sensitivities of supershare digital options
using a Black-Scholes model. Consider a supershare based on a portfolio of nondividend
paying stocks with a lower strike of 350 and an upper strike of 450. The value of the
portfolio on November 1, 2008 is 400. The risk-free rate is 4.5% and the volatility is 18%.
Using this data, calculate the price and sensitivity of the supershare option on February 1,
2009.

Settle = 'Nov-1-2008';
Maturity = 'Feb-1-2009';
Rates = 0.045;
Basis = 1;
Compounding = -1;

% define the RateSpec
RateSpec = intenvset('ValuationDate', Settle, 'StartDates', Settle,...
'EndDates', Maturity, 'Rates', Rates, 'Compounding', Compounding, 'Basis', Basis);

% define the StockSpec
AssetPrice = 400;
Sigma = .18;
StockSpec = stockspec(Sigma, AssetPrice);

% define the high and low strike points
StrikeLow = 350;
StrikeHigh = 450;

% calculate the price
Pssh = supersharebybls(RateSpec, StockSpec, Settle, Maturity,...
StrikeLow, StrikeHigh)

Pssh = 0.9411

% compute the delta and theta of the supershare option
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OutSpec = { 'delta';'theta'};
[Delta, Theta]= supersharesensbybls(RateSpec, StockSpec, Settle,...
Maturity, StrikeLow, StrikeHigh, 'OutSpec', OutSpec)

Delta = -0.0010

Theta = -1.0102

See Also
supersharebybls

Topics
“Equity Derivatives Using Closed-Form Solutions” on page 3-148
“Pricing European Call Options Using Different Equity Models”
“Pricing Using the Black-Scholes Model” on page 3-152
“Supported Equity Derivatives” on page 3-24

Introduced in R2009a
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swapbybdt
Price swap instrument from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbybdt(BDTTree,LegRate,
Settle,Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbybdt( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbybdt(BDTTree,LegRate,
Settle,Maturity) prices a swap instrument from a Black-Derman-Toy interest-rate
tree. swapbybdt computes prices of vanilla swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbybdt( ___ ,Name,Value) adds
additional name-value pair arguments.

Examples

Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments
are made once a year, and the notional principal amount is $100. The values for the
remaining arguments are:

• Coupon rate for fixed leg: 0.15 (15%)
• Spread for floating leg: 10 basis points
• Swap settlement date: Jan. 01, 2000
• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate,
LegType, and LegReset matrices:
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Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.15 10]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Price the swap using the BDTTree included in the MAT-file deriv.mat. BDTTree
contains the time and forward-rate information needed to price the instrument.

load deriv.mat;

Use swapbybdt to compute the price of the swap.

Price  = swapbybdt(BDTTree, LegRate, Settle, Maturity,... 
LegReset, Basis, Principal, LegType)

Price = 7.4222

Using the previous data, calculate the swap rate, the coupon rate for the fixed leg, such
that the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, CFTree, SwapRate] = swapbybdt(BDTTree,... 
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType)

Price = -1.4211e-14

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4]
     PTree: {1x5 cell}

CFTree = struct with fields:
    FinObj: 'BDTCFTree'
      tObs: [0 1 2 3 4]
    CFTree: {[NaN]  [NaN NaN]  [NaN NaN NaN]  [NaN NaN NaN NaN]  [1x4 double]}

SwapRate = 0.1205
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Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization
schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the BDT tree and assume volatility is 10%.

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
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Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of the amortizing swap.

Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'Principal' , Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting
date of the swap.

Create the RateSpec.

Rates = 0.0325;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8254
            Rates: 0.0325
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build the tree with a volatility of 10%.
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MatDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
BDTTimeSpec = bdttimespec(ValuationDate, MatDates);
Volatility = 0.10;  
BDTVolSpec = bdtvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))');
BDTT = bdttree(BDTVolSpec, RateSpec, BDTTimeSpec);

Compute the price of a forward swap that starts in two years (Jan 1, 2014) and matures in
three years with a forward swap rate of 3.85%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2014';
LegRate = [0.0385 10];

Price = swapbybdt(BDTT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.3203

Using the previous data, compute the forward swap rate, the coupon rate for the fixed
leg, such that the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,~, SwapRate] = swapbybdt(BDTT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = -4.9738e-12

SwapRate = 0.0335

Input Arguments
BDTTree — Interest-rate structure
structure

Interest-rate tree structure, created by bdttree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:
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• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the
reference rate. The first column represents the receiving leg, while the second column
represents the paying leg.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every swap is set to the ValuationDate of the BDT tree. The swap
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each swap.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,CFTree,SwapRate] =
swapbybdt(BDTTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,L
egType)
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LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting
of 'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated
pair consisting of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different
for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-
separated pair consisting of 'Principal' and a vector or cell array.
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Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if
Principal is different for each leg) of the notional principal amounts or principal value
schedules. For schedules, each element of the cell array is a NumDates-by-2 array where
the first column is dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0]
(fixed-float), [0 1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-
by-2 matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0
0] (float-float). Each row represents an instrument. Each column indicates if the
corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the
values entered in LegRate. LegType allows [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if
EndMonthRule is different for each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.
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Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-
by-2 if AdjustCashFlowsBasis is different for each leg) of logicals with values of 0
(false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers
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Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of
'StartDate' and a NINST-by-1 vector of dates using a serial date number or a
character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double

Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each
node. This structure contains only NaNs because with binomial recombining trees, cash
flows cannot be computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix
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Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to
the fixed leg such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg in LegRate is NaN.
The SwapRate output is padded with NaN for those instruments in which CouponRate is
not set to NaN.

Definitions

Amortizing Swap
In an amortizing swap, the notional principal decreases periodically because it is tied to
an underlying financial instrument with a declining (amortizing) principal balance, such
as a mortgage.

Forward Swap
Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
bdttree | capbybdt | cfbybdt | floorbybdt

Topics
“Computing Instrument Prices” on page 2-99
“Pricing a Portfolio Using the Black-Derman-Toy Model” on page 1-13
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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swapbybk
Price swap instrument from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbybk(BKTree,LegRate,Settle,
Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbybk( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbybk(BKTree,LegRate,Settle,
Maturity) prices a swap instrument from a Black-Karasinski interest-rate tree.
swapbybk computes prices of vanilla swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbybk( ___ ,Name,Value) adds
additional name-value pair arguments.

Examples

Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments
are made once a year, and the notional principal amount is $100. The values for the
remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2004
• Swap maturity date: Jan. 01, 2006

Based on the information above, set the required arguments and build the LegRate,
LegType, and LegReset matrices:
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Settle = '01-Jan-2004';
Maturity = '01-Jan-2006';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Price the swap using the BKTree included in the MAT-file deriv.mat. BKTree contains
the time and forward-rate information needed to price the instrument.

load deriv.mat;

Use swapbybk to price of the swap.

Price = swapbybk(BKTree, LegRate,... 
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price = 5.0425

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed
leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, SwapRate] = swapbybk(BKTree, LegRate,... 
Settle, Maturity, LegReset, Basis, Principal, LegType)

Price = -2.8422e-14

PriceTree = struct with fields:
     FinObj: 'BKPriceTree'
      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

SwapRate = 0.0336
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Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization
schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the BK tree and assume volatility is 10%.

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};
BKTimeSpec = bktimespec(ValuationDate, MatDates);

 swapbybk

11-1995



Volatility = 0.10;  
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;
BKVolSpec = bkvolspec(ValuationDate, MatDates, Volatility*ones(1,length(MatDates))',...
AlphaDates, AlphaCurve);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of the amortizing swap.

Price = swapbybk(BKT, LegRate, Settle, Maturity, 'Principal' , Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting
date of the swap.

Create the RateSpec.

Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8023
            Rates: 0.0374
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1
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Build a BK tree.

VolDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
VolCurve = 0.1;
AlphaDates = '01-01-2018';
AlphaCurve = 0.1;

BKVolSpec = bkvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
BKTimeSpec = bktimespec(RateSpec.ValuationDate, VolDates, Compounding);
BKT = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in
four years with a forward swap rate of 4.25%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];

Price = swapbybk(BKT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.4434

Using the previous data, compute the forward swap rate, the coupon rate for the fixed
leg, such that the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,SwapRate] = swapbybk(BKT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 2.8422e-14

SwapRate = 0.0384

Input Arguments
BKTree — Interest-rate structure
structure

Interest-rate tree structure, created by bktree
Data Types: struct
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LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the
reference rate. The first column represents the receiving leg, while the second column
represents the paying leg.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every swap is set to the ValuationDate of the BK tree. The swap
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each swap.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
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Example: [Price,PriceTree,CFTree,SwapRate] =
swapbybk(BKTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,Leg
Type)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting
of 'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated
pair consisting of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different
for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-
separated pair consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if
Principal is different for each leg) of the notional principal amounts or principal value
schedules. For schedules, each element of the cell array is a NumDates-by-2 array where
the first column is dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0]
(fixed-float), [0 1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-
by-2 matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0
0] (float-float). Each row represents an instrument. Each column indicates if the
corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the
values entered in LegRate. LegType allows [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if
EndMonthRule is different for each leg).
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• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-
by-2 if AdjustCashFlowsBasis is different for each leg) of logicals with values of 0
(false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.
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Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of
'StartDate' and a NINST-by-1 vector of dates using a serial date number or a
character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double

Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
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indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each
node. This structure contains only NaNs because with binomial recombining trees, cash
flows cannot be computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to
the fixed leg such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg in LegRate is NaN.
The SwapRate output is padded with NaN for those instruments in which CouponRate is
not set to NaN.

Definitions

Amortizing Swap
In an amortizing swap, the notional principal decreases periodically because it is tied to
an underlying financial instrument with a declining (amortizing) principal balance, such
as a mortgage.

Forward Swap
Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
bktree | bondbybk | capbybk | fixedbybk | floorbybk
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Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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swapbycir
Price swap instrument from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree,SwapRate] = swapbycir(CIRTree,LegRate,Settle,
Maturity)
[Price,PriceTree,SwapRate] = swapbycir( ___ ,Name,Value)

Description
[Price,PriceTree,SwapRate] = swapbycir(CIRTree,LegRate,Settle,
Maturity) prices a swap instrument from a Cox-Ingersoll-Ross (CIR) interest-rate tree.
swapbycir computes prices of vanilla swaps, amortizing swaps, and forward swaps using
a CIR++ model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree,SwapRate] = swapbycir( ___ ,Name,Value) adds additional
name-value pair arguments.

Examples

Price an Interest-Rate Swap Using a CIR Interest-Rate Tree

Define an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments
are made once a year and the notional principal amount is $100.

Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Create a RateSpec using the intenvset function.
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Rates = [0.035; 0.042147; 0.047345; 0.052707]; 
Dates = {'Jan-1-2017'; 'Jan-1-2018'; 'Jan-1-2019'; 'Jan-1-2020'; 'Jan-1-2021'}; 
ValuationDate = 'Jan-1-2017'; 
EndDates = Dates(2:end)'; 
Compounding = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 

Create a CIR tree.

NumPeriods = 5;  
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;   
Settle = '01-Jan-2017'; 
Maturity = '01-Jan-2022'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4]
        dObs: [736696 737061 737426 737791 738156]
     FwdTree: {1x5 cell}
     Connect: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}
       Probs: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}

Price the interest-rate swap.

[Price,PriceTree] = swapbycir(CIRT,LegRate,Settle,Maturity,'LegReset',LegReset,'Basis',3,'Principal',100,'LegType',LegType) 

Price = 2.5522

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'
       tObs: [0 1 2 3 4 5]
      PTree: {1x6 cell}
    Connect: {[3x1 double]  [3x3 double]  [3x5 double]  [3x7 double]}
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Input Arguments
CIRTree — Interest-rate structure
structure

Interest-rate tree structure, created by cirtree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the
reference rate. The first column represents the receiving leg, while the second column
represents the paying leg.
Data Types: double

Settle — Settlement date
serial date number | character vector | string array | datetime

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers,
date character vectors, string arrays, or datetime arrays.

The Settle date for every swap is set to the ValuationDate of the CIR tree. The swap
argument Settle is ignored.
Data Types: char | double | string | datetime

Maturity — Maturity date
serial date number | character vector | string array | datetime

Maturity date, specified as a NINST-by-1 vector of serial date numbers, date character
vectors, string arrays, or datetime arrays representing the maturity date for each swap.
Data Types: char | double | string | datetime
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Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,SwapRate] =
swapbycir(CIRTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,L
egType)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting
of 'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated
pair consisting of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different
for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
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• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-
separated pair consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if
Principal is different for each leg) of the notional principal amounts or principal value
schedules. For schedules, each element of the cell array is a NumDates-by-2 array where
the first column is dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0]
(fixed-float), [0 1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-
by-2 matrix with values:

• [1 1] (fixed-fixed) swap
• [1 0] (fixed-float) swap
• [0 1] (float-fixed) swap
• [0 0] (float-float) swap

Each row represents an instrument. Each column indicates if the corresponding leg is
fixed (1) or floating (0). This matrix defines the interpretation of the values entered in
LegRate.
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]
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End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if
EndMonthRule is different for each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-
by-2 if AdjustCashFlowsBasis is different for each leg) of logicals with values of 0
(false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how
nonbusiness days are treated. Nonbusiness days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Nonbusiness days are effectively ignored. Cash flows that fall on
nonbusiness days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.
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• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector | string array | datetime

Date swap actually starts, specified as the comma-separated pair consisting of
'StartDate' and a NINST-by-1 vector of dates using a serial date number, character
vector, string array, or string array.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double | string | datetime

Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:
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• PriceTree.tObs contains the observation times.
• PriceTree.PTree contains the clean prices.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to
the fixed leg such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg in LegRate is NaN.
The SwapRate output is padded with NaN for those instruments in which CouponRate is
not set to NaN.

Definitions

Amortizing Swap
In an amortizing swap, the notional principal decreases periodically because it is tied to
an underlying financial instrument with a declining (amortizing) principal balance, such
as a mortgage.

Forward Swap
Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.
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[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.

See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
instswap | oasbycir | optbndbycir | optembndbycir | optemfloatbycir |
optfloatbycir | rangefloatbycir | swaptionbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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swapbyhjm
Price swap instrument from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbyhjm(HJMTree,LegRate,
Settle,Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbyhjm(HJMTree,LegRate,
Settle,Maturity) prices a swap instrument from a Heath-Jarrow-Morton interest-rate
tree. swapbyhjm computes prices of vanilla swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbyhjm( ___ ,Name,Value) adds
additional name-value pair arguments.

Examples

Price an Interest-Rate Swap

This example shows how to price an interest-rate swap with a fixed receiving leg and a
floating paying leg. Payments are made once a year, and the notional principal amount is
$100. The values for the remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2000
• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate,
LegType, and LegReset matrices:
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Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year 

Price the swap using the HJMTree included in the MAT-file deriv.mat. The HJMTree
structure contains the time and forward-rate information needed to price the instrument.

load deriv.mat; 

Use swapbyhjm to compute the price of the swap.

[Price, PriceTree, CFTree] = swapbyhjm(HJMTree, LegRate,... 
Settle, Maturity, LegReset, Basis, Principal, LegType) 

Price = 

   3.6923 

PriceTree = 

    FinObj: 'HJMPriceTree'
      tObs: [0 1 2 3 4]
     PBush: {1x5 cell}

CFTree = 

    FinObj: 'HJMCFTree'
      tObs: [0 1 2 3 4]
    CFBush: {[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

Use treeviewer to examine CFTree graphically and see the cash flows from the swap
along both the up and the down branches. A positive cash flow indicates an inflow
(income - payments > 0), while a negative cash flow indicates an outflow (income -
payments < 0).

treeviewer(CFTree)
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In this example, you have sold a swap (receive fixed rate and pay floating rate). At time
t = 3, if interest rates go down, your cash flow is positive ($2.63), meaning that you
receive this amount. But if interest rates go up, your cash flow is negative (-$1.58),
meaning that you owe this amount.

treeviewer price tree diagrams follow the convention that increasing prices appear on
the upper branch of a tree and, so, decreasing prices appear on the lower branch.
Conversely, for interest-rate displays, decreasing interest rates appear on the upper
branch (prices are rising) and increasing interest rates on the lower branch (prices are
falling).

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed
leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, CFTree, SwapRate] = swapbyhjm(HJMTree,... 
LegRate, Settle, Maturity, LegReset, Basis, Principal, LegType) 

Price = 

   0
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PriceTree = 

FinObj: 'HJMPriceTree' 
  tObs: [0 1 2 3 4] 
 PBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

CFTree = 

FinObj: 'HJMCFTree' 
  tObs: [0 1 2 3 4] 
CFBush:{[0] [1x1x2 double] [1x2x2 double] ... [1x8 double]}

SwapRate = 

   0.0466

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization
schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
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            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
Period = 1;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the HJM tree using the following data:

MatDates = {'1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of the amortizing swap.

Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting
date of the swap.

Create the RateSpec.

Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;
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RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8023
            Rates: 0.0374
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build an HJM tree.

MatDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
HJMTimeSpec = hjmtimespec(RateSpec.ValuationDate, MatDates);
Volatility = [.10; .08; .06; .04];
CurveTerm = [ 1; 2; 3; 4];
HJMVolSpec = hjmvolspec('Proportional', Volatility, CurveTerm, 1e6);
HJMT = hjmtree(HJMVolSpec,RateSpec,HJMTimeSpec);

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in
four years with a forward swap rate of 4.25%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];

Price = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.4434

Using the previous data, compute the forward swap rate, the coupon rate for the fixed
leg, such that the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,~, SwapRate] = swapbyhjm(HJMT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 0
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SwapRate = 0.0384

Input Arguments
HJMTree — Interest-rate structure
structure

Interest-rate tree structure, created by hjmtree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the
reference rate. The first column represents the receiving leg, while the second column
represents the paying leg.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every swap is set to the ValuationDate of the HJM tree. The swap
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector
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Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each swap.
Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,CFTree,SwapRate] =
swapbyhjm(HJMTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,L
egType)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting
of 'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated
pair consisting of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different
for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-
separated pair consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if
Principal is different for each leg) of the notional principal amounts or principal value
schedules. For schedules, each element of the cell array is a NumDates-by-2 array where
the first column is dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0]
(fixed-float), [0 1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-
by-2 matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0
0] (float-float). Each row represents an instrument. Each column indicates if the
corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the
values entered in LegRate. LegType allows [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure
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Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if
EndMonthRule is different for each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-
by-2 if AdjustCashFlowsBasis is different for each leg) of logicals with values of 0
(false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:
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• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of
'StartDate' and a NINST-by-1 vector of dates using a serial date number or a
character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double

Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

11 Functions — Alphabetical List

11-2024



PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.tObs contains the observation times.
• PriceTree.PBush contains the clean prices.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each
node. This structure contains only NaNs because with binomial recombining trees, cash
flows cannot be computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to
the fixed leg such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg in LegRate is NaN.
The SwapRate output is padded with NaN for those instruments in which CouponRate is
not set to NaN.

Definitions

Amortizing Swap
In an amortizing swap, the notional principal decreases periodically because it is tied to
an underlying financial instrument with a declining (amortizing) principal balance, such
as a mortgage.

Forward Swap
Agreement to enter into an interest-rate swap arrangement on a fixed date in future.
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See Also
capbyhjm | cfbyhjm | floorbyhjm | hjmtree | treeviewer

Topics
“Computing Instrument Prices” on page 2-99
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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swapbyhw
Price swap instrument from Hull-White interest-rate tree

Syntax
[Price,PriceTree,CFTree,SwapRate] = swapbyhw(HWTree,LegRate,Settle,
Maturity)
[Price,PriceTree,CFTree,SwapRate] = swapbyhw( ___ ,Name,Value)

Description
[Price,PriceTree,CFTree,SwapRate] = swapbyhw(HWTree,LegRate,Settle,
Maturity) prices a swap instrument from a Hull-White interest-rate tree. swapbyhw
computes prices of vanilla swaps, amortizing swaps and forward swaps.

[Price,PriceTree,CFTree,SwapRate] = swapbyhw( ___ ,Name,Value) adds
additional name-value pair arguments.

Examples

Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments
are made once a year, and the notional principal amount is $100. The values for the
remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2005
• Swap maturity date: Jan. 01, 2008

Based on the information above, set the required arguments and build the LegRate,
LegType, and LegReset matrices:
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Settle = '01-Jan-2005';
Maturity = '01-Jan-2008';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Price the swap using the HWTree included in the MAT-file deriv.mat. The HWTree
structure contains the time and forward-rate information needed to price the instrument.

load deriv.mat;

Use swapbyhw to compute the price of the swap.

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ... 
Settle, Maturity, LegReset, Basis, Principal, LegType)

Warning: Swaps are valued at Tree ValuationDate rather than Settle

Price = 5.9109

PriceTree = struct with fields:
     FinObj: 'HWPriceTree'
      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

SwapRate = NaN

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed
leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, PriceTree, SwapRate] = swapbyhw(HWTree, LegRate, ... 
Settle, Maturity, LegReset, Basis, Principal, LegType)

Warning: Swaps are valued at Tree ValuationDate rather than Settle

Price = 1.4211e-14

PriceTree = struct with fields:
     FinObj: 'HWPriceTree'
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      PTree: {1x5 cell}
       tObs: [0 1 2 3 4]
    Connect: {[2]  [2 3 4]  [2 2 3 4 4]}
      Probs: {[3x1 double]  [3x3 double]  [3x5 double]}

SwapRate = 0.0438

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization
schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8135
            Rates: 0.0350
         EndTimes: 6
       StartTimes: 0
         EndDates: 736696
       StartDates: 734504
    ValuationDate: 734504
            Basis: 0
     EndMonthRule: 1

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
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Period = 1;
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Build the HW tree using the following data:

VolDates = ['1-Jan-2012'; '1-Jan-2013';'1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017'];
VolCurve = 0.1;
AlphaDates = '01-01-2017';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of the amortizing swap.

Price = swapbyhw(HWT, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 1.4574

Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting
date of the swap.

Create the RateSpec.

Rates = 0.0374;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: 1
             Disc: 0.8023
            Rates: 0.0374
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Build an HW tree.

VolDates = {'1-Jan-2013'; '1-Jan-2014';'1-Jan-2015';'1-Jan-2016';'1-Jan-2017';'1-Jan-2018'};
VolCurve = 0.1;
AlphaDates = '01-01-2018';
AlphaCurve = 0.1;

HWVolSpec = hwvolspec(RateSpec.ValuationDate, VolDates, VolCurve,... 
AlphaDates, AlphaCurve);
HWTimeSpec = hwtimespec(RateSpec.ValuationDate, VolDates, Compounding);
HWT = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in
four years with a forward swap rate of 4.25%.

Settle ='1-Jan-2012';
Maturity = '1-Jan-2017';
StartDate = '1-Jan-2013';
LegRate = [0.0425 10];

Price = swapbyhw(HWT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 1.4434

Using the previous data, compute the forward swap rate, the coupon rate for the fixed
leg, such that the forward swap price at time = 0 is zero.

LegRate = [NaN 10];
[Price, ~,SwapRate] = swapbyhw(HWT, LegRate, Settle, Maturity, 'StartDate', StartDate)

Price = 0

SwapRate = 0.0384
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Input Arguments
HWTree — Interest-rate structure
structure

Interest-rate tree structure, created by hwtree
Data Types: struct

LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the
reference rate. The first column represents the receiving leg, while the second column
represents the paying leg.
Data Types: double

Settle — Settlement date
serial date number | character vector

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors.

The Settle date for every swap is set to the ValuationDate of the HW tree. The swap
argument Settle is ignored.
Data Types: char | double

Maturity — Maturity date
serial date number | character vector

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each swap.
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Data Types: char | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree,CFTree,SwapRate] =
swapbyhw(HWTree,LegRate,Settle,Maturity,LegReset,Basis,Principal,Leg
Type)

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting
of 'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis representing the basis for each leg
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated
pair consisting of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different
for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-
separated pair consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if
Principal is different for each leg) of the notional principal amounts or principal value
schedules. For schedules, each element of the cell array is a NumDates-by-2 array where
the first column is dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0]
(fixed-float), [0 1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-
by-2 matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0
0] (float-float). Each row represents an instrument. Each column indicates if the
corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the
values entered in LegRate. LegType allows [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct
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EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if
EndMonthRule is different for each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical

AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-
by-2 if AdjustCashFlowsBasis is different for each leg) of logicals with values of 0
(false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.
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• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
Data Types: double

StartDate — Date swap actually starts
Settle date (default) | serial date number | character vector

Date swap actually starts, specified as the comma-separated pair consisting of
'StartDate' and a NINST-by-1 vector of dates using a serial date number or a
character vector.

Use this argument to price forward swaps, that is, swaps that start in a future date
Data Types: char | double

Output Arguments
Price — Expected swap prices at time 0
vector

Expected swap prices at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure
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Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

CFTree — Swap cash flows
structure

Swap cash flows, returned as a tree structure with a vector of the swap cash flows at each
node. This structure contains only NaNs because with binomial recombining trees, cash
flows cannot be computed accurately at each node of a tree.

SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-1 vector of rates applicable to
the fixed leg such that the swaps’ values are zero at time 0. This rate is used in
calculating the swaps’ prices when the rate specified for the fixed leg in LegRate is NaN.
The SwapRate output is padded with NaN for those instruments in which CouponRate is
not set to NaN.

Definitions

Amortizing Swap
In an amortizing swap, the notional principal decreases periodically because it is tied to
an underlying financial instrument with a declining (amortizing) principal balance, such
as a mortgage.
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Forward Swap
Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

See Also
bondbyhw | capbyhw | cfbyhw | fixedbyhw | floorbyhw | hwtree

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Understanding Interest-Rate Tree Models” on page 2-79
“Pricing Options Structure” on page B-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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swapbyzero
Price swap instrument from set of zero curves and price cross-currency swaps

Syntax
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(
RateSpec,LegRate,Settle,Maturity)
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(
RateSpec,LegRate,Settle,Maturity,Name,Value)

Description
[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(
RateSpec,LegRate,Settle,Maturity) prices a swap instrument. You can use
swapbyzero to compute prices of vanilla swaps, amortizing swaps, and forward swaps.
All inputs are either scalars or NINST-by-1 vectors unless otherwise specified. Any date
can be a serial date number or date character vector. An optional argument can be passed
as an empty matrix [].

[Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] = swapbyzero(
RateSpec,LegRate,Settle,Maturity,Name,Value) prices a swap instrument with
additional options specified by one or more Name,Value pair arguments. You can use
swapbyzero to compute prices of vanilla swaps, amortizing swaps, forward swaps, and
cross-currency swaps. For more information on the name-value pairs for vanilla swaps,
amortizing swaps, and forward swaps, see Vanilla Swaps, Amortizing Swaps, Forward
Swaps on page 11-0 .

Specifically, you can use name-value pairs for FXRate, ExchangeInitialPrincipal,
and ExchangeMaturityPrincipal to compute the price for cross-currency swaps. For
more information on the name-value pairs for cross-currency swaps, see Cross-Currency
Swaps on page 11-0 .

Examples
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Price an Interest-Rate Swap

Price an interest-rate swap with a fixed receiving leg and a floating paying leg. Payments
are made once a year, and the notional principal amount is $100. The values for the
remaining arguments are:

• Coupon rate for fixed leg: 0.06 (6%)
• Spread for floating leg: 20 basis points
• Swap settlement date: Jan. 01, 2000
• Swap maturity date: Jan. 01, 2003

Based on the information above, set the required arguments and build the LegRate,
LegType, and LegReset matrices:

Settle = '01-Jan-2000';
Maturity = '01-Jan-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year

Load the file deriv.mat, which provides ZeroRateSpec, the interest-rate term
structure needed to price the bond.

load deriv.mat;

Use swapbyzero to compute the price of the swap.

Price = swapbyzero(ZeroRateSpec, LegRate, Settle, Maturity,... 
LegReset, Basis, Principal, LegType)

Price = 3.6923

Using the previous data, calculate the swap rate, which is the coupon rate for the fixed
leg, such that the swap price at time = 0 is zero.

LegRate = [NaN 20]; 

[Price, SwapRate] = swapbyzero(ZeroRateSpec, LegRate, Settle,...
Maturity, LegReset, Basis, Principal, LegType)

Price = 0
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SwapRate = 0.0466

In swapbyzero , if Settle is not on a reset date (and 'StartDate' is not specified), the
effective date is assumed to be the previous reset date before Settle in order to
compute the accrued interest and dirty price. In this example, the effective date is ( '15-
Sep-2009' ), which is the previous reset date before the ( '08-Jun-2010' ) Settle
date.

Use swapbyzero with name-value pair arguments for LegRate, LegType,
LatestFloatingRate, AdjustCashFlowsBasis, and BusinessDayConvention to
calculate output for Price, SwapRate, AI, RecCF, RecCFDates, PayCF, and
PayCFDates:

Settle = datenum('08-Jun-2010');
RateSpec = intenvset('Rates', [.005 .0075 .01 .014 .02 .025 .03]',...
'StartDates',Settle, 'EndDates',{'08-Dec-2010','08-Jun-2011',...
'08-Jun-2012','08-Jun-2013','08-Jun-2015','08-Jun-2017','08-Jun-2020'}');
Maturity = datenum('15-Sep-2020');
LegRate = [.025 50];
LegType = [1 0]; % fixed/floating
LatestFloatingRate = .005;
 
[Price, SwapRate, AI, RecCF, RecCFDates, PayCF,PayCFDates] = ...
swapbyzero(RateSpec, LegRate, Settle, Maturity,'LegType',LegType,...
'LatestFloatingRate',LatestFloatingRate,'AdjustCashFlowsBasis',true,...
'BusinessDayConvention','modifiedfollow')

Price = -6.7259

SwapRate = NaN

AI = 1.4575

RecCF = 1×12

   -1.8219    2.5000    2.5000    2.5137    2.4932    2.4932    2.5000    2.5000    2.5000    2.5137    2.4932  102.4932

RecCFDates = 1×12

      734297      734396      734761      735129      735493      735857      736222      736588      736953      737320      737684      738049

PayCF = 1×12
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   -0.3644    0.5000    1.4048    1.9961    2.8379    3.2760    3.8218    4.1733    4.5164    4.4920    4.7950  104.6608

PayCFDates = 1×12

      734297      734396      734761      735129      735493      735857      736222      736588      736953      737320      737684      738049

Price Swaps By Specifying Multiple Term Structures Using RateSpec

Price three swaps using two interest-rate curves. First, define the data for the interest-
rate term structure:

StartDates = '01-May-2012'; 
EndDates = {'01-May-2013'; '01-May-2014';'01-May-2015';'01-May-2016'};
Rates = [[0.0356;0.041185;0.04489;0.047741],[0.0366;0.04218;0.04589;0.04974]];

Create the RateSpec using intenvset.

RateSpec = intenvset('Rates', Rates, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [4x2 double]
            Rates: [4x2 double]
         EndTimes: [4x1 double]
       StartTimes: [4x1 double]
         EndDates: [4x1 double]
       StartDates: 734990
    ValuationDate: 734990
            Basis: 0
     EndMonthRule: 1

Look at the Rates for the two interest-rate curves.

RateSpec.Rates

ans = 4×2

    0.0356    0.0366

11 Functions — Alphabetical List

11-2042



    0.0412    0.0422
    0.0449    0.0459
    0.0477    0.0497

Define the swap instruments.

Settle = '01-May-2012';
Maturity = '01-May-2015';
LegRate = [0.06 10]; 
Principal = [100;50;100];  % Three notional amounts

Price three swaps using two curves.

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 3×2

    3.9688    3.6869
    1.9844    1.8434
    3.9688    3.6869

Price Swap By Specifying Multiple Term Structures Using a 1-by-2 RateSpec

Price a swap using two interest-rate curves. First, define data for the two interest-rate
term structures:

StartDates = '01-May-2012'; 
EndDates = {'01-May-2013'; '01-May-2014';'01-May-2015';'01-May-2016'};
Rates1 = [0.0356;0.041185;0.04489;0.047741];
Rates2 = [0.0366;0.04218;0.04589;0.04974];

Create the RateSpec using intenvset.

RateSpecReceiving = intenvset('Rates', Rates1, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1);
RateSpecPaying= intenvset('Rates', Rates2, 'StartDates',StartDates,...
'EndDates', EndDates, 'Compounding', 1);
RateSpec=[RateSpecReceiving RateSpecPaying]

RateSpec = 1x2 struct array with fields:
    FinObj
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    Compounding
    Disc
    Rates
    EndTimes
    StartTimes
    EndDates
    StartDates
    ValuationDate
    Basis
    EndMonthRule

Define the swap instruments.

Settle = '01-May-2012';
Maturity = '01-May-2015';
LegRate = [0.06 10]; 
Principal = [100;50;100];

Price three swaps using the two curves.

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal', Principal)

Price = 3×1

    3.9693
    1.9846
    3.9693

Compute a Forward Par Swap Rate

To compute a forward par swap rate, set the StartDate parameter to a future date and
set the fixed coupon rate in the LegRate input to NaN.

Define the zero curve data and build a zero curve using IRDataCurve.

ZeroRates = [2.09 2.47 2.71 3.12 3.43 3.85 4.57]'/100;
Settle = datenum('1-Jan-2012');
EndDates = datemnth(Settle,12*[1 2 3 5 7 10 20]');
Compounding = 1;

ZeroCurve = IRDataCurve('Zero',Settle,EndDates,ZeroRates,'Compounding',Compounding)
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ZeroCurve = 
             Type: Zero
           Settle: 734869 (01-Jan-2012)
      Compounding: 1
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [7x1 double]
             Data: [7x1 double]

Create a RateSpec structure using the toRateSpec method.

RateSpec = ZeroCurve.toRateSpec(EndDates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [7x1 double]
            Rates: [7x1 double]
         EndTimes: [7x1 double]
       StartTimes: [7x1 double]
         EndDates: [7x1 double]
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Compute the forward swap rate (the coupon rate for the fixed leg), such that the forward
swap price at time = 0 is zero. The forward swap starts in a month (1-Feb-2012) and
matures in 10 years (1-Feb-2022).

StartDate = datenum('1-Feb-2012');
Maturity = datenum('1-Feb-2022');
LegRate = [NaN 0];

[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,...
'StartDate', StartDate)

Price = 0

SwapRate = 0.0378
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Compute a Forward Swap Rate Using the Optional Input BusinessDayConvention

The swapbyzero function generates the cash flow dates based on the Settle and
Maturity dates, while using the Maturity date as the "anchor" date from which to
count backwards in regular intervals. By default, swapbyzero does not distinguish non-
business days from business days. To make swapbyzero move non-business days to the
following business days, you can you can set the optional name-value input argument
BusinessDayConvention with a value of follow.

Define the zero curve data and build a zero curve using IRDataCurve.

ZeroRates = [2.09 2.47 2.71 3.12 3.43 3.85 4.57]'/100;
Settle = datenum('5-Jan-2012');
EndDates = datemnth(Settle,12*[1 2 3 5 7 10 20]');
Compounding = 1;
ZeroCurve = IRDataCurve('Zero',Settle,EndDates,ZeroRates,'Compounding',Compounding);
RateSpec = ZeroCurve.toRateSpec(EndDates);
StartDate = datenum('5-Feb-2012');
Maturity = datenum('5-Feb-2022');
LegRate = [NaN 0];

To demonstrate the optional input BusinessDayConvention, swapbyzero is first used
without and then with the optional name-value input argument
BusinessDayConvention. Notice that when using BusinessDayConvention, all days
are business days.

[Price1,SwapRate1,~,~,RecCFDates1,~,PayCFDates1] = swapbyzero(RateSpec,LegRate,Settle,Maturity,...
    'StartDate',StartDate);
datestr(RecCFDates1)

ans = 11x11 char array
    '05-Jan-2012'
    '05-Feb-2013'
    '05-Feb-2014'
    '05-Feb-2015'
    '05-Feb-2016'
    '05-Feb-2017'
    '05-Feb-2018'
    '05-Feb-2019'
    '05-Feb-2020'
    '05-Feb-2021'
    '05-Feb-2022'

isbusday(RecCFDates1)
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ans = 11x1 logical array

   1
   1
   1
   1
   1
   0
   1
   1
   1
   1
      ⋮

[Price2,SwapRate2,~,~,RecCFDates2,~,PayCFDates2] = swapbyzero(RateSpec,LegRate,Settle,Maturity,...
    'StartDate',StartDate,'BusinessDayConvention','follow');
datestr(RecCFDates2)

ans = 11x11 char array
    '05-Jan-2012'
    '05-Feb-2013'
    '05-Feb-2014'
    '05-Feb-2015'
    '05-Feb-2016'
    '06-Feb-2017'
    '05-Feb-2018'
    '05-Feb-2019'
    '05-Feb-2020'
    '05-Feb-2021'
    '07-Feb-2022'

isbusday(RecCFDates2)

ans = 11x1 logical array

   1
   1
   1
   1
   1
   1
   1
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   1
   1
   1
      ⋮

Price an Amortizing Swap

Price an amortizing swap using the Principal input argument to define the amortization
schedule.

Create the RateSpec.

Rates = 0.035;
ValuationDate = '1-Jan-2011';
StartDates = ValuationDate;
EndDates = '1-Jan-2017';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding);

Create the swap instrument using the following data:

Settle ='1-Jan-2011';
Maturity = '1-Jan-2017';
LegRate = [0.04 10];

Define the swap amortizing schedule.

Principal ={{'1-Jan-2013' 100;'1-Jan-2014' 80;'1-Jan-2015' 60;'1-Jan-2016' 40; '1-Jan-2017' 20}};

Compute the price of the amortizing swap.

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'Principal' , Principal)

Price = 1.4574
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Price a Forward Swap

Price a forward swap using the StartDate input argument to define the future starting
date of the swap.

Create the RateSpec.

Rates = 0.0325;
ValuationDate = '1-Jan-2012';
StartDates = ValuationDate;
EndDates = '1-Jan-2018';
Compounding = 1;

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', StartDates,...
'EndDates', EndDates,'Rates', Rates, 'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: 0.8254
            Rates: 0.0325
         EndTimes: 6
       StartTimes: 0
         EndDates: 737061
       StartDates: 734869
    ValuationDate: 734869
            Basis: 0
     EndMonthRule: 1

Compute the price of a forward swap that starts in a year (Jan 1, 2013) and matures in
three years with a forward swap rate of 4.27%.

Settle ='1-Jan-2012';
StartDate = '1-Jan-2013';
Maturity = '1-Jan-2016';
LegRate = [0.0427 10];

Price = swapbyzero(RateSpec, LegRate, Settle, Maturity, 'StartDate' , StartDate)

Price = 2.5083

Using the previous data, compute the forward swap rate, the coupon rate for the fixed
leg, such that the forward swap price at time = 0 is zero.
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LegRate = [NaN 10];
[Price, SwapRate] = swapbyzero(RateSpec, LegRate, Settle, Maturity,...
'StartDate' , StartDate)

Price = 0

SwapRate = 0.0335

Specify the Rate at the Instrument’s Starting Date When It Cannot Be Obtained
from the RateSpec

If Settle is not on a reset date of a floating-rate note, swapbyzero attempts to obtain
the latest floating rate before Settle from RateSpec or the LatestFloatingRate
parameter. When the reset date for this rate is out of the range of RateSpec (and
LatestFloatingRate is not specified), swapbyzero fails to obtain the rate for that date
and generates an error. This example shows how to use the LatestFloatingRate input
parameter to avoid the error.

Create the error condition when a swap instrument’s StartDate cannot be determined
from the RateSpec.
Settle = '01-Jan-2000';
Maturity = '01-Dec-2003';
Basis = 0; 
Principal = 100;
LegRate = [0.06 20]; % [CouponRate Spread] 
LegType = [1 0]; % [Fixed Float] 
LegReset = [1 1]; % Payments once per year 

load deriv.mat; 

Price = swapbyzero(ZeroRateSpec,LegRate,Settle,Maturity,... 
'LegReset',LegReset,'Basis',Basis,'Principal',Principal, ...
'LegType',LegType)

Error using floatbyzero (line 256)
The rate at the instrument starting date cannot be obtained from RateSpec.
 Its reset date (01-Dec-1999) is out of the range of dates contained in RateSpec.
 This rate is required to calculate cash flows at the instrument starting date.
 Consider specifying this rate with the 'LatestFloatingRate' input parameter.

Error in swapbyzero (line 289)
[FloatFullPrice, FloatPrice,FloatCF,FloatCFDates] = floatbyzero(FloatRateSpec, Spreads, Settle,...

Here, the reset date for the rate at Settle was 01-Dec-1999, which was earlier than
the valuation date of ZeroRateSpec (01-Jan-2000). This error can be avoided by
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specifying the rate at the swap instrument’s starting date using the
LatestFloatingRate input parameter.

Define LatestFloatingRate and calculate the floating-rate price.
Price = swapbyzero(ZeroRateSpec,LegRate,Settle,Maturity,... 
'LegReset',LegReset,'Basis',Basis,'Principal',Principal, ...
'LegType',LegType,'LatestFloatingRate',0.03)

Price =

    4.7594

Price a Swap Using a Different Curve to Generate the Cash Flows of the Floating
Leg

Define the OIS and Libor rates.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .011 .016 .022 .026 .030 .0348]';

Plot the dual curves.

figure,plot(CurveDates,OISRates,'r');hold on;plot(CurveDates,LiborRates,'b')
datetick
legend({'OIS Curve', 'Libor Curve'})

 swapbyzero

11-2051



Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates);

Define the swap.

Maturity = datenum('15-Mar-2018'); % Five year swap
FloatSpread = 0;
FixedRate = .025;
LegRate = [FixedRate FloatSpread];
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Compute the price of the swap instrument. The LiborCurve term structure will be used
to generate the cash flows of the floating leg. The OISCurve term structure will be used
for discounting the cash flows.

Price = swapbyzero(OISCurve, LegRate, Settle,...
Maturity,'ProjectionCurve',LiborCurve)

Price = -0.3697

Compare results when the term structure OISCurve is used both for discounting and also
generating the cash flows of the floating leg.

PriceSwap = swapbyzero(OISCurve, LegRate, Settle, Maturity)

PriceSwap = 2.0517

Price a Fixed-Fixed Currency Swap

Price an existing cross currency swap that receives a fixed rate of JPY and pays a fixed
rate of USD at an annual frequency.

Settle = datenum('15-Aug-2015');
Maturity = datenum('15-Aug-2018');
Reset = 1;
LegType = [1 1]; % Fixed-Fixed

r_USD = .09;
r_JPY = .04;
 
FixedRate_USD = .08;
FixedRate_JPY = .05;

Principal_USD = 10000000;
Principal_JPY = 1200000000;
 
S = 1/110;

RateSpec_USD = intenvset('StartDate',Settle,'EndDate', Maturity,'Rates',r_USD,'Compounding',-1);
RateSpec_JPY = intenvset('StartDate',Settle,'EndDate', Maturity,'Rates', r_JPY,'Compounding',-1);

Price = swapbyzero([RateSpec_JPY RateSpec_USD], [FixedRate_JPY FixedRate_USD],...
Settle, Maturity,'Principal',[Principal_JPY Principal_USD],'FXRate',[S 1], 'LegType',LegType)
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Price = 1.5430e+06

Price a Float-Float Currency Swap

Price a new swap where you pay a EUR float and receive a USD float.

Settle = datenum('22-Dec-2015');
Maturity = datenum('15-Aug-2018');
LegRate = [0 -50/10000];
LegType = [0 0]; % Float Float
LegReset = [4 4];
FXRate = 1.1;
Notional = [10000000 8000000];

USD_Dates = datemnth(Settle,[1 3 6 12*[1 2 3 5 7 10 20 30]]');
USD_Zero = [0.03 0.06 0.08 0.13 0.36 0.76 1.63 2.29 2.88 3.64 3.89]'/100;
Curve_USD = intenvset('StartDate',Settle,'EndDates',USD_Dates,'Rates',USD_Zero);

EUR_Dates = datemnth(Settle,[3 6 12*[1 2 3 5 7 10 20 30]]');
EUR_Zero = [0.017 0.033 0.088 .27 .512 1.056 1.573 2.183 2.898 2.797]'/100;
Curve_EUR = intenvset('StartDate',Settle,'EndDates',EUR_Dates,'Rates',EUR_Zero);

Price = swapbyzero([Curve_USD Curve_EUR], ...
    LegRate, Settle, Maturity,'LegType',LegType,'LegReset',LegReset,'Principal',Notional,...
    'FXRate',[1 FXRate],'ExchangeInitialPrincipal',false)

Price = 1.2002e+06

Input Arguments
RateSpec — Interest-rate structure
structure

Interest-rate structure, specified using intenvset to create a RateSpec.

RateSpec can also be a 1-by-2 input variable of RateSpecs, with the second RateSpec
structure containing one or more discount curves for the paying leg. If only one
RateSpec structure is specified, then this RateSpec is used to discount both legs.
Data Types: struct
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LegRate — Leg rate
matrix

Leg rate, specified as a NINST-by-2 matrix, with each row defined as one of the following:

• [CouponRate Spread] (fixed-float)
• [Spread CouponRate] (float-fixed)
• [CouponRate CouponRate] (fixed-fixed)
• [Spread Spread] (float-float)

CouponRate is the decimal annual rate. Spread is the number of basis points over the
reference rate. The first column represents the receiving leg, while the second column
represents the paying leg.
Data Types: double

Settle — Settlement date
serial date number | character vector | cell array of character vectors

Settlement date, specified either as a scalar or NINST-by-1 vector of serial date numbers
or date character vectors of the same value which represent the settlement date for each
swap. Settle must be earlier than Maturity.
Data Types: char | cell | double

Maturity — Maturity date
serial date number | character vector | cell array of character vectors

Maturity date, specified as a NINST-by-1 vector of serial date numbers or date character
vectors representing the maturity date for each swap.
Data Types: char | cell | double

Name-Value Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,SwapRate,AI,RecCF,RecCFDates,PayCF,PayCFDates] =
swapbyzero(RateSpec,LegRate,Settle,
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Maturity,'LegType',LegType,'LatestFloatingRate',LatestFloatingRate,'
AdjustCashFlowsBasis',true,
'BusinessDayConvention','modifiedfollow')

Vanilla Swaps, Amortizing Swaps, Forward Swaps

LegReset — Reset frequency per year for each swap
[1 1] (default) | vector

Reset frequency per year for each swap, specified as the comma-separated pair consisting
of 'LegReset' and a NINST-by-2 vector.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis for each leg, specified as the comma-separated
pair consisting of 'Basis' and a NINST-by-1 array (or NINST-by-2 if Basis is different
for each leg).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double
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Principal — Notional principal amounts or principal value schedules
100 (default) | vector or cell array

Notional principal amounts or principal value schedules, specified as the comma-
separated pair consisting of 'Principal' and a vector or cell array.

Principal accepts a NINST-by-1 vector or NINST-by-1 cell array (or NINST-by-2 if
Principal is different for each leg) of the notional principal amounts or principal value
schedules. For schedules, each element of the cell array is a NumDates-by-2 array where
the first column is dates and the second column is its associated notional principal value.
The date indicates the last day that the principal value is valid.
Data Types: cell | double

LegType — Leg type
[1 0] for each instrument (default) | matrix with values [1 1] (fixed-fixed), [1 0]
(fixed-float), [0 1] (float-fixed), or [0 0] (float-float)

Leg type, specified as the comma-separated pair consisting of 'LegType' and a NINST-
by-2 matrix with values [1 1] (fixed-fixed), [1 0] (fixed-float), [0 1] (float-fixed), or [0
0] (float-float). Each row represents an instrument. Each column indicates if the
corresponding leg is fixed (1) or floating (0). This matrix defines the interpretation of the
values entered in LegRate. LegType allows [1 1] (fixed-fixed), [1 0] (fixed-float), [0
1] (float-fixed), or [0 0] (float-float) swaps
Data Types: double

EndMonthRule — End-of-month rule flag for generating dates when Maturity is
end-of-month date for month having 30 or fewer days
1 (in effect) (default) | nonnegative integer [0,1]

End-of-month rule flag for generating dates when Maturity is an end-of-month date for a
month having 30 or fewer days, specified as the comma-separated pair consisting of
'EndMonthRule' and a nonnegative integer [0, 1] using a NINST-by-1 (or NINST-by-2 if
EndMonthRule is different for each leg).

• 0 = Ignore rule, meaning that a payment date is always the same numerical day of the
month.

• 1 = Set rule on, meaning that a payment date is always the last actual day of the
month.

Data Types: logical
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AdjustCashFlowsBasis — Flag to adjust cash flows based on actual period day
count
false (default) | value of 0 (false) or 1 (true)

Flag to adjust cash flows based on actual period day count, specified as the comma-
separated pair consisting of 'AdjustCashFlowsBasis' and a NINST-by-1 (or NINST-
by-2 if AdjustCashFlowsBasis is different for each leg) of logicals with values of 0
(false) or 1 (true).
Data Types: logical

BusinessDayConvention — Business day conventions
actual (default) | character vector | cell array of character vectors

Business day conventions, specified as the comma-separated pair consisting of
'BusinessDayConvention' and a character vector or a N-by-1 (or NINST-by-2 if
BusinessDayConvention is different for each leg) cell array of character vectors of
business day conventions. The selection for business day convention determines how non-
business days are treated. Non-business days are defined as weekends plus any other
date that businesses are not open (e.g. statutory holidays). Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.

• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Data Types: char | cell

Holidays — Holidays used in computing business days
if not specified, the default is to use holidays.m (default) | MATLAB date numbers

Holidays used in computing business days, specified as the comma-separated pair
consisting of 'Holidays' and MATLAB date numbers using a NHolidays-by-1 vector.
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Data Types: double

StartDate — Dates when swaps actually start
If not specified, date is Settle (default) | serial date number | character vector | cell
array of character vectors

Dates when the swaps actually start, specified as the comma-separated pair consisting of
'StartDate' and a NINST-by-1 vector of serial date numbers, character vectors, or cell
array of character vectors.
Data Types: char | cell | double

LatestFloatingRate — Rate for the next floating payment
If not specified, then RateSpec must contain this information (default) | scalar numeric

Rate for the next floating payment, set at the last reset date, specified as the comma-
separated pair consisting of 'LatestFloatingRate' and a scalar numeric value.

LatestFloatingRate accepts a Rate for the next floating payment, set at the last reset
date. LatestFloatingRate is a NINST-by-1 (or NINST-by-2 if LatestFloatingRate is
different for each leg).
Data Types: double

ProjectionCurve — Rate curve used in generating cash flows for the floating leg
of the swap
if ProjectionCurve is not specified, then RateSpec is used both for discounting and
generating cash flows for the floating leg (default) | RateSpec or vector

Rate curve used in generating cash flows for the floating leg of the swap, specified as the
comma-separated pair consisting of 'ProjectionCurve' and a RateSpec.

If specifying a fixed-float or a float-fixed swap, the ProjectionCurve rate curve is used
in generating cash flows for the floating leg of the swap. This structure must be created
using intenvset.

If specifying a fixed-fixed or a float-float swap, then ProjectionCurve is NINST-by-2
vector because each floating leg could have a different projection curve.
Data Types: struct
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Cross-Currency Swaps

FXRate — Foreign exchange (FX) rate applied to cash flows
if not specified, both legs of swapbyzero are in same currency (default) | array

Foreign exchange (FX) rate applied to cash flows, specified as the comma-separated pair
consisting of 'FXRate' and a NINST-by-2 array of doubles. Since the foreign exchange
rate could be applied to either the payer or receiver leg, there are 2 columns in the input
array and you must specify which leg has the foreign currency.
Data Types: double

ExchangeInitialPrincipal — Flag to indicate if initial Principal is exchanged
0 (false) (default) | array

Flag to indicate if initial Principal is exchanged, specified as the comma-separated pair
consisting of 'ExchangeInitialPrincipal' and a NINST-by-1 array of logicals.
Data Types: logical

ExchangeMaturityPrincipal — Flag to indicate if Principal exchanged at
Maturity
1 (true) (default) | array

Flag to indicate if Principal is exchanged at Maturity, specified as the comma-
separated pair consisting of 'ExchangeMaturityPrincipal' and a NINST-by-1 array
of logicals. While in practice most single currency swaps do not exchange principal at
maturity, the default is true to maintain backward compatibility.
Data Types: logical

Output Arguments
Price — Swap prices
matrix

Swap prices, returned as the number of instruments (NINST) by number of curves
(NUMCURVES) matrix. Each column arises from one of the zero curves. Price output is the
dirty price. To compute the clean price, subtract the accrued interest (AI) from the dirty
price.
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SwapRate — Rates applicable to fixed leg
matrix

Rates applicable to the fixed leg, returned as a NINST-by-NUMCURVES matrix of rates
applicable to the fixed leg such that the swaps’ values are zero at time 0. This rate is used
in calculating the swaps’ prices when the rate specified for the fixed leg in LegRate is
NaN. The SwapRate output is padded with NaN for those instruments in which
CouponRate is not set to NaN.

AI — Accrued interest
matrix

Accrued interest, returned as a NINST-by-NUMCURVES matrix.

RecCF — Cash flows for receiving leg
matrix

Cash flows for the receiving leg, returned as a NINST-by-NUMCURVES matrix.

Note If there is more than one curve specified in the RateSpec input, then the first
NCURVES row corresponds to the first swap, the second NCURVES row correspond to the
second swap, and so on.

RecCFDates — Payment dates for receiving leg
matrix

Payment dates for the receiving leg, returned as an NINST-by-NUMCURVES matrix.

PayCF — Cash flows for paying leg
matrix

Cash flows for the paying leg, returned as an NINST-by-NUMCURVES matrix.

PayCFDates — Payment dates for paying leg
matrix

Payment dates for the paying leg, returned as an NINST-by-NUMCURVES matrix.
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Definitions

Amortizing Swap
In an amortizing swap, the notional principal decreases periodically because it is tied to
an underlying financial instrument with a declining (amortizing) principal balance, such
as a mortgage.

Forward Swap
Agreement to enter into an interest-rate swap arrangement on a fixed date in future.

Cross-currency Swap
Swaps where the payment legs of the swap are denominated in different currencies.

One difference between cross-currency swaps and standard swaps is that an exchange of
principal may occur at the beginning and/or end of the swap. The exchange of initial
principal will only come into play in pricing a cross-currency swap at inception (in other
words, pricing an existing cross-currency swap will occur after this cash flow has
happened). Furthermore, these exchanges of principal typically do not affect the value of
the swap (since the principal values of the two legs are chosen based on the currency
exchange rate) but affect the cash flows for each leg.

References
[1] Hull, J. Options, Futures and Other Derivatives Fourth Edition. Prentice Hall, 2000.

See Also
bondbyzero | cfbyzero | fixedbyzero | floatbyzero | intenvset

Topics
“Pricing Using Interest-Rate Term Structure” on page 2-72
“Understanding the Interest-Rate Term Structure” on page 2-55
“Supported Interest-Rate Instruments” on page 2-2
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Introduced before R2006a
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swaptionbybdt
Price swaption from Black-Derman-Toy interest-rate tree

Syntax
[Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbybdt( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity) prices swaption using a Black-Derman-
Toy tree.

[Price,PriceTree] = swaptionbybdt( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a 5-Year Call Swaption Using a BDT Interest-Rate Tree

This example shows how to price a 5-year call swaption using a BDT interest-rate tree.
Assume that interest rate and volatility are fixed at 6% and 20% annually between the
valuation date of the tree until its maturity. Build a tree with the following data.

Rates = 0.06 * ones (10,1);      
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';...
'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016'];    

EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';...
'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017'];
ValuationDate = 'jan-1-2007'; 
Compounding = 1; 
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% define the RateSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ...
'Compounding', Compounding);

% use VolSpec to compute interest-rate volatility
Volatility = 0.20 * ones (10,1);  VolSpec = bdtvolspec(ValuationDate,...
EndDates, Volatility);

% use TimeSpec to specify the structure of the time layout for a BDT tree
TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);

% build the BDT tree
BDTTree = bdttree(VolSpec, RateSpec, TimeSpec); 

% use the following swaption arguments
ExerciseDates = 'jan-1-2012';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2015'; 
Spread = 0;
SwapReset = 1; 
Principal = 100;
OptSpec = 'call';
Strike=.062;
Basis=1;

% price the swaption
[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)

Price = 2.0592

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4 5 6 7 8 9 10]
     PTree: {1x11 cell}
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Price a 5-Year Call Swaption with Receiving and Paying Legs Using a BDT
Interest-Rate Tree

This example shows how to price a 5-year call swaption with receiving and paying legs
using a BDT interest-rate tree. Assume that interest rate and volatility are fixed at 6% and
20% annually between the valuation date of the tree until its maturity. Build a tree with
the following data.

Rates = 0.06 * ones (10,1);      
StartDates = ['jan-1-2007';'jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';...
'jan-1-2012';'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016'];    

EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011';'jan-1-2012';...
'jan-1-2013';'jan-1-2014';'jan-1-2015';'jan-1-2016';'jan-1-2017'];
ValuationDate = 'jan-1-2007'; 
Compounding = 1;

Define the RateSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates, ...
'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: [10x1 double]
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1

Use VolSpec to compute interest-rate volatility.

Volatility = 0.20 * ones (10,1);  
VolSpec = bdtvolspec(ValuationDate,EndDates, Volatility);

Use TimeSpec to specify the structure of the time layout for a BDT tree.

TimeSpec = bdttimespec(ValuationDate, EndDates, Compounding);
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Build the BDT tree.

BDTTree = bdttree(VolSpec, RateSpec, TimeSpec)

BDTTree = struct with fields:
      FinObj: 'BDTFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 1 2 3 4 5 6 7 8 9]
        dObs: [1x10 double]
        TFwd: {1x10 cell}
      CFlowT: {1x10 cell}
     FwdTree: {1x10 cell}

Define the swaption arguments.

ExerciseDates = 'jan-1-2012';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2015'; 
Spread = 0;
SwapReset = [1 1]; % 1st column represents receiving leg, 2nd column represents paying leg
Principal = 100;
OptSpec = 'call';
Strike=.062;
Basis= [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg

Price the swaption.

[Price, PriceTree] = swaptionbybdt(BDTTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)

Price = 2.0592

PriceTree = struct with fields:
    FinObj: 'BDTPriceTree'
      tObs: [0 1 2 3 4 5 6 7 8 9 10]
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     PTree: {1x11 cell}

Input Arguments
BDTTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bdttree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values
'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors. For more information, see “Definitions” on page 11-2072.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using
serial date numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates.
Each row is the schedule for one option. When using a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date
boundaries. For each instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between the
ValuationDate of the tree and the single listed ExerciseDate.
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Data Types: double | char | cell

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1
vector of serial date numbers or a date character vectors. The Settle date for every
swaption is set to the ValuationDate of the BDT tree. The swap argument Settle is
ignored. The underlying swap starts at the maturity of the swaption.
Data Types: double | char

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date
numbers or date character vectors.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] = swaptionbybdt(BDTTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',
5,'Principal',10000)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

(Optional) Option type, specified as the comma-separated pair consisting of
'AmericanOpt' and NINST-by-1 positive integer flags with values:
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• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair
consisting of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing
the reset frequency per year for each leg. If SwapReset is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree
for each instrument, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector or NINST-by-2 matrix representing the basis for each leg. If Basis is
NINST-by-2, the first column represents the receiving leg, while the second column
represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
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• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
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Definitions

Call Swaption
A call swaption or payer swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
bdttree | instswaption | swapbybdt

Topics
“Computing Instrument Prices” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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swaptionbybk
Price swaption from Black-Karasinski interest-rate tree

Syntax
[Price,PriceTree] = swaptionbybk(BKTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbybk( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbybk(BKTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity) prices swaption using a Black-Karasinski
tree.

[Price,PriceTree] = swaptionbybk( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Price a 4-Year Call and Put Swaption Using a BK Interest-Rate Tree

This example shows how to price a 4-year call and put swaption using a BK interest-rate
tree, assuming the interest rate is fixed at 7% annually.

Rates =0.07 * ones (10,1);
Compounding = 2; 
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009'; ...
'jul-1-2009'; 'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];  
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009'; ...
'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007'; 

% define the RateSpec
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RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,...
'Compounding', Compounding); 

% use BKVolSpec to compute the interest-rate volatility
Volatility = 0.10*ones(10,1);  
AlphaCurve = 0.05*ones(10,1);  
AlphaDates = EndDates;  
BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve); 

% use BKTimeSpec to specify the structure of the time layout for the BK interest-rate tree
BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);

% build the BK tree
BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec); 

% use the following arguments for a 1-year swap and 4-year swaption
ExerciseDates = 'jan-1-2011';
SwapSettlement = ExerciseDates;  
SwapMaturity   = 'jan-1-2012';  
Spread = 0;  
SwapReset = 2 ;   
Principal = 100;  
OptSpec = {'call' ;'put'};    
Strike= [ 0.07 ; 0.0725];    
Basis=1; 

% price the swaption
PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ...
'Principal', Principal)

PriceSwaption = 2×1

    0.3634
    0.4798
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Price a 4-Year Call and Put Swaption with Receiving and Paying Legs Using a BK
Interest-Rate Tree

This example shows how to price a 4-year call and put swaption with receiving and paying
legs using a BK interest-rate tree, assuming the interest rate is fixed at 7% annually. Build
a tree with the following data.

Rates =0.07 * ones (10,1);
Compounding = 2; 
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009'; ...
'jul-1-2009'; 'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];  
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009'; ...
'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];
ValuationDate = 'jan-1-2007';

Define the RateSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates', EndDates,...
'Compounding', Compounding)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: [10x1 double]
    ValuationDate: 733043
            Basis: 0
     EndMonthRule: 1

Use BKVolSpec to compute interest-rate volatility.

Volatility = 0.10*ones(10,1);  
AlphaCurve = 0.05*ones(10,1);  
AlphaDates = EndDates;  
BKVolSpec = bkvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

Use BKTimeSpec to specify the structure of the time layout for a BK tree.

BKTimeSpec = bktimespec(ValuationDate, EndDates, Compounding);
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Build the BK tree.

BKTree = bktree(BKVolSpec, RateSpec, BKTimeSpec);

Define the arguments for a 1-year swap and 4-year swaption.

ExerciseDates = 'jan-1-2011';
SwapSettlement = ExerciseDates;  
SwapMaturity   = 'jan-1-2012';  
Spread = 0;  
SwapReset = [2 2]; % 1st column represents swaption receiving leg, 2nd column represents swaption paying leg
Principal = 100;  
OptSpec = {'call' ;'put'};    
Strike= [ 0.07 ; 0.0725];    
Basis= [1 3]; % 1st column represents swaption receiving leg, 2nd column represents swaption paying leg

Price the swaption.

PriceSwaption = swaptionbybk(BKTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity, 'SwapReset', SwapReset, 'Basis', Basis, ...
'Principal', Principal)

PriceSwaption = 2×1

    0.3634
    0.4798

Input Arguments
BKTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using bktree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values
'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors. For more information, see “Definitions” on page 11-2080.
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Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using
serial date numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates.
Each row is the schedule for one option. When using a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date
boundaries. For each instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between the
ValuationDate of the tree and the single listed ExerciseDate.

Data Types: double | char | cell

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1
vector of serial date numbers or date character vectors. The Settle date for every
swaption is set to the ValuationDate of the BK tree. The swap argument Settle is
ignored. The underlying swap starts at the maturity of the swaption.
Data Types: double | char
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Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date
numbers or date character vectors.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] = swaptionbybk(BKTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',
5,'Principal',10000)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

(Optional) Option type, specified as the comma-separated pair consisting of
'AmericanOpt' and NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair
consisting of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing
the reset frequency per year for each leg. If SwapReset is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13
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Day-count basis representing the basis used when annualizing the input forward rate tree
for each instrument, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector or NINST-by-2 matrix representing the basis for each leg. If Basis is
NINST-by-2, the first column represents the receiving leg, while the second column
represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
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Data Types: struct

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.

Definitions

Call Swaption
A call swaption or payer swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
bktree | instswaption | swapbybk
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Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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swaptionbycir
Price swaption from Cox-Ingersoll-Ross interest-rate tree

Syntax
[Price,PriceTree] = swaptionbycir(CIRTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbycir( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbycir(CIRTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity) prices swaption with a Cox-Ingersoll-
Ross (CIR) tree using a CIR++ model with the Nawalka-Beliaeva (NB) approach.

[Price,PriceTree] = swaptionbycir( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a Swaption Using a CIR Interest-Rate Tree

Define a 3-year put swaption.

Rates =0.075 * ones (10,1);   
Compounding = 2;    
StartDates = ['Jan-1-2017';'Jul-1-2017';'Jan-1-2018';'Jul-1-2018';'Jan-1-2019';...
'Jul-1-2019';'Jan-1-2020'; 'Jul-1-2020';'Jan-1-2021';'Jul-1-2021'];    
EndDates =['Jul-1-2017';'Jan-1-2018';'Jul-1-2018';'Jan-1-2019';'Jul-1-2019';...
'Jan-1-2020';'Jul-1-2020';'Jan-1-2021';'Jul-1-2021';'Jan-1-2022'];      
ValuationDate = 'Jan-1-2017';      

Create a RateSpec using the intenvset function.

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, 'EndDates',EndDates,'Rates', Rates, 'Compounding', Compounding); 
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Create a CIR tree.

NumPeriods = length(EndDates); 
Alpha = 0.03; 
Theta = 0.02;  
Sigma = 0.1;    
Maturity = '01-jan-2023'; 
CIRTimeSpec = cirtimespec(ValuationDate, Maturity, NumPeriods); 
CIRVolSpec = cirvolspec(Sigma, Alpha, Theta); 

CIRT = cirtree(CIRVolSpec, RateSpec, CIRTimeSpec)

CIRT = struct with fields:
      FinObj: 'CIRFwdTree'
     VolSpec: [1x1 struct]
    TimeSpec: [1x1 struct]
    RateSpec: [1x1 struct]
        tObs: [0 0.6000 1.2000 1.8000 2.4000 3 3.6000 4.2000 4.8000 5.4000]
        dObs: [1x10 double]
     FwdTree: {1x10 cell}
     Connect: {1x9 cell}
       Probs: {1x9 cell}

Use the following arguments for a 1-year swap and a 3-year swaption.

ExerciseDates = 'Jan-1-2020';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'Jan-1-2022';
Spread = 0;
SwapReset = 2 ; 
Principal = 100;
OptSpec = 'put';  
Strike= 0.04;
Basis=1;

Price the swaption.

[Price,PriceTree] = swaptionbycir(CIRT,OptSpec,Strike,ExerciseDates,Spread,SwapSettlement,SwapMaturity,'SwapReset',SwapReset, ...
'Basis',Basis,'Principal',Principal)

Price = 3.1537

PriceTree = struct with fields:
     FinObj: 'CIRPriceTree'

 swaptionbycir

11-2083



      PTree: {1x11 cell}
       tObs: [0 0.6000 1.2000 1.8000 2.4000 3 3.6000 4.2000 4.8000 5.4000 6]
    Connect: {1x9 cell}
      Probs: {1x9 cell}

Input Arguments
CIRTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using cirtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values
'call' or 'put' | string array with values "call" or "put"

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors or string arrays. For more information, see “Definitions” on page 11-
2080.
Data Types: char | cell | string

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using
serial date numbers, date character vectors, string arrays, or datetime arrays depending
on the option type.
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• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates.
Each row is the schedule for one option. When using a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date
boundaries. For each instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between the
ValuationDate of the tree and the single listed ExerciseDate.

Data Types: double | char | cell | string | datetime

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Settlement date (representing the settle date for each swap), specified as a NINST-by-1
vector of serial date numbers, date character vectors, string arrays, or datetime arrays.
The Settle date for every swaption is set to the ValuationDate of the CIR tree. The
swap argument Settle is ignored. The underlying swap starts at the maturity of the
swaption.
Data Types: double | char | string | datetime

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors | string
array | datetime

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date
numbers, date character vectors, string arrays, or datetime arrays.
Data Types: double | char | cell | string | datetime

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 swaptionbycir

11-2085



You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] = swaptionbycir(CIRTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',
5,'Principal',10000)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

Option type, specified as the comma-separated pair consisting of 'AmericanOpt'and
NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair
consisting of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing
the reset frequency per year for each leg. If SwapReset is NINST-by-2, the first column
represents the receiving leg, and the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward-rate tree
for each instrument, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector or NINST-by-2 matrix representing the basis for each leg. If Basis is
NINST-by-2, the first column represents the receiving leg, while the second column
represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
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• PriceTree.tObs contains the observation times.
• PriceTree.Connect contains the connectivity vectors. Each element in the cell

array describes how nodes in that level connect to the next. For a given tree level,
there are NumNodes elements in the vector, and they contain the index of the node at
the next level that the middle branch connects to. Subtracting 1 from that value
indicates where the up-branch connects to, and adding 1 indicated where the down
branch connects to.

• PriceTree.Probs contains the probability arrays. Each element of the cell array
contains the up, middle, and down transition probabilities for each node of the level.

Definitions
Call Swaption
A call swaption or payer swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option receives the fixed rate and pays the floating rate.

References
[1] Cox, J., Ingersoll, J., and S. Ross. "A Theory of the Term Structure of Interest Rates."

Econometrica. Vol. 53, 1985.

[2] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer
Finance, 2006.

[3] Hirsa, A. Computational Methods in Finance. CRC Press, 2012.

[4] Nawalka, S., Soto, G., and N. Beliaeva. Dynamic Term Structure Modeling. Wiley,
2007.

[5] Nelson, D. and K. Ramaswamy. "Simple Binomial Processes as Diffusion
Approximations in Financial Models." The Review of Financial Studies. Vol 3.
1990, pp. 393–430.
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See Also
bondbycir | capbycir | cfbycir | fixedbycir | floatbycir | floorbycir |
instswaption | oasbycir | optbndbycir | optembndbycir | optemfloatbycir |
optfloatbycir | rangefloatbycir | swapbycir

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2018a
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swaptionbyblk
Price European swaption instrument using Black model

Syntax
Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates,
Maturity,Volatility)
Price = swaptionbyblk( ___ ,Name,Value)

Description
Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates,
Maturity,Volatility) prices swaptions using the Black option pricing model.

Price = swaptionbyblk( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a European Swaption Using the Black Model Where the Yield Curve is Flat
at 6%

Price a European swaption that gives the holder the right to enter in five years into a
three-year paying swap where a fixed-rate of 6.2% is paid and floating is received.
Assume that the yield curve is flat at 6% per annum with continuous compounding, the
volatility of the swap rate is 20%, the principal is $100, and payments are exchanged
semiannually.

Create the RateSpec.

Rate = 0.06;
Compounding  = -1;
ValuationDate = 'Jan-1-2010';
EndDates =   'Jan-1-2020'; 
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Basis = 1; 

RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rate, 'Compounding', Compounding, 'Basis', Basis);

Price the swaption using the Black model.

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2016';
Maturity = 'Jan-1-2019'; 
Reset = 2; 
Principal = 100;
Strike = 0.062;
Volatility = 0.2;
OptSpec = 'call';

Price= swaptionbyblk(RateSpec, OptSpec, Strike, Settle, ExerciseDates, Maturity, ...
Volatility, 'Reset', Reset, 'Principal', Principal, 'Basis', Basis)

Price = 2.0710

Price a European Swaption with Receiving and Paying Legs Using the Black
Model Where the Yield Curve is 6%

This example shows Price a European swaption with receiving and paying legs that gives
the holder the right to enter in five years into a three-year paying swap where a fixed-rate
of 6.2% is paid and floating is received. Assume that the yield curve is flat at 6% per
annum with continuous compounding, the volatility of the swap rate is 20%, the principal
is $100, and payments are exchanged semiannually.

Rate = 0.06;
Compounding  = -1;
ValuationDate = 'Jan-1-2010';
EndDates =   'Jan-1-2020'; 
Basis = 1;

Define the RateSpec.

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rate,'Compounding',Compounding,'Basis',Basis);
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Define the swaption arguments.

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2016';
Maturity = 'Jan-1-2019'; 
Reset = [2 4]; % 1st column represents receiving leg, 2nd column represents paying leg
Principal = 100;
Strike = 0.062;
Volatility = 0.2;
OptSpec = 'call';
Basis = [1 3]; % 1st column represents receiving leg, 2nd column represents paying leg

Price the swaption.

Price= swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates,Maturity,Volatility, ...
'Reset',Reset,'Principal',Principal,'Basis',Basis)

Price = 1.6494

Price a European Swaption Using the Black Model Where the Yield Curve Is
Incrementally Increasing

Price a European swaption that gives the holder the right to enter into a 5-year receiving
swap in a year, where a fixed rate of 3% is received and floating is paid. Assume that the
1-year, 2-year, 3-year, 4-year and 5- year zero rates are 3%, 3.4%, 3.7%, 3.9% and 4% with
continuous compounding. The swap rate volatility is 21%, the principal is $1000, and
payments are exchanged semiannually.

Create the RateSpec.

ValuationDate = 'Jan-1-2010';
EndDates = {'Jan-1-2011';'Jan-1-2012';'Jan-1-2013';'Jan-1-2014';'Jan-1-2015'};
Rates = [0.03; 0.034 ; 0.037; 0.039; 0.04;];
Compounding = -1;
Basis = 1; 

RateSpec = intenvset('ValuationDate', ValuationDate, 'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rates, 'Compounding', Compounding,'Basis', Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: -1
             Disc: [5x1 double]
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            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 734139
    ValuationDate: 734139
            Basis: 1
     EndMonthRule: 1

Price the swaption using the Black model.

Settle = 'Jan-1-2011';
ExerciseDates = 'Jan-1-2012'; 
Maturity = 'Jan-1-2017';
Strike = 0.03;
Volatility = 0.21;
Principal =1000;
Reset = 2; 
OptSpec = 'put';

Price = swaptionbyblk(RateSpec, OptSpec, Strike, Settle,  ExerciseDates, ...
Maturity, Volatility,'Basis', Basis, 'Reset', Reset,'Principal', Principal)

Price = 0.5771

Price a Swaption Using a Different Curve to Generate the Future Forward Rates

Define the OIS and Libor curves.

Settle = datenum('15-Mar-2013');
CurveDates = daysadd(Settle,360*[1/12 2/12 3/12 6/12 1 2 3 4 5 7 10],1);
OISRates = [.0018 .0019 .0021 .0023 .0031 .006  .011 .017 .021 .026 .03]';
LiborRates = [.0045 .0047 .005 .0055 .0075 .0109  .0162 .0216 .0262 .0309 .0348]';

Create an associated RateSpec for the OIS and Libor curves.

OISCurve = intenvset('Rates',OISRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);
LiborCurve = intenvset('Rates',LiborRates,'StartDate',Settle,'EndDates',CurveDates,'Compounding',2,'Basis',1);

Define the swaption instruments.

ExerciseDate = '15-Mar-2018';
Maturity = {'15-Mar-2020';'15-Mar-2023'};
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OptSpec = 'call';
Strike = 0.04;
BlackVol = 0.2;

Price the swaption instruments using the term structure OISCurve both for discounting
the cash flows and generating the future forward rates.

Price = swaptionbyblk(OISCurve, OptSpec, Strike, Settle, ExerciseDate, Maturity, BlackVol,'Reset',1)

Price = 2×1

    1.0956
    2.6944

Price the swaption instruments using the term structure LiborCurve to generate the
future forward rates. The term structure OISCurve is used for discounting the cash
flows.

PriceLC = swaptionbyblk(OISCurve, OptSpec, Strike, Settle, ExerciseDate, Maturity, BlackVol,'ProjectionCurve',LiborCurve,'Reset',1)

PriceLC = 2×1

    1.5346
    3.8142

Price a Swaption Using the Shifted Black Model

Create the RateSpec.

ValuationDate = 'Jan-1-2016';
EndDates = {'Jan-1-2017';'Jan-1-2018';'Jan-1-2019';'Jan-1-2020';'Jan-1-2021'};
Rates = [-0.02; 0.024 ; 0.047; 0.090; 0.12;]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
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      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Price the swaption with a negative strike using the Shifted Black model.

Settle = 'Jan-1-2016';
ExerciseDates = 'Jan-1-2017';
Maturity = 'Jan-1-2020';
Strike = -0.003; % Set -0.3 percent strike.
ShiftedBlackVolatility = 0.31;
Principal = 1000;
Reset = 1;
OptSpec = 'call';
Shift = 0.008; % Set 0.8 percent shift.

Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDates, ...
Maturity,ShiftedBlackVolatility,'Basis',Basis,'Reset',Reset,...
'Principal',Principal,'Shift',Shift)

Price = 12.8301

Price Swaptions Using the Shifted Black Model with a Vector of Shifts

Create the RateSpec.

ValuationDate = 'Jan-1-2016';
EndDates = {'Jan-1-2017';'Jan-1-2018';'Jan-1-2019';'Jan-1-2020';'Jan-1-2021'};
Rates = [-0.02; 0.024 ; 0.047; 0.090; 0.12;]/100;
Compounding = 1;
Basis = 1;

RateSpec = intenvset('ValuationDate',ValuationDate,'StartDates',ValuationDate, ...
'EndDates',EndDates,'Rates',Rates,'Compounding',Compounding,'Basis',Basis)
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RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 1
             Disc: [5x1 double]
            Rates: [5x1 double]
         EndTimes: [5x1 double]
       StartTimes: [5x1 double]
         EndDates: [5x1 double]
       StartDates: 736330
    ValuationDate: 736330
            Basis: 1
     EndMonthRule: 1

Price the swaptions with using the Shifted Black model.

Settle = 'Jan-1-2016';
ExerciseDates = 'Jan-1-2017';
Maturities = {'Jan-1-2018';'Jan-1-2019';'Jan-1-2020'};
Strikes = [-0.0034;-0.0032;-0.003];
ShiftedBlackVolatilities = [0.33;0.32;0.31]; % A vector of volatilities.
Principal = 1000;
Reset = 1;
OptSpec = 'call';
Shifts = [0.0085;0.0082;0.008]; % A vector of shifts.

Prices = swaptionbyblk(RateSpec,OptSpec,Strikes,Settle,ExerciseDates, ...
Maturities,ShiftedBlackVolatilities,'Basis',Basis,'Reset',Reset, ...
'Principal',Principal,'Shift',Shifts)

Prices = 3×1

    4.1117
    8.0577
   12.8301

Input Arguments
RateSpec — Interest-rate term structure
structure
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Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.

If the paying leg is different than the receiving leg, the RateSpec can be a NINST-by-2
input variable of RateSpecs, with the second input being the discount curve for the
paying leg. If only one curve is specified, then it is used to discount both legs.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values
'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors.

A 'call' swaption, or Payer swaption, allows the option buyer to enter into an interest-
rate swap in which the buyer of the option pays the fixed rate and receives the floating
rate.

A 'put' swaption, or Receiver swaption, allows the option buyer to enter into an interest-
rate swap in which the buyer of the option receives the fixed rate and pays the floating
rate.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swaption), specified as a NINST-
by-1 vector of serial date numbers or date character vectors. Settle must not be later
than ExerciseDates.

The Settle date input for swaptionbyblk is the valuation date on which the swaption
(an option to enter into a swap) is priced. The swaption buyer pays this price on this date
to hold the swaption.

 swaptionbyblk

11-2097



Data Types: double | char

ExerciseDates — Dates on which swaption expires and underlying swap starts
serial date number | date character vector | cell array of date character vectors

Dates, specified as serial date numbers or date character vectors, on which the swaption
expires and the underlying swap starts. The swaption holder can choose to enter into the
swap on this date if the situation is favorable.

For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates. Each
row is the schedule for one option. When using a European option, there is only one
ExerciseDate on the option expiry date.
Data Types: double | char | cell

Maturity — Maturity date for each forward swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each forward swap, specified as a NINST-by-1 vector of dates using
serial date numbers or date character vectors.
Data Types: double | char | cell

Volatility — Annual volatilities values
numeric

Annual volatilities values, specified as a NINST-by-1 vector of numeric values.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
swaptionbyblk(OISCurve,OptSpec,Strike,Settle,ExerciseDate,Maturity,B
lackVol,'Reset',1,'Shift',.5)

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13
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Day-count basis of the instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1 vector or NINST-by-2 matrix representing the basis for each
leg. If Basis is NINST-by-2, the first column represents the receiving leg, while the
second column represents the paying leg. Default is 0 (actual/actual).

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Reset — Reset frequency per year for underlying forward swap
1 (default) | numeric

Reset frequency per year for the underlying forward swap, specified as the comma-
separated pair consisting of 'Reset' and a NINST-by-1 vector or NINST-by-2 matrix
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representing the reset frequency per year for each leg. If Reset is NINST-by-2, the first
column represents the receiving leg, while the second column represents the paying leg.
Data Types: double

ProjectionCurve — Rate curve used in generating future forward rates
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash
flows and projecting future forward rates (default) | structure

The rate curve to be used in generating the future forward rates, specified as the comma-
separated pair consisting of 'ProjectionCurve' and a structure created using
intenvset. Use this optional input if the forward curve is different from the discount
curve.
Data Types: struct

Shift — Shift in decimals for shifted Black model
0 (no shift) (default) | positive decimal

Shift in decimals for the shifted Black model, specified as the comma-separated pair
consisting of 'Shift' and a scalar or NINST-by-1 vector of rate shifts in positive
decimals. Set this parameter to a positive rate shift in decimals to add a positive shift to
the forward swap rate and strike, which effectively sets a negative lower bound for the
forward swap rate and strike. For example, a Shift of 0.01 is equal to a 1% shift.
Data Types: double

Output Arguments
Price — Prices for swaptions at time 0
vector

Prices for the swaptions at time 0, returned as a NINST-by-1 vector of prices.

Definitions

Forward Swap
A forward swap is a swap that starts at a future date.
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Shifted Black
The Shifted Black model is essentially the same as the Black’s model, except that it
models the movements of (F + Shift) as the underlying asset, instead of F (which is the
forward swap rate in the case of swaptions).

This model allows negative rates, with a fixed negative lower bound defined by the
amount of shift; that is, the zero lower bound of Black’s model has been shifted.
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Where F is the forward value and K is the strike.
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Where F+Shift is the forward value and K+Shift is the strike for the shifted version.

See Also
blackvolbysabr | bondbyzero | capbyblk | cfbyzero | fixedbyzero |
floatbyzero | floorbyblk | intenvset | swaptionbynormal

Topics
“Calibrate the SABR Model” on page 2-36
“Price a Swaption Using the SABR Model” on page 2-42
“Price Swaptions with Negative Strikes Using the Shifted SABR Model” on page 2-27
“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced before R2006a

11 Functions — Alphabetical List

11-2102

https://www.mathworks.com/videos/how-to-price-interest-rate-options-with-negative-interest-rates-1491923238337.html


swaptionbyhjm
Price swaption from Heath-Jarrow-Morton interest-rate tree

Syntax
[Price,PriceTree] = swaptionbyhjm(HJMTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbyhjm( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbyhjm(HJMTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity) prices swaption using a Heath-Jarrow-
Morton tree.

[Price,PriceTree] = swaptionbyhjm( ___ ,Name,Value) adds optional name-
value pair arguments.

Examples

Price a 1-Year Call Swaption Using an HJM Interest-Rate Tree

This example shows how to price a 1-year call swaption using an HJM interest-rate tree.
Assume that interest rate is fixed at 5% annually between the valuation date of the tree
until its maturity. Build a tree with the following data.

Rates = [ 0.05;0.05;0.05;0.05];  
StartDates = 'jan-1-2007';  
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011'];
ValuationDate = StartDates;  
Compounding = 1;    

% define the RateSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
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EndDates, 'Compounding', Compounding);   

% use VolSpec to compute the interest-rate volatility
VolSpec=hjmvolspec('Constant',0.01);

% use TimeSpec to specify the structure of the time layout for the HJM interest-rate tree
TimeSpec = hjmtimespec(ValuationDate, EndDates, Compounding);

% build the HJM tree
HJMTree = hjmtree(VolSpec, RateSpec, TimeSpec); 

% use the following swaption arguments
ExerciseDates = '01-Jan-2008';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2010';
Spread = [0];  
SwapReset = 1;   
Basis  = 1;  
Principal = 100;  
OptSpec = 'call';    
Strike=0.05;   

% price the swaption

[Price, PriceTree] = swaptionbyhjm(HJMTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis, 'Principal', Principal)

Price = 0.9296

PriceTree = struct with fields:
    FinObj: 'HJMPriceTree'
      tObs: [5x1 double]
     PBush: {1x5 cell}

Price a 1-Year Call Swaption with Receiving and Paying Legs Using an HJM
Interest-Rate Tree

This example shows how to price a 1-year call swaption with receiving and paying legs
using an HJM interest-rate tree. Assume that interest rate is fixed at 5% annually between
the valuation date of the tree until its maturity. Build a tree with the following data.
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Rates = [ 0.05;0.05;0.05;0.05];  
StartDates = 'jan-1-2007';  
EndDates =['jan-1-2008';'jan-1-2009';'jan-1-2010';'jan-1-2011'];
ValuationDate = StartDates;  
Compounding = 1;

Define the RateSpec.

RateSpec = intenvset('Rates',Rates,'StartDates',StartDates,'EndDates',...
EndDates,'Compounding',Compounding);

Use VolSpec to compute the interest-rate volatility.

VolSpec=hjmvolspec('Constant',0.01);

Use TimeSpec to specify the structure of the time layout for the HJM interest-rate tree.

TimeSpec = hjmtimespec(ValuationDate,EndDates,Compounding);

Build the HJM tree.

HJMTree = hjmtree(VolSpec,RateSpec,TimeSpec);

Use the following swaption arguments

ExerciseDates = '01-Jan-2008';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2010';
Spread = [0];  
SwapReset = [1 1];  % 1st column represents receiving leg, 2nd column represents paying leg  
Basis  = [1 3];     % 1st column represents receiving leg, 2nd column represents paying leg 
Principal = 100;  
OptSpec = 'call';    
Strike=0.05;

Price the swaption.

[Price, PriceTree] = swaptionbyhjm(HJMTree,OptSpec,Strike,ExerciseDates, ...
Spread,SwapSettlement,SwapMaturity,'SwapReset',SwapReset, ...
'Basis',Basis,'Principal',Principal)

Price = 0.9296

PriceTree = struct with fields:
    FinObj: 'HJMPriceTree'
      tObs: [5x1 double]
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     PBush: {1x5 cell}

Input Arguments
HJMTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hjmtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values
'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors. For more information, see “Definitions” on page 11-2110.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using
serial date numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates.
Each row is the schedule for one option. When using a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date
boundaries. For each instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one non-NaN date is listed,
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or if ExerciseDates is NINST-by-1, the option can be exercised between the
ValuationDate of the tree and the single listed ExerciseDate.

Data Types: double | char | cell

Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1
vector of serial date numbers or date character vectors. The Settle date for every
swaption is set to the ValuationDate of the HJM tree. The swap argument Settle is
ignored. The underlying swap starts at the maturity of the swaption.
Data Types: double | char

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date
numbers or date character vectors.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] = swaptionbyhjm(HJMTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',
5,'Principal',10000)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1
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(Optional) Option type, specified as the comma-separated pair consisting of
'AmericanOpt' and NINST-by-1 positive integer flags with values:

• 0 — European
• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair
consisting of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing
the reset frequency per year for each leg. If SwapReset is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree
for each instrument, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector or NINST-by-2 matrix representing the basis for each leg. If Basis is
NINST-by-2, the first column represents the receiving leg, while the second column
represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
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Definitions

Call Swaption
A call swaption or payer swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
hjmtree | instswaption | swapbyhjm

Topics
“Computing Instrument Prices” on page 2-99
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a

11 Functions — Alphabetical List

11-2110



swaptionbyhw
Price swaption from Hull-White interest-rate tree

Syntax
[Price,PriceTree] = swaptionbyhw(HWTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity)
[Price,PriceTree] = swaptionbyhw( ___ ,Name,Value)

Description
[Price,PriceTree] = swaptionbyhw(HWTree,OptSpec,Strike,
ExerciseDates,Spread,Settle,Maturity) prices swaption using a Hull-White tree.

[Price,PriceTree] = swaptionbyhw( ___ ,Name,Value) adds optional name-value
pair arguments.

Examples

Price a 3-Year Put Swaption Using an HW Interest-Rate Tree

This example shows how to price a 3-year put swaption using an HW interest-rate tree
with the following data.

Rates =0.075 * ones (10,1);   
Compounding = 2;    
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';...
'jul-1-2009';'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];    
EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009';...
'jan-1-2010';'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];      
ValuationDate = 'jan-1-2007';      

% define the RatesSpec
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
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EndDates, 'Compounding', Compounding);  

% use HWVolSpec to compute the interest-rate volatility
Volatility = 0.05*ones(10,1);
AlphaCurve = 0.01*ones(10,1);
AlphaDates = EndDates;
HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

% use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tree
HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

% build the HW tree
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec); 

% use the following arguments for a 1-year swap and 3-year swaption
ExerciseDates = 'jan-1-2010';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2012';
Spread = 0;
SwapReset = 2 ; 
Principal = 100;
OptSpec = 'put';  
Strike= 0.04;
Basis=1;

% price the swaption
PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis,'Principal', Principal)

PriceSwaption = 2.9201

Price a 3-Year Put Swaption with Receiving and Paying Legs Using an HW
Interest-Rate Tree

This example shows how to price a 3-year put swaption with receiving and paying legs
using an HW interest-rate tree with the following data.

Rates =0.075 * ones (10,1);   
Compounding = 2;    
StartDates = ['jan-1-2007';'jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';...
'jul-1-2009';'jan-1-2010'; 'jul-1-2010';'jan-1-2011';'jul-1-2011'];    
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EndDates =['jul-1-2007';'jan-1-2008';'jul-1-2008';'jan-1-2009';'jul-1-2009';...
'jan-1-2010';'jul-1-2010';'jan-1-2011';'jul-1-2011';'jan-1-2012'];      
ValuationDate = 'jan-1-2007';

Define the RatesSpec.

RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',...
EndDates, 'Compounding', Compounding);

Use HWVolSpec to compute the interest-rate volatility.

Volatility = 0.05*ones(10,1);
AlphaCurve = 0.01*ones(10,1);
AlphaDates = EndDates;
HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);

Use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tree.

HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);

Build the HW tree.

HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);

Use the following arguments for a 1-year swap and 3-year swaption

ExerciseDates = 'jan-1-2010';
SwapSettlement = ExerciseDates;
SwapMaturity   = 'jan-1-2012';
Spread = 0;
SwapReset = [2 2]; % 1st column represents receiving leg, 2nd column represents paying leg 
Principal = 100;
OptSpec = 'put';  
Strike= 0.04;
Basis= [1 3];    % 1st column represents receiving leg, 2nd column represents paying leg

Price the swaption.

PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ...
Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ...
'Basis', Basis,'Principal', Principal)

PriceSwaption = 2.9201
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Input Arguments
HWTree — Interest-rate tree structure
structure

Interest-rate tree structure, specified by using hwtree.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values
'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors. For more information, see “Definitions” on page 11-2118.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double

ExerciseDates — Exercise dates for swaption
serial date number | date character vector | cell array of date character vectors

Exercise dates for the swaption, specified as a NINST-by-1 vector or NINST-by-2 using
serial date numbers or date character vectors, depending on the option type.

• For a European option, ExerciseDates are a NINST-by-1 vector of exercise dates.
Each row is the schedule for one option. When using a European option, there is only
one ExerciseDate on the option expiry date.

• For an American option, ExerciseDates are a NINST-by-2 vector of exercise date
boundaries. For each instrument, the option can be exercised on any coupon date
between or including the pair of dates on that row. If only one non-NaN date is listed,
or if ExerciseDates is NINST-by-1, the option can be exercised between the
ValuationDate of the tree and the single listed ExerciseDate.

Data Types: double | char | cell
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Spread — Number of basis points over reference rate
numeric

Number of basis points over the reference rate, specified as a NINST-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors

Settlement date (representing the settle date for each swap), specified as a NINST-by-1
vector of serial date numbers or date character vectors. The Settle date for every
swaption is set to the ValuationDate of the HW tree. The swap argument Settle is
ignored. The underlying swap starts at the maturity of the swaption.
Data Types: double | char

Maturity — Maturity date for swap
serial date number | date character vector | cell array of date character vectors

Maturity date for each swap, specified as a NINST-by-1 vector of dates using serial date
numbers or date character vectors.
Data Types: double | char | cell

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: [Price,PriceTree] = swaptionbyhw(HWTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',
5,'Principal',10000)

AmericanOpt — Option type
0 (European) (default) | integer with values 0 or 1

(Optional) Option type, specified as the comma-separated pair consisting of
'AmericanOpt' and NINST-by-1 positive integer flags with values:

• 0 — European
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• 1 — American

Data Types: double

SwapReset — Reset frequency per year for underlying swap
1 (default) | numeric

Reset frequency per year for the underlying swap, specified as the comma-separated pair
consisting of 'SwapReset' and a NINST-by-1 vector or NINST-by-2 matrix representing
the reset frequency per year for each leg. If SwapReset is NINST-by-2, the first column
represents the receiving leg, while the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis representing the basis used when annualizing the input forward rate tree
for each instrument, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector or NINST-by-2 matrix representing the basis for each leg. If Basis is
NINST-by-2, the first column represents the receiving leg, while the second column
represents the paying leg.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252
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For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

Options — Derivatives pricing options structure
structure

Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct

Output Arguments
Price — Expected prices of swaptions at time 0
vector

Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, returned as a MATLAB structure of trees containing
vectors of swaption instrument prices and a vector of observation times for each node.
Within PriceTree:

• PriceTree.PTree contains the clean prices.
• PriceTree.tObs contains the observation times.
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Definitions

Call Swaption
A call swaption or payer swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate
swap in which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
hwtree | instswaption | swapbyhw

Topics
“Pricing Using Interest-Rate Tree Models” on page 2-99
“Calibrating Hull-White Model Using Market Data” on page 2-111
“Pricing Options Structure” on page B-2
“Understanding Interest-Rate Tree Models” on page 2-79
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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swaptionbylg2f
Price European swaption using Linear Gaussian two-factor model

Syntax
Price = swaptionbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,
ExerciseDate,Maturity)
Price = swaptionbylg2f( ___ ,Name,Value)

Description
Price = swaptionbylg2f(ZeroCurve,a,b,sigma,eta,rho,Strike,
ExerciseDate,Maturity) returns the European swaption price for a two-factor
additive Gaussian interest-rate model.

Price = swaptionbylg2f( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a European Swaption Using a Linear Gaussian Two-Factor Model

Define the ZeroCurve, a, b, sigma, eta, and rho parameters to compute the price of the
swaption.

Settle = datenum('15-Dec-2007');
 
ZeroTimes = [3/12 6/12 1 5 7 10 20 30]';
ZeroRates = [0.033 0.034 0.035 0.040 0.042 0.044 0.048 0.0475]';
CurveDates = daysadd(Settle,360*ZeroTimes,1);
 
irdc = IRDataCurve('Zero',Settle,CurveDates,ZeroRates);
 
a = .07;
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b = .5;
sigma = .01;
eta = .006;
rho = -.7;
 
Reset = 1;
ExerciseDate = daysadd(Settle,360*5,1);
Maturity = daysadd(ExerciseDate,360*[3;4],1);
Strike = .05;
  
Price = swaptionbylg2f(irdc,a,b,sigma,eta,rho,Strike,ExerciseDate,Maturity,'Reset',Reset)

Price = 2×1

    1.1870
    1.5633

Input Arguments
ZeroCurve — Zero-curve for Linear Gaussian two-factor model
structure

Zero-curve for the Linear Gaussian two-factor model, specified using IRDataCurve or
RateSpec.
Data Types: struct

a — Mean reversion for first factor for Linear Gaussian two-factor model
scalar

Mean reversion for first factor for the Linear Gaussian two-factor model, specified as a
scalar.
Data Types: single | double

b — Mean reversion for second factor for Linear Gaussian two-factor model
scalar

Mean reversion for second factor for the Linear Gaussian two-factor model, specified as a
scalar.
Data Types: single | double
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sigma — Volatility for first factor for Linear Gaussian two-factor model
scalar

Volatility for first factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

eta — Volatility for second factor for Linear Gaussian two-factor model
scalar

Volatility for second factor for the Linear Gaussian two-factor model, specified as a scalar.
Data Types: single | double

rho — Scalar correlation of the factors
scalar

Scalar correlation of the factors, specified as a scalar.
Data Types: single | double

Strike — Swaption strike price
nonnegative integer | vector of nonnegative integers

Swaption strike price, specified as a nonnegative integer using a NumSwaptions-by-1
vector.
Data Types: single | double

ExerciseDate — Swaption exercise dates
vector of serial date numbers | character vector of dates

Swaption exercise dates, specified as a NumSwaptions-by-1 vector of serial date numbers
or date character vectors.
Data Types: single | double | char | cell

Maturity — Underlying swap maturity date
vector of serial date numbers | character vector of dates

Underlying swap maturity date, specified using a NumSwaptions-by-1 vector of serial
date numbers or date character vectors.
Data Types: single | double | char | cell
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Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
swaptionbylg2f(irdc,a,b,sigma,eta,rho,Strike,ExerciseDate,Maturity,'
Reset',1,'Notional',100,'OptSpec','call')

Reset — Frequency of swaption payments per year
2 (default) | positive integer from the set[1,2,3,4,6,12] | vector of positive integers
from the set [1,2,3,4,6,12]

Frequency of swaption payments per year, specified as the comma-separated pair
consisting of 'Reset' and positive integers for the values 1,2,4,6,12 in a
NumSwaptions-by-1 vector.
Data Types: single | double

Notional — Notional value of swaption
100 (default) | nonnegative integer | vector of nonnegative integers

Notional value of swaption, specified as the comma-separated pair consisting of
'Notional' and a nonnegative integer using a NumSwaptions-by-1 vector of notional
amounts.
Data Types: single | double

OptSpec — Option specification for the swaption
'call' (default) | character vector with value of 'call' or 'put' | cell array of
character vectors with values of 'call' or 'put'

Option specification for the swaption, specified as the comma-separated pair consisting of
'OptSpec' and a character vector or a NumSwaptions-by-1 cell array of character
vectors with a value of 'call' or 'put'.

A 'call' swaption or Payer swaption allows the option buyer to enter into an interest-
rate swap in which the buyer of the option pays the fixed rate and receives the floating
rate.
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A 'put' swaption or Receiver swaption allows the option buyer to enter into an interest-
rate swap in which the buyer of the option receives the fixed rate and pays the floating
rate.
Data Types: char | cell

Output Arguments
Price — Swaption price
scalar | vector

Swaption price, returned as a scalar or an NumSwaptions-by-1 vector.

Algorithms
The following defines the swaption price for a two-factor additive Gaussian interest-rate
model, given the ZeroCurve, a, b, sigma, eta, and rho parameters:

r t x t y t t( ) ( ) ( ) ( )= + +f

dx t ax t dt dW t x( ) ( ) ( ), ( )= - + =s 1 0 0  

dy t by t dt dW t y( ) ( ) ( ), ( )= - + =h 2 0 0  

where dW t dW t dt1 2( ) ( ) = r  is a two-dimensional Brownian motion with correlation ρ and ϕ
is a function chosen to match the initial zero curve.

References
[1] Brigo, D. and F. Mercurio. Interest Rate Models - Theory and Practice. Springer

Finance, 2006.

See Also
LinearGaussian2F | capbylg2f | floorbylg2f
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Topics
“Price Swaptions with Interest-Rate Models Using Simulation” on page 2-123
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2013a
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swaptionbynormal
Price swaptions using Normal or Bachelier option pricing model

Syntax
Price = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,
ExerciseDates,Maturity,Volatility)
Price = swaptionbynormal( ___ ,Name,Value)

Description
Price = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,
ExerciseDates,Maturity,Volatility) prices swaptions using the Normal or
Bachelier option pricing model.

Price = swaptionbynormal( ___ ,Name,Value) adds optional name-value pair
arguments.

Examples

Price a Swaption Using the Normal Model

Define the zero curve, and create a RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
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            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the swaption.

ExerciseDate = datenum('20-Jan-2021');
Maturity = datenum('20-Jan-2026');
OptSpec = 'call';
LegReset = [1 1];

Compute the par swap rate.

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,Maturity,'LegReset',LegReset)

ParSwapRate = 0.0216

Strike = ParSwapRate;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price with Black volatility.

Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,BlackVol)

Price = 5.9756

Price with Normal volatility.

Price_Normal = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,NormalVol)

Price_Normal = 5.5537

Price a Swaption with a Receiving and Paying Leg Using the Normal Model

Create a RateSpec.
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Rate = 0.06;
Compounding  = -1;
ValuationDate = 'Jan-1-2010';
EndDates =   'Jan-1-2020'; 
Basis = 1; 
RateSpec = intenvset('ValuationDate', ValuationDate,'StartDates', ValuationDate, ...
'EndDates', EndDates, 'Rates', Rate, 'Compounding', Compounding, 'Basis', Basis);

Define the swaption.

ExerciseDate = datenum('20-Jan-2021');
Maturity = datenum('20-Jan-2026');
Settle = 'Jan-1-2010';
OptSpec = 'call';
Strike = .09;
NormalVol = .03;
Reset = [1 4];  % 1st column represents receiving leg, 2nd column represents paying leg
Basis = [1 7];  % 1st column represents receiving leg, 2nd column represents paying leg

Price with Normal volatility.

Price_Normal = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,NormalVol,'Reset',Reset,'Basis',Basis)

Price_Normal = 5.9084

Price a Swaption Using swaptionbynormal and Compare to swaptionbyblk

Define the RateSpec.

Settle = datenum('20-Jan-2016');
ZeroTimes = [.5 1 2 3 4 5 7 10 20 30]';
ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]';
ZeroDates = datemnth(Settle,12*ZeroTimes);
RateSpec = intenvset('StartDate',Settle,'EndDates',ZeroDates,'Rates',ZeroRates)

RateSpec = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [10x1 double]
            Rates: [10x1 double]
         EndTimes: [10x1 double]
       StartTimes: [10x1 double]
         EndDates: [10x1 double]
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       StartDates: 736349
    ValuationDate: 736349
            Basis: 0
     EndMonthRule: 1

Define the swaption instrument and price with swaptionbyblk.

ExerciseDate = datenum('20-Jan-2021');
Maturity = datenum('20-Jan-2026');
OptSpec = 'call';

[~,ParSwapRate] = swapbyzero(RateSpec,[NaN 0],Settle,Maturity,'StartDate',ExerciseDate)

ParSwapRate = 0.0326

Strike = ParSwapRate;
BlackVol = .3;
NormalVol = BlackVol*ParSwapRate;

Price = swaptionbyblk(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,BlackVol)

Price = 3.6908

Price the swaption instrument using swaptionbynormal.

Price_Normal = swaptionbynormal(RateSpec,OptSpec,Strike,Settle,ExerciseDate,Maturity,NormalVol)

Price_Normal = 3.7602

Price the swaption instrument using swaptionbynormal for a negative strike.

 Price_Normal = swaptionbynormal(RateSpec,OptSpec,-.005,Settle,ExerciseDate,Maturity,NormalVol)

Price_Normal = 16.3674

Input Arguments
RateSpec — Interest-rate term structure
structure
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Interest-rate term structure (annualized and continuously compounded), specified by the
RateSpec obtained from intenvset. For information on the interest-rate specification,
see intenvset.

If the discount curve for the paying leg is different than the receiving leg, RateSpec can
be a NINST-by-2 input variable of RateSpecs, with the second input being the discount
curve for the paying leg. If only one curve is specified, then it is used to discount both
legs.
Data Types: struct

OptSpec — Definition of option
character vector with values 'call' or 'put' | cell array of character vector with values
'call' or 'put'

Definition of the option as 'call' or 'put', specified as a NINST-by-1 cell array of
character vectors.

A 'call' swaption, or Payer swaption, allows the option buyer to enter into an interest-
rate swap in which the buyer of the option pays the fixed rate and receives the floating
rate.

A 'put' swaption, or Receiver swaption, allows the option buyer to enter into an interest-
rate swap in which the buyer of the option receives the fixed rate and pays the floating
rate.
Data Types: char | cell

Strike — Strike swap rate values
decimal

Strike swap rate values, specified as a NINST-by-1 vector of decimal values.
Data Types: double

Settle — Settlement date
serial date number | date character vector | cell array of date character vectors | datetime
object | string object

Settlement date (representing the settle date for each swaption), specified as a NINST-
by-1 vector of serial date numbers, or cell array of date character vectors, datetime
objects, or string objects. Settle must not be later than ExerciseDates.
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The Settle date input for swaptionbynormal is the valuation date on which the
swaption (an option to enter into a swap) is priced. The swaption buyer pays this price on
this date to hold the swaption.
Data Types: double | char | cell | datetime | string

ExerciseDates — Dates on which swaption expires and underlying swap starts
serial date number | date character vector | cell array of date character vectors | datetime
object

Dates on which the swaption expires and the underlying swap starts, specified as a
NINST-by-1 vector of serial date numbers, or cell array of date character vectors,
datetime objects, or string objects. There is only one ExerciseDate on the option expiry
date. This is also the StartDate of the underlying forward swap.
Data Types: double | char | cell | datetime | string

Maturity — Maturity date for each forward swap
serial date number | date character vector | cell array of date character vectors | datetime
object

Maturity date for each forward swap, specified as a NINST-by-1 vector of dates using
serial date numbers, cell array of date character vectors, datetime objects, or string
objects.
Data Types: double | char | cell | datetime | string

Volatility — Volatilities values
numeric

Volatilities values (for normal volatility), specified as a NINST-by-1 vector of numeric
values.

For more information on the Normal model, see “Work with Negative Interest Rates” on
page 2-22.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
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You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: Price =
swaptionbynormal(OISCurve,OptSpec,Strike,Settle,ExerciseDate,Maturit
y,NormalVol,'Reset',4)

Reset — Reset frequency per year for underlying forward swap
1 (default) | numeric

Reset frequency per year for the underlying forward swap, specified as the comma-
separated pair consisting of 'Reset' and a NINST-by-1 vector or NINST-by-2 matrix
representing the reset frequency per year for each leg. If Reset is NINST-by-2, the first
column represents the receiving leg, while the second column represents the paying leg.
Data Types: double

Basis — Day-count basis of instrument
0 (actual/actual) (default) | integer from 0 to 13

Day-count basis of the instrument representing the basis used when annualizing the input
term structure, specified as the comma-separated pair consisting of 'Basis' and a
NINST-by-1 vector or NINST-by-2 matrix representing the basis for each leg. If Basis is
NINST-by-2, the first column represents the receiving leg, while the second column
represents the paying leg.

Values are:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
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• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

Principal — Notional principal amount
100 (default) | numeric

Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a NINST-by-1 vector.
Data Types: double

ProjectionCurve — Rate curve used in projecting future cash flows
if ProjectionCurve is not specified, then RateSpec is used both for discounting cash
flows and projecting future cash flows (default) | structure

The rate curve to be used in projecting the future cash flows, specified as the comma-
separated pair consisting of 'ProjectionCurve' and a rate curve structure. This
structure must be created using intenvset. Use this optional input if the forward curve
is different from the discount curve.
Data Types: struct

Output Arguments
Price — Prices for swaptions at time 0
vector

Prices for the swaptions at time 0, returned as a NINST-by-1 vector of prices.
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Definitions

Call Swaption
A Call swaption or Payer swaption allows the option buyer to enter into an interest rate
swap in which the buyer of the option pays the fixed rate and receives the floating rate.

Put Swaption
A Put swaption or Receiver swaption allows the option buyer to enter into an interest rate
swap in which the buyer of the option receives the fixed rate and pays the floating rate.

See Also
capbynormal | floorbynormal | intenvset | swaptionbyblk

Topics
“Work with Negative Interest Rates” on page 2-22
“Supported Interest-Rate Instruments” on page 2-2

External Websites
How to Price Interest Rate Options with Negative Interest Rates (3 min 05 sec)

Introduced in R2017a
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time2date
Dates from time and frequency

Syntax
Dates = time2date(Settle,Times,Compounding,Basis,EndMonthRule)

Arguments
Settle Settlement date. A vector of serial date numbers or date

character vectors.
Times Vector of times corresponding to the compounding value. Times

must be equal to or greater than 0.
Compounding (Optional) Scalar value representing the rate at which the input

zero rates were compounded when annualized. Default = 2. This
argument determines the formula for the discount factors:

Compounding = 1, 2, 3, 4, 6, 12 = F

Disc = (1 + Z/F)^(-T), where F is the compounding
frequency, Z is the zero rate, and T is the time in periodic units;
for example, T = F is 1 year.

Compounding = 365

Disc = (1 + Z/F)^(-T), where F is the number of days in
the basis year and T is a number of days elapsed computed by
basis.

Compounding = -1

Disc = exp(-T*Z), where T is time in years.
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Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only

when Maturity is an end-of-month date for a month having 30
or fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the month. 1
= set rule on (default), meaning that a bond's coupon payment
date is always the last actual day of the month.

Description
Dates = time2date(Settle,Times,Compounding,Basis,EndMonthRule)
computes dates corresponding to compounded rate quotes between Settle and time
factors.

Note To obtain accurate results from this function, the Basis and Dates arguments
must be consistent. If the Dates argument contains months that have 31 days, Basis
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must be one of the values that allow months to contain more than 30 days; for example,
Basis = 0, 3, or 7.

The time2date function is the inverse of date2time.

Examples
Show that date2time and time2date are the inverse of each other. First compute the
time factors using date2time.
Settle = '1-Sep-2002';
Dates = datenum(['31-Aug-2005'; '28-Feb-2006'; '15-Jun-2006'; 
                 '31-Dec-2006']);
Compounding = 2;
Basis = 0;
EndMonthRule = 1;
Times = date2time(Settle, Dates, Compounding, Basis,... 
                  EndMonthRule)

Times =

    5.9945
    6.9945
    7.5738
    8.6576

Now use the calculated Times in time2date and compare the calculated dates with the
original set.
Dates_calc = time2date(Settle, Times, Compounding, Basis,... 
                  EndMonthRule)

Dates_calc =

      732555
      732736
      732843
      733042

datestr(Dates_calc)

ans =

31-Aug-2005
28-Feb-2006
15-Jun-2006
31-Dec-2006
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See Also
cfamounts | cftimes | date2time | disc2rate | rate2disc

Topics
“Modeling the Interest-Rate Term Structure” on page 2-67
“Interest-Rate Term Conversions” on page 2-62
“Interest Rates Versus Discount Factors” on page 2-55
“Understanding the Interest-Rate Term Structure” on page 2-55

Introduced before R2006a
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treepath
Entries from node of recombining binomial tree

Syntax
Values = treepath(Tree,BranchList)

Arguments
Tree Recombining binomial tree.
BranchList Number of paths (NUMPATHS) by path length (PATHLENGTH)

matrix containing the sequence of branchings.

Description
Values = treepath(Tree,BranchList) extracts entries of a node of a recombining
binomial tree. The node path is described by the sequence of branchings taken, starting
at the root. The top branch is number one, the second-to-top is two, and so on. Set the
branch sequence to zero to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved
entries of a recombining tree.

Examples
Create a BDT tree by loading the example file.

load deriv.mat; 

Then

FwdRates = treepath(BDTTree.FwdTree, [1 2 1]) 
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returns the rates at the tree nodes located by taking the up branch, then the down
branch, and finally the up branch again.

FwdRates = 

    1.1000
    1.0979
    1.1377
    1.1183 

You can visualize this with the treeviewer function.

treeviewer(BDTTree)

See Also
mktree | treeshape

Topics
“Graphical Representation of Trees” on page 2-158
“Overview of Interest-Rate Tree Models” on page 2-50
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Introduced before R2006a
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treeshape
Shape of recombining binomial tree

Syntax
[NumLevels,NumPos,IsPriceTree] = treeshape(Tree)

Arguments
Tree Recombining binomial tree.

Description
[NumLevels,NumPos,IsPriceTree] = treeshape(Tree) returns information on a
recombining binomial tree's shape.

NumLevels is the number of time levels of the tree.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in each
level.

IsPriceTree is a Boolean determining if a final horizontal branch is present in the tree.

Examples
Create a BDT tree by loading the example file.

load deriv.mat; 

With treeviewer you can see the general shape of the BDT interest-rate tree.

treeviewer(BDTTree)
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With this tree
[NumLevels, NumPos, IsPriceTree] = treeshape(BDTTree.FwdTree) 

returns

NumLevels  =   
     4

NumPos     =   
     1     1     1     1

IsPriceTree =
     0

See Also
mktree | treepath

Topics
“Graphical Representation of Trees” on page 2-158
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“Overview of Interest-Rate Tree Models” on page 2-50

Introduced before R2006a
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treeviewer
Tree information

Syntax
treeviewer(Tree)
treeviewer(PriceTree,InstSet)
treeviewer(CFTree,InstSet)

Description
treeviewer(Tree) displays an interest rate tree, stock price tree, or money-market
tree.

treeviewer(PriceTree,InstSet)displays a tree of instrument prices.

If you provide the name of an instrument set (InstSet) and you have named the
instruments using the field Name, the treeviewer display identifies the instrument being
displayed with its name. (See Example 3 on page 11-2150 for a description.) If you do not
provide the optional InstSet input argument, the instruments are identified by their
sequence number in the instrument set. (See Example 6 on page 11-2154 for a
description.)

treeviewer(CFTree,InstSet) displays a cash flow tree that has been created with
swapbybdt or swapbyhjm. If you provide the name of an instrument set (InstSet)
containing cash flow names, the treeviewer display identifies the instrument being
displayed with its name. (See Example 3 on page 11-2150 for a description.) If the
optional InstSet argument is not present, the instruments are identified by their
sequence number in the instrument set. See Example 6 on page 11-2154 for a
description.)
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Examples

Display an HJM Interest-Rate Tree
load deriv.mat
treeviewer(HJMTree)

The treeviewer function displays the structure of an HJM tree in the left pane. The tree
visualization in the right pane is blank.

To visualize the actual interest-rate tree, go to the Tree Visualization pane and
clickPath(the default) and Diagram. Now, select the first path by clicking the last node
(t = 3) of the upper branch.
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The entire upper path is highlighted in red.

To complete the process, select a second path by clicking the last node (t = 3) of
another branch. The second path is highlighted in purple. The final display looks like this.
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Alternative Forms of Display
The Tree Visualization pane allows you to select alternative ways to display tree data.
For example, if you select Path and Table as your visualization choices, the final display
above instead appears in tabular form.
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To see a plot of interest rates along the chosen branches, click Path and Plot in the Tree
Visualization pane.
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With Plot selected, rising interest rates are shown on the upper branch and declining
interest rates on the lower.

Finally, if you clicked Node and Children under Tree Visualization, you restrict the
data displayed to just the selected parent node and its children.
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With Node and Children selected, the choices under Visualization are unavailable.

Display a BDT Interest-Rate Tree
load deriv.mat
treeviewer(BDTTree)

The treeviewer function displays the structure of a BDT tree in the left pane. The tree
visualization in the right pane is blank.
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To visualize the actual interest-rate tree, go to the Tree Visualization pane and click
Path (the default) and Diagram. Now, select the first path by clicking the first node of
the up branch (t = 1). Continue by clicking the down branch at the next node (t = 2).
The two figures below show the treeviewer path diagrams for these selections.

Continue clicking all nodes in succession until you reach the end of the branch. The entire
path you have selected is highlighted in red.
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Select a second path by clicking the first node of the lower branch (t = 1). Continue
clicking lower nodes as you did on the first branch. The second branch is highlighted in
purple. The final display looks like this.

Display an HJM Price Tree for Named Instruments
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree, HJMInstSet)
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Display a BDT Price Tree for Named Instruments
load deriv.mat
[Price, PriceTree] = bdtprice(BDTTree, BDTInstSet);
treeviewer(PriceTree, BDTInstSet)
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Display an HJM Price Tree with Renamed Instruments
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
Names = {'Bond1', 'Bond2', 'Option', 'Fixed','Float', 'Cap',... 
'Floor', 'Swap'};
treeviewer(PriceTree, Names)
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Display an HJM Price Tree Using Default Instrument Names
(Numbers)
load deriv.mat
[Price, PriceTree] = hjmprice(HJMTree, HJMInstSet);
treeviewer(PriceTree)
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Input Arguments
Tree — Interest-rate tree, stock price tree, or money-market tree
interest-rate tree structure | stock price tree structure | money-market tree structure

Interest-rate tree, stock price tree, or money-market tree, specified using the associated
tree function.

Interest-rate trees:

• Black-Derman-Toy (BDTTree) obtained from bdttree
• Black-Karasinski (BKTree) obtained from bktree
• Heath-Jarrow-Morton (HJMTree) obtained from hjmtree
• Hull-White (HWTree) obtained from hwtree
• Cox-Ingersoll-Ross (CIRTree) obtained from cirtree

Money market trees:
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• Black-Derman-Toy (BDTMMktTree) obtained from mmktbybdt for a money-market tree
from a BDT interest-rate tree.

• Heath-Jarrow-Morton (HJMMMktTree) obtained from mmktbyhjm for a money-market
tree from an HJM interest-rate tree.

Note Money market trees cannot be created from BK or HW interest-rate trees.

Stock price trees:

• Cox-Ross-Rubinstein (CRRTree) obtained from crrtree
• Implied Trinomial tree (ITTTree) obtained from itttree
• Standard Trinomial tree (STTTree) obtained from stttree
• Leisen-Reimer stock tree (LRTree) obtained from lrtree
• Equal probabilities (EQPTree) obtained from eqptree

Cash flow trees:

• Black-Derman-Toy (BDTCFTree) obtained as output from the swap function
swapbybdt

• Heath-Jarrow-Morton (HJMCFTree) obtained as output from the swap function
swapbyhjm

Note For the function swapbybdt, which uses a recombining binomial tree, this
structure contains only NaNs because cash flows cannot be accurately calculated at
every tree node for floating-rate notes.

Data Types: struct

PriceTree — Tree structure of instrument prices
structure

Tree structure of instrument prices, specified as:

• Black-Derman-Toy (BDTPriceTree) obtained from the portfolio function bdtprice or
the individual functions, such as bondbybdt, capbybdt, and so on.

• Black-Karasinski (BKPriceTree) obtained from the portfolio function bkprice or the
individual functions, such as bondbybk, capbybk, and so on.
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• Cox-Ingersoll-Ross (CIRPriceTree) obtained from the portfolio function cirprice or
the individual functions, such as bondbycir, capbycir, and so on.

• Heath-Jarrow-Morton (HJMPriceTree) obtained from the portfolio function hjmprice
or the individual functions, such as bondbyhjm, capbyhjm, and so on.

• Hull-White (HWPriceTree) obtained from the portfolio function hwprice or the
individual functions, such as bondbyhw, capbyhw, and so on.

• Leisen-Reimer (LRPriceTree) obtained from the individual function optstockbylr.
• Cox-Ross-Rubinstein (CRRPriceTree) obtained from the portfolio function crrprice

or the individual functions, such as asianbycrr, barrierbycrr, and so on.
• Equal probabilities (EQPPriceTree) obtained from the portfolio function eqpprice

or the individual functions, such as asianbyeqp, barrierbyeqp, and so on.
• Implied Trinomial tree (ITTPriceTree) obtained from the portfolio function

ittprice or the individual functions, such as asianbyitt, barrierbyitt, and so
on.

• Standard trinomial tree (STTPriceTree) obtained from the portfolio function
sttprice or the individual functions, such as asianbystt, barrierbystt, and so
on.

Data Types: struct

CFTree — Tree of swap cash flows
structure

CFTree is a tree of swap cash flows, specifed when you create cash flow trees by
executing the Black-Derman-Toy (obtained as output from the swap function swapbybdt)
and Heath-Jarrow-Morton (swapbyhjm) swap functions. (Black-Derman-Toy cash flow
trees contain only NaNs.)
Data Types: struct

InstSet — Variable containing a collection of instruments whose prices or cash
flows are contained in a tree
structure

(Optional) Variable containing a collection of instruments whose prices or cash flows are
contained in a tree, specified using instadd. To display the names of the instruments,
the field Name should exist in InstSet. If InstSet is not passed, treeviewer uses
default instruments names (numbers) when displaying prices or cash flows.
Data Types: struct
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Definitions

Treeviewer Conventions
treeviewer price tree diagrams follow the convention that increasing prices appear on
the upper branch of a tree and, so, decreasing prices appear on the lower branch.

Conversely, for interest rate displays, decreasing interest rates appear on the upper
branch (prices are rising) and increasing interest rates on the lower branch (prices are
falling).

Using Treeviewer
treeviewer provides an interactive display of prices or interest rates.

The treeviewer display is activated by clicking the nodes along the price or interest
rate path shown in the left pane when the function is called.

• For HJM trees, you select the endpoints of the path, and treeviewer displays all data
from beginning to end.

• With recombining trees, such as BDT, BK, HW, and CIR you must click each node in
succession from the beginning (t = 1) to the last node (t = n). Do not include the
root node, the node at t = 0. If you do not click the nodes in the proper order, you are
reminded with the message

Parent of selected node must be selected.

Note The Help button is not available for treeviewer in MATLAB Online.

See Also
bdttree | bktree | cirtree | eqptree | hjmtree | hwtree | instadd | itttree |
lrtree | mmktbybdt | mmktbyhjm | stttree | swapbybdt | swapbyhjm

Topics
“Graphical Representation of Trees” on page 2-158
“Overview of Interest-Rate Tree Models” on page 2-50
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trintreepath
Entries from node of recombining trinomial tree

Syntax
Values = trintreepath(TrinTree,BranchList)

Arguments
TrinTree Recombining price or interest-rate trinomial tree.
BranchList Number of paths (NUMPATHS) by path length (PATHLENGTH) matrix

containing the sequence of branchings.

Description
Values = trintreepath(TrinTree,BranchList) extracts entries of a node of a
recombining trinomial tree. The node path is described by the sequence of branchings
taken, starting at the root. The top branch is number 1, the middle branch is 2, and the
bottom branch is 3. Set the branch sequence to 0 to obtain the entries at the root node.

Values is a number of values (NUMVALS)-by-NUMPATHS matrix containing the retrieved
entries of a recombining tree.

Examples
Create a Hull-White tree by loading the example file.

load deriv.mat; 

Then, for example

FwdRates = trintreepath(HWTree, [1 2 3]) 
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returns the rates at the tree nodes located by starting at 0, taking the up branch at the
first node, the middle branch at the second node, and finally the bottom branch at the
third node.

FwdRates = 

    1.0279
    1.0528
    1.0652
    1.0591 

You can visualize this with the treeviewer function.

treeviewer(HWTree)

See Also
mktrintree

Topics
“Graphical Representation of Trees” on page 2-158
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“Overview of Interest-Rate Tree Models” on page 2-50

Introduced before R2006a
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trintreeshape
Shape of recombining trinomial tree

Syntax
[NumLevels,NumPos,NumStates] = trintreeshape(TrinTree)

Arguments
TrinTree Recombining price or interest-rate trinomial tree.

Description
[NumLevels,NumPos,NumStates] = trintreeshape(TrinTree) returns
information on a recombining trinomial tree's shape.

NumLevels is the number of time levels of the tree.

NumPos is a 1-by-NUMLEVELS vector containing the length of the state vectors in each
level.

NumStates is a 1-by-NUMLEVELS vector containing the number of state vectors in each
level.

Examples
Create a Hull-White tree by loading the example file.

load deriv.mat; 

With treeviewer you can see the general shape of the HW interest-rate tree.

treeviewer(HWTree)
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With this tree

[NumLevels, NumPos, NumStates] = trintreeshape(HWTree) 

returns

NumLevels  =   
     4

NumPos     =   
     1     1     1     1

NumStates =
     1     3     5     5

See Also
mktrintree | trintreepath
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Topics
“Graphical Representation of Trees” on page 2-158
“Overview of Interest-Rate Tree Models” on page 2-50

Introduced before R2006a
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agencyoas
Determine option-adjusted spread of callable bond using Agency OAS model

Syntax
OAS =
agencyoas(ZeroData,Price,CouponRate,Settle,Maturity,Vol,CallDate)
OAS =
agencyoas(ZeroData,Price,CouponRate,Settle,Maturity,Vol,CallDate,
Name,Value)

Description
OAS =
agencyoas(ZeroData,Price,CouponRate,Settle,Maturity,Vol,CallDate)
computes OAS of a callable bond given price using the Agency OAS model.

OAS =
agencyoas(ZeroData,Price,CouponRate,Settle,Maturity,Vol,CallDate,
Name,Value) computes OAS of a callable bond given price using the Agency OAS model
with additional options specified by one or more Name,Value pair arguments.

Input Arguments
ZeroData

Zero curve represented as a numRates-by-2 matrix where the first column is zero dates
and the second column is the accompanying zero rates.

Price

numBonds-by-1 vector of prices.

 agencyoas
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CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Settle

Scalar MATLAB date number for the settlement date for all bonds and the zero data.

Note The Settle date must be an identical settlement date for all the bonds and the
zero curve.

Maturity

numBonds-by-1 vector of maturity dates.

Vol

numBonds-by-1 vector of volatilities in decimal form. This is the volatility of interest rates
corresponding to the time of the CallDate.

CallDate

numBonds-by-1 vector of call dates.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Basis

N-by-1 vector of day-count basis:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Default: 0 (actual/actual)

CurveBasis

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

CurveCompounding

Compounding frequency of the zero curve. Possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Default: 2 (Semi-annual)

EndMonthRule

End-of-month rule; 1, indicating in effect, and 0, indicating rule not in effect for the
bond(s). When 1, the rule is in effect for the bond(s), this means that a security that pays
coupon interest on the last day of the month will always make payment on the last day of
the month.

Default: 1 — Indicates in effect

Face

Face value of the bond.

 agencyoas

11-2169



Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first
coupon period. When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

InterpMethod

Interpolation method used to obtain points from the zero curve. Values are:

• linear — linear interpolation
• cubic — piecewise cubic spline interpolation
• pchip — piecewise cubic Hermite interpolation

Default: linear

IssueDate

Bond issue date.

Default: If you do not specify an IssueDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular
last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

Period

Number of coupon payments per year. Possible values include: 0, 1, 2, 3, 4, 6, 12.
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Default: 2

StartDate

Forward starting date of payments.

Default: If you do not specify a StartDate, the effective start date is the Settle date.

Output Arguments
OAS

numBonds-by-1 matrix of option-adjusted spreads.

Examples

Compute the Agency OAS Value

This example shows how to compute the agency OAS value.

Settle = datenum('20-Jan-2010');
ZeroRates = [.07 .164 .253 1.002 1.732 2.226 2.605 3.316 ...
3.474 4.188 4.902]'/100;
ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);
ZeroData = [ZeroDates ZeroRates];
 
Maturity = datenum('30-Dec-2013');
CouponRate = .022;
Price = 99.155;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
OAS = agencyoas(ZeroData, Price, CouponRate, Settle, Maturity, Vol, CallDate)

OAS = 8.5837
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Definitions

Agency OAS Model
The BMA European Callable Securities Formula provides a standard methodology for
computing price and option-adjusted spread for European Callable Securities (ECS).

References
SIFMA, The BMA European Callable Securities Formula, https://www.sifma.org.

See Also
agencyprice

Topics
“Computing the Agency OAS for Bonds” on page 6-3
“Agency Option-Adjusted Spreads” on page 6-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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agencyprice
Price callable bond using Agency OAS model

Syntax
Price =
agencyprice(ZeroData,OAS,CouponRate,Settle,Maturity,Vol,CallDate)
Price =
agencyprice(ZeroData,OAS,CouponRate,Settle,Maturity,Vol,CallDate,
Name,Value)

Description
Price =
agencyprice(ZeroData,OAS,CouponRate,Settle,Maturity,Vol,CallDate)
computes the price for a callable bond, given OAS, using the Agency OAS model.

Price =
agencyprice(ZeroData,OAS,CouponRate,Settle,Maturity,Vol,CallDate,
Name,Value) computes the price for a callable bond, given OAS, using the Agency OAS
model with additional options specified by one or more Name,Value pair arguments.

Input Arguments
ZeroData

Zero curve represented as a numRates-by-2 matrix where the first column is zero dates
and the second column is the accompanying zero rates.

OAS

numBonds-by-1 vector of option-adjusted spreads, expressed as a decimal (that is, 50
basis points is entered as .005).
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CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Settle

Scalar MATLAB date number for the settlement date for all the bonds and the zero data.

Note The Settle date must be an identical settlement date for all bonds and the zero
curve.

Maturity

numBonds-by-1 vector of maturity dates.

Vol

numBonds-by-1 vector of volatilities in decimal form. This is the volatility of interest rates
corresponding to the time of the CallDate.

CallDate

numBonds-by-1 vector of call dates.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Basis

N-by-1 vector of day-count basis:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
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• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Default: 0 (actual/actual)

CurveBasis

Basis of the zero curve, where the choices are identical to Basis.

Default: 0 (actual/actual)

CurveCompounding

Compounding frequency of the curve. Possible values include: –1, 0, 1, 2, 3, 4, 6, 12.

Default: 2 (Semi-annual)

EndMonthRule

End-of-month rule; 1, indicating in effect, and 0, indicating rule not in effect for the
bond(s). When 1, the rule is in effect for the bond(s). This means that a security that pays
coupon interest on the last day of the month will always make payment on the last day of
the month.

Default: 1 — Indicates in effect

Face

Face value of the bond.
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Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first
coupon period. When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

InterpMethod

Interpolation method used to obtain points from the zero curve. Values are:

• linear — linear interpolation
• cubic — piecewise cubic spline interpolation
• pchip — piecewise cubic Hermite interpolation

Default: linear

IssueDate

Bond issue date.

Default: If you do not specify an IssueDate, the cash flow payment dates are
determined from other inputs.

LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular
last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

Period

Number of coupon payments per year. Possible values include: 0, 1, 2, 3, 4, 6, 12.

11 Functions — Alphabetical List

11-2176



Default: 2

StartDate

Forward starting date of payments.

Default: If you do not specify a StartDate, the effective start date is the Settle date.

Output Arguments
Price

numBonds-by-1 matrix of the price.

Examples

Compute the Agency Price

This example shows how to compute the agency Price.

Settle = datenum('20-Jan-2010');
ZeroRates = [.07 .164 .253 1.002 1.732 2.226 2.605 3.316 ...
3.474 4.188 4.902]'/100;
ZeroDates = daysadd(Settle,360*[.25 .5 1 2 3 4 5 7 10 20 30],1);
ZeroData = [ZeroDates ZeroRates];
 
Maturity = datenum('30-Dec-2013');
CouponRate = .022;
OAS = 6.53/10000;
Vol = .5117;
CallDate = datenum('30-Dec-2010');
Price = agencyprice(ZeroData, OAS, CouponRate, Settle, Maturity, Vol, CallDate)

Price = 99.4212
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Definitions

Agency OAS Model
The BMA European Callable Securities Formula provides a standard methodology for
computing price and option-adjusted spread for European Callable Securities (ECS).

References
SIFMA, The BMA European Callable Securities Formula, https://www.sifma.org.

See Also
agencyoas

Topics
“Computing the Agency OAS for Bonds” on page 6-3
“Agency Option-Adjusted Spreads” on page 6-2
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bkcall
Price European call option on bonds using Black model

Syntax
CallPrice = bkcall(Strike,ZeroData,Sigma,BondData,Settle,Expiry,Period,Basis,EndMonthRule,InterpMethod,StrikeConvention)

Arguments
Strike Scalar or number of options (NOPT)-by-1 vector of strike

prices.
ZeroData Two-column (optionally three-column) matrix containing

zero (spot) rate information used to discount future cash
flows.

• Column 1: Serial maturity date associated with the zero
rate in the second column.

• Column 2: Annualized zero rates, in decimal form,
appropriate for discounting cash flows occurring on the
date specified in the first column. All dates must occur
after Settle (dates must correspond to future
investment horizons) and must be in ascending order.

• Column 3 (optional): Annual compounding frequency.
Values are 1 (annual), 2 (semiannual, default), 3 (three
times per year), 4 (quarterly), 6 (bimonthly),
12 (monthly), and -1 (continuous).

Sigma Scalar or NOPT-by-1 vector of annualized price volatilities
required by Black's model.
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BondData Row vector with three (optionally four) columns or NOPT-
by-3 (optionally NOPT-by-4) matrix specifying
characteristics of underlying bonds in the form:

[CleanPrice CouponRate Maturity Face]

CleanPrice is the price excluding accrued interest.

CouponRate is the decimal coupon rate.

Maturity is the bond maturity date in serial date number
format.

Face is the face value of the bond. If unspecified, the face
value is assumed to be 100.

Settle Settlement date of the options, specified as a serial date
number or date character vector. Settle also represents
the starting reference date for the input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity dates,
specified as a serial date number or date character vector.

Period (Optional) Number of coupons per year for the underlying
bond. Default = 2 (semiannual). Supported values are 0, 1,
2, 3, 4, 6, and 12.
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Basis (Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. This rule applies only when

Maturity is an end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the
month. 1 = set rule on (default), meaning that a bond's
coupon payment date is always the last actual day of the
month.

InterpMethod (Optional) Scalar integer zero curve interpolation method.
For cash flows that do not fall on a date found in the
ZeroData spot curve, indicates the method used to
interpolate the appropriate zero discount rate. Available
methods are (0) nearest, (1) linear, and (2) cubic.
Default = 1. See interp1 for more information.
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StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option contract
strike price conventions.

StrikeConvention = 0 (default) defines the strike price
as the cash (dirty) price paid for the underlying bond.

StrikeConvention = 1 defines the strike price as the
quoted (clean) price paid for the underlying bond. When
evaluating Black's model, the accrued interest of the bond
at option expiration is added to the input strike price.

Description
CallPrice =
bkcall(Strike,ZeroData,Sigma,BondData,Settle,Expiry,Period,Basis,End
MonthRule,InterpMethod, StrikeConvention) using Black's model, derives an
NOPT-by-1 vector of prices of European call options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve, the
appropriate zero rate for discounting such cash flows is obtained by extrapolating the
nearest rate on the curve (that is, if a cash flow occurs before the first or after the last
date on the input zero curve, a flat curve is assumed).

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an
IRDataCurve object with a Dates property to create a vector of dates and data
acceptable for bkcall. For more information, see “Converting an IRDataCurve or
IRFunctionCurve Object” on page 9-41.

Examples

Price a European Call Option On Bonds Using the Black Model

This example shows how to price a European call option on bonds using the Black model.
Consider a European call option on a bond maturing in 9.75 years. The underlying bond
has a clean price of $935, a face value of $1000, and pays 10% semiannual coupons.
Since the bond matures in 9.75 years, a $50 coupon will be paid in 3 months and again in
9 months. Also, assume that the annualized volatility of the forward bond price is 9%.
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Furthermore, suppose the option expires in 10 months and has a strike price of $1000,
and that the annualized continuously compounded risk-free discount rates for maturities
of 3, 9, and 10 months are 9%, 9.5%, and 10%, respectively.

% specify the option information
Settle       =  '15-Mar-2004';
Expiry       =  '15-Jan-2005'; % 10 months from settlement
Strike       =  1000;
Sigma        =  0.09;
Convention   =  [0 1]';

% specify the interest-rate environment
ZeroData     = [datenum('15-Jun-2004')  0.09   -1;  % 3 months
                datenum('15-Dec-2004')  0.095  -1;  % 9 months
                datenum(Expiry)         0.10   -1]; % 10 months
            
% specify the bond information           
CleanPrice   =  935;
CouponRate   =  0.1;
Maturity     = '15-Dec-2013';  % 9.75 years from settlement
Face         =  1000;
BondData     = [CleanPrice CouponRate datenum(Maturity) Face];
Period       =  2;
Basis        =  1;

% call Black's model
CallPrices = bkcall(Strike, ZeroData, Sigma, BondData, Settle,... 
Expiry, Period, Basis, [], [], Convention)

CallPrices = 2×1

    9.4873
    7.9686

When the strike price is the dirty price (Convention = 0), the call option value is $9.49.
When the strike price is the clean price (Convention = 1), the call option value is $7.97.

References
[1] Hull, John C. Options, Futures, and Other Derivatives. 5th Edition, Prentice Hall, 2003,

pp. 287–288, 508–515.
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See Also
bkput

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bkcaplet
Price interest-rate caplet using Black model

Note bkcaplet has been removed. Use capbyblk instead.

Syntax
CapPrices = bkcaplet(CapData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sigma)

 bkcaplet
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Arguments
CapData Number of caps (NCAP)-by-2 matrix containing cap rates and bases:

[CapRates Basis].

Values for bases are:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
FwdRates Scalar or NCAP-by-1 vector containing forward rates in decimal.

FwdRates accrue on the same basis as CapRates.
ZeroPrice Scalar or NCAP-by-1 vector containing zero coupon prices with

maturities corresponding to those of each cap in CapData, per $100
nominal value.

Settle Scalar or NCAP-by-1 vector of identical elements containing
settlement date of caplets.

StartDate Scalar or NCAP-by-1 vector containing start dates of the caplets.
EndDate Scalar or NCAP-by-1 vector containing maturity dates of caplets.
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Sigma Scalar or NCAP-by-1 vector containing volatility of forward rates in
decimal, corresponding to each caplet.

Description
CapPrices =
bkcaplet(CapData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sigma)
computes the prices of interest-rate caplets for every $100 face value of principal.

Examples

Compute the Price of Interest-Rate Caplets for Every $100 Face Value of
Principal

This example shows how to compute the price of interest-rate caplets for every $100 face
value of principal. Given a notional amount of $1,000,000, compute the value of a caplet
on October 15, 2002 that starts on October 15, 2003 and ends on January 15, 2004.

CapData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

% because the caplet is $100 notional, divide $1,000,000 by $100
Notional   = 1000000/100;

CapPrice = Notional*bkcaplet(CapData, FwdRates, ZeroPrice, ...
Settle, BeginDates, EndDates, Sigma)

 bkcaplet
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Error using bkcaplet (line 117)
BKCAPLET has been removed. Use CAPBYBLK instead.

See Also

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bkfloorlet
Price interest-rate floorlet using Black model

Note bkfloorlet has been removed. Use floorbyblk instead.

Syntax
FloorPrices = bkfloorlet(FloorData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sigma)

 bkfloorlet
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Arguments
FloorData Number of floors (NFLR)-by-2 matrix containing floor rates and bases:

[FloorRate Basis].

Values for bases are:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
FwdRates Scalar or NFLR-by-1 vector containing forward rates in decimal.

FwdRates accrue on the same basis as FloorRates.
ZeroPrice Scalar or NFLR-by-1 vector containing zero coupon prices with

maturities corresponding to those of each floor in FloorData, per $100
nominal value.

Settle Scalar or NFLR-by-1 vector of identical elements containing settlement
date of floorlets.

StartDate Scalar or NFLR-by-1 vector containing start dates of the floorlets.
EndDate Scalar or NFLR-by-1 vector containing maturity dates of floorlets.
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Sigma Scalar or NFLR-by-1 vector containing volatility of forward rates in
decimal, corresponding to each floorlet.

Description
FloorPrices =
bkfloorlet(FloorData,FwdRates,ZeroPrice,Settle,StartDate,EndDate,Sig
ma) computes the prices of interest-rate floorlets for every $100 of notional value.

Examples

Price an Interest-Rate Floorlet For Every $100 of Notional Value Using the Black
Model

This example shows how to price an interest-rate floorlet for every $100 of notional value
using the Black model. Given a notional amount of $1,000,000, compute the value of a
floorlet on October 15, 2002 that starts on October 15, 2003 and ends on January 15,
2004.

FloorData = [0.08, 1];
FwdRates = 0.07;
ZeroPrice = 100*exp(-0.065*1.25);
Settle = datenum('15-Oct-2002');
BeginDates = datenum('15-Oct-2003');
EndDates = datenum('15-Jan-2004');
Sigma = 0.20;

% because floorlet is $100 notional, divide $1,000,000 by $100
Notional = 1000000/100;

FloorPrice = Notional*bkfloorlet(FloorData, FwdRates, ...
ZeroPrice, Settle, BeginDates, EndDates, Sigma)

 bkfloorlet
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Error using bkfloorlet (line 115)
BKFLOORLET has been removed. Use FLOORBYBLK instead.

See Also

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Supported Interest-Rate Instruments” on page 2-2

Introduced before R2006a
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bkput
Price European put option on bonds using Black model

Syntax
PutPrice = bkput(Strike,ZeroData,Sigma,BondData,Settle,Expiry,Period,Basis,EndMonthRule,InterpMethod,StrikeConvention)

Arguments
Strike Scalar or number of options (NOPT)-by-1 vector of strike

prices.
ZeroData Two-column (optionally three-column) matrix containing zero

(spot) rate information used to discount future cash flows.

• Column 1: Serial maturity date associated with the zero
rate in the second column.

• Column 2: Annualized zero rates, in decimal form,
appropriate for discounting cash flows occurring on the
date specified in the first column. All dates must occur
after Settle (dates must correspond to future investment
horizons) and must be in ascending order.

• Column 3 (optional): Annual compounding frequency.
Values are 1 (annual), 2 (semiannual, default), 3 (three
times per year), 4 (quarterly), 6 (bimonthly), 12 (monthly),
and -1 (continuous).

Sigma Scalar or NOPT-by-1 vector of annualized price volatilities
required by Black's model.

 bkput
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BondData Row vector with three (optionally four) columns or NOPT-by-3
(optionally NOPT-by-4) matrix specifying characteristics of
underlying bonds in the form [CleanPrice CouponRate
Maturity Face] where:

• CleanPrice is the price excluding accrued interest.
• CouponRate is the decimal coupon rate.
• Maturity is the bond maturity date in serial date number

format.
• Face is the face value of the bond. If unspecified, the face

value is assumed to be 100.
Settle Settlement date of the options, specified using a serial date

number or date character vector. Settle also represents the
starting reference date for the input zero curve.

Expiry Scalar or NOPT-by-1 vector of option maturity dates, specified
using a serial date number or date character vector.

Period (Optional) Number of coupons per year for the underlying
bond. Default = 2 (semiannual). Supported values are 0, 1, 2,
3, 4, 6, and 12.
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Basis (Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. This rule applies only when

Maturity is an end-of-month date for a month having 30 or
fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the month.
1 = set rule on (default), meaning that a bond's coupon
payment date is always the last actual day of the month.

InterpMethod (Optional) Scalar integer zero curve interpolation method. For
cash flows that do not fall on a date found in the ZeroData
spot curve, indicates the method used to interpolate the
appropriate zero discount rate. Available methods are (0)
nearest, (1) linear, and (2) cubic. Default = 1. See interp1
for more information.
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StrikeConvention (Optional) Scalar or NOPT-by-1 vector of option contract
strike price conventions.

StrikeConvention = 0 (default) defines the strike price as
the cash (dirty) price paid for the underlying bond.

StrikeConvention = 1 defines the strike price as the
quoted (clean) price paid for the underlying bond. The
accrued interest of the bond at option expiration is added to
the input strike price when evaluating Black's model.

Description
PutPrice =
bkput(Strike,ZeroData,Sigma,BondData,Settle,Expiry,Period,Basis,EndM
onthRule,InterpMethod, StrikeConvention) using Black's model, derives an
NOPT-by-1 vector of prices of European put options on bonds.

If cash flows occur beyond the dates spanned by ZeroData, the input zero curve, the
appropriate zero rate for discounting such cash flows is obtained by extrapolating the
nearest rate on the curve (that is, if a cash flow occurs before the first or after the last
date on the input zero curve, a flat curve is assumed).

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an
IRDataCurve object with a Dates property to create a vector of dates and data
acceptable for bkput. For more information, see “Converting an IRDataCurve or
IRFunctionCurve Object” on page 9-41.

Examples

Price European Put Options On Bonds Using the Black Model

This example shows how to price European put options on bonds using the Black model.
Consider a European put option on a bond maturing in 10 years. The underlying bond has
a clean price of $122.82, a face value of $100, and pays 8% semiannual coupons. Also,
assume that the annualized volatility of the forward bond yield is 20%. Furthermore,
suppose the option expires in 2.25 years and has a strike price of $115, and that the
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annualized continuously compounded risk free zero (spot) curve is flat at 5%. For a
hypothetical settlement date of March 15, 2004, the following code illustrates the use of
Black's model to duplicate the put prices in Example 22.2 of the Hull reference. In
particular, it illustrates how to convert a broker's yield volatility to a price volatility
suitable for Black's model.

% Specify the option information.
Settle       =  '15-Mar-2004';
Expiry       =  '15-Jun-2006';  % 2.25 years from settlement
Strike       =  115;
YieldSigma   =  0.2;
Convention   =  [0; 1];

% Specify the interest-rate environment. Since the
% zero curve is flat, interpolation into the curve always returns
% 0.05. Thus, the following curve is not unique to the solution.
ZeroData     = [datenum('15-Jun-2004') 0.05   -1;
                datenum('15-Dec-2004') 0.05   -1;
                datenum(Expiry)        0.05   -1];

% Specify the bond information.
CleanPrice   =  122.82;
CouponRate   =  0.08;
Maturity     = '15-Mar-2014';  % 10 years from settlement
Face         =  100;
BondData     = [CleanPrice CouponRate datenum(Maturity) Face];
Period       =  2;  % semiannual coupons
Basis        =  1;  % 30/360 day-count basis

% Convert a broker's yield volatility quote to a price volatility 
% required by Black's model. To duplicate Example 22.2 in Hull, 
% first compute the periodic (semiannual) yield to maturity from 
% the clean bond price.
Yield  = bndyield(CleanPrice, CouponRate, Settle, Maturity,... 
Period, Basis);

% Compute the duration of the bond at option expiration. Most       
% fixed-income sensitivity analyses use the modified duration      
% statistic to examine the impact of small changes in periodic         
% yields on bond prices. However, Hull's example operates in        
% continuous time (annualized instantaneous volatilities and 
% continuously compounded zero yields for discounting coupons). 
% To duplicate Hull's results, use the second output of BNDDURY, 
% the Macaulay duration.
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[Modified, Macaulay] = bnddury(Yield, CouponRate, Expiry,... 
Maturity, Period, Basis);

% Convert the yield-to-maturity from a periodic to a 
% continuous yield.
Yield  = Period .* log(1 + Yield./Period);

% Convert the yield volatility to a price volatility via 
% Hull's Equation 22.6 (page 514).
PriceSigma = Macaulay .* Yield .* YieldSigma;

% Finally, call Black's model. 
PutPrices  = bkput(Strike, ZeroData, PriceSigma, BondData,... 
Settle, Expiry, Period, Basis, [], [], Convention)

PutPrices = 2×1

    1.7838
    2.4071

When the strike price is the dirty price (Convention = 0), the call option value is $1.78.
When the strike price is the clean price (Convention = 1), the call option value is $2.41.

References

[1] Hull, John C. Options, Futures, and Other Derivatives. 5th Edition, Prentice Hall, 2003,
pp. 287–288, 508–515.

See Also
bkcall

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Supported Interest-Rate Instruments” on page 2-2
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Introduced before R2006a
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bndfutimprepo
Implied repo rates for bond future given price

Syntax
ImpRepo =
bndfutimprepo(Price,FutPrice,FutSettle,Delivery,ConvFactor,CouponRat
e,Maturity)
ImpRepo =
bndfutimprepo(Price,FutPrice,FutSettle,Delivery,ConvFactor,CouponRat
e,Maturity,'ParameterName',ParameterValue, ...)

Description
ImpRepo =
bndfutimprepo(Price,FutPrice,FutSettle,Delivery,ConvFactor,CouponRat
e,Maturity) computes the implied repo rate for a bond future given the price of a bond,
the bond properties, the price of the bond future, and the bond conversion factor. The
default behavior is that the coupon reinvestment rate matches the repo rate. However,
you can specify a separate reinvestment rate using optional inputs.

ImpRepo =
bndfutimprepo(Price,FutPrice,FutSettle,Delivery,ConvFactor,CouponRat
e,Maturity,'ParameterName',ParameterValue, ...) accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName' is the name of
the parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter-value pairs in any order. Names are case-
insensitive.

Input Arguments
Price

numBonds-by-1 vector of bond prices.
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FutPrice

numBonds-by-1 vector of future prices

FutSettle

numBonds-by-1 vector of future settle dates.

Delivery

numBonds-by-1 vector of future delivery dates.

ConvFactor

numBonds-by-1 vector of bond conversion factors. For more information, see
convfactor.

CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Maturity

numBonds-by-1 vector of maturity dates.

Parameter–Value Pairs
Basis

Day-count basis. Possible values include

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Default: 0

EndMonthRule

End-of-month rule. Values are:

• 0 — Rule is not in effect for the bond.
• 1 — Rule is in effect for the bond. This means that a security that pays coupon interest

on the last day of the month always makes payment on the last day of the month.

Default: 1

Face

Face value of the bond. Face has no impact on key rate duration. This calling sequence is
preserved for consistency.

Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first
coupon period. When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.

IssueDate

Issue date for a bond.
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LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular
last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

Period

Number of coupons payments per year. Possible values include:

• 0
• 1
• 2
• 3
• 4
• 6
• 12

Default: 2

ReinvestBasis

Day count basis for reinvestment rate.

Default: Identical to RepoBasis.

ReinvestRate

Rate for reinvesting intermediate coupons from the bond.

Default: Identical to ImpRepo.

RepoBasis

Day count basis for ImpRepo.
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Default: 2

StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To
make an instrument forward-starting, specify this date as a future date. If you do not
specify StartDate, the effective start date is the Settle date.

Output Arguments
ImpRepo

Implied repo rate, or the repo rate that would produce the price input.

Examples

Compute the Repo Rate For a Bond Future

This example shows how to compute the repo rate for a bond future using the following
data.

bndfutimprepo(129,98,'9/21/2000','12/29/2000',1.3136,.0875,'8/15/2020')

ans = 0.0584

References
Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill,
2005.

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.

See Also
bndfutprice | convfactor
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Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2009b
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bndfutprice
Price bond future given repo rates

Syntax
[FutPrice,AccrInt] =
bndfutprice(RepoRate,Price,FutSettle,Delivery,ConvFactor,CouponRate,
Maturity)
FutPrice,AccrInt] =
bndfutprice(RepoRate,FutPrice,FutSettle,Delivery,ConvFactor,CouponRa
te,Maturity,'ParameterName',ParameterValue, ...)

Description
[FutPrice,AccrInt] =
bndfutprice(RepoRate,Price,FutSettle,Delivery,ConvFactor,CouponRate,
Maturity) computes the price of a bond futures contract for one or more bonds given a
repo rate, and bond properties, including the bond conversion factor. The default behavior
is that the coupon reinvestment rate matches the repo rate. However, you can specify a
separate reinvestment rate using optional arguments.

FutPrice,AccrInt] =
bndfutprice(RepoRate,FutPrice,FutSettle,Delivery,ConvFactor,CouponRa
te,Maturity,'ParameterName',ParameterValue, ...) accepts optional inputs as
one or more comma-separated parameter/value pairs. 'ParameterName' is the name of
the parameter inside single quotes. ParameterValue is the value corresponding to
'ParameterName'. Specify parameter-value pairs in any order. Names are case-
insensitive.

Input Arguments
RepoRate

numBonds-by-1 vector of repo rates.
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Price

numBonds-by-1 vector of bond prices

FutSettle

Scalar serial date number specifying a future settle date.

Delivery

numBonds-by-1 vector of future delivery dates.

ConvFactor

numBonds-by-1 vector of bond conversion factors. For more information, see
convfactor.

CouponRate

numBonds-by-1 vector of coupon rates in decimal form.

Maturity

numBonds-by-1 vector of coupon rates in decimal form.

Parameter–Value Pairs
Basis

Day-count basis. Possible values include

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
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• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Default: 0

EndMonthRule

End-of-month rule. Values are:

• 0 — Rule is not in effect for the bond.
• 1 — Rule is in effect for the bond. This means that a security that pays coupon interest

on the last day of the month always makes payment on the last day of the month.

Default: 1

IssueDate

Issue date for a bond.

Face

Face value of the bond. Face has no impact on key rate duration. This calling sequence is
preserved for consistency.

Default: 100

FirstCouponDate

Date when a bond makes its first coupon payment; used when bond has an irregular first
coupon period. When FirstCouponDate and LastCouponDate are both specified,
FirstCouponDate takes precedence in determining the coupon payment structure.

Default: If you do not specify a FirstCouponDate, the cash flow payment dates are
determined from other inputs.
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LastCouponDate

Last coupon date of a bond before the maturity date; used when bond has an irregular
last coupon period. In the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the bond. The coupon structure of
a bond is truncated at the LastCouponDate, regardless of where it falls, and is followed
only by the bond's maturity cash flow date.

Default: If you do not specify a LastCouponDate, the cash flow payment dates are
determined from other inputs.

Period

Number of coupons payments per year. Possible values include:

• 0
• 1
• 2
• 3
• 4
• 6
• 12

Default: 2

ReinvestBasis

Day count basis for reinvestment rate.

Default: Identical to RepoBasis.

ReinvestRate

Compounding convention for reinvestment rate.

Default: Identical to RepoRate.

RepoBasis

Day count basis for RepoRate.
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Default: 2

StartDate

Date when a bond actually starts (the date from which a bond cash flow is considered). To
make an instrument forward-starting, specify this date as a future date. If you do not
specify StartDate, the effective start date is the Settle date.

Output Arguments
FutPrice

Quoted futures price, per $100 notional.

AccrInt

Accrued interest due at delivery date, per $100 notional.

Examples

Compute the Price For a Bond Future

This example shows how to compute the price for a bond future using the following data.

bndfutprice(.064, 129, '9/21/2000','12/29/2000', 1.3136, .0875, '8/15/2020')

ans = 98.1516

References
Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill,
2005.

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.
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See Also
bndfutimprepo | convfactor

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Supported Interest-Rate Instruments” on page 2-2

Introduced in R2009b
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bootstrap
Bootstrap interest-rate curve from market data

Class
@IRDataCurve on page A-7

Syntax
Dcurve = IRDataCurve.bootstrap(Type,Settle,InstrumentTypes,Instruments)

Dcurve = IRDataCurve.bootstrap(Type,Settle,InstrumentTypes,Instruments,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
Type Type of interest-rate curve. Type refers to the type

of data in the curve that is bootstrapped from the
market instruments. Acceptable values are:
discount, forward, or zero.

When using the bootstrap method, the choice of
the Type parameter can impact the curve
construction because it will affect the type of data
that will be interpolated on (that is, forward rates,
zero rates or discount factors) during the
bootstrapping process. So curves that are
bootstrapped using different Type parameters
undergo different bootstrapping algorithms with
different interpolation methods, and they can
sometimes produce different results when using the
“get” methods (for example, getForwardRates).

Settle Scalar or column vector of settlement dates.
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InstrumentTypes N-by-1 cell array (where N is the number of
instruments) indicating what kind of instrument is
in the Instruments matrix. Acceptable values are
deposit, futures, swap, bond, and fra.

Instruments N-by-3 data matrix for Instruments where the
first column is Settle date, the second column is
Maturity, and the third column is the market
quote (dates must be MATLAB date numbers). The
market quote represents the following for each
instrument:

• deposit: rate
• futures: price (e.g., 9628.54)
• swap: rate
• bond: clean price
• fra: forward rate

Note Instruments input for fra and for
futures are different. Specifically, the forward
rate underlying a fra starts on the start date
(column 1 of Instruments) and ends on the
end date (column 2 of Instruments). While the
forward rate underlying a futures contract
starts on the maturity date of the futures
contract and ends on a date n months after the
futures maturity, where n is the periodicity of
the futures contract.
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Compounding (Optional) Scalar that sets the compounding
frequency per year for an IRDataCurve object:

• -1 = Continuous compounding
• 0 = Simple interest (no compounding) for “zero”

and “discount” curve types only, not supported
for “forward” curves

• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Basis (Optional) Day-count basis of the interest-rate
curve. A scalar of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-
0 .
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InterpMethod (Optional) Values are:

• 'linear' — Linear interpolation (default).
• 'constant' — Piecewise constant

interpolation.
• 'pchip' — Piecewise cubic Hermite

interpolation.
• 'spline' — Cubic spline interpolation.

IRBootstrapOptionsObj (Optional) An IRBootstrapOptions object.
DiscountCurve (Optional) RateSpec for a curve used to discount

the cash flows.

Instrument Parameters
For each bond Instrument, you can specify the following additional instrument
parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a
bond instrument's Basis value from the curve's Basis value. For instruments of type
deposit, futures, or swap the Basis and Compounding values must be identical for
each instance of the instrument.

InstrumentCouponRate (Optional) Decimal number indicating the annual percentage
rate used to determine the coupons payable on an
instrument.

InstrumentPeriod (Optional) Coupons per year of the instrument. A vector of
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
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InstrumentBasis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
InstrumentEndMonthRu
le

(Optional) End-of-month rule. A vector. This rule applies only
when Maturity is an end-of-month date for a month having
30 or fewer days. 0 = ignore rule, meaning that an
instrument's coupon payment date is always the same
numerical day of the month. 1 = set rule on (default),
meaning that an instrument's coupon payment date is always
the last actual day of the month.

InstrumentIssueDate (Optional) Date when an instrument was issued.
InstrumentFirstCoupo
nDate

(Optional) Date when a bond makes its first coupon payment;
used when bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both
specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.
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InstrumentLastCoupon
Date

(Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period. In
the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is
followed only by the bond's maturity cash flow date. If you do
not specify a LastCouponDate, the cash flow payment dates
are determined from other inputs.

InstrumentFace (Optional) Face or par value. Default = 100.

Note When using Instrument parameter/value pairs, you can specify simple interest for
an Instrument by specifying the InstrumentPeriod value as 0. If InstrumentBasis
and InstrumentPeriod are not specified for an Instrument, the following default
values are used:

• deposit instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod
is 0 (simple interest).

• futures instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod
is 4 (quarterly).

• swap instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is
2.

• bond instrument uses InstrumentBasis as 0 (act/act) and InstrumentPeriod is 2.
• FRA instrument uses InstrumentBasis as 2 (act/360) and InstrumentPeriod is 4

(quarterly).

Description
Dcurve = IRDataCurve.bootstrap(Type, Settle, InstrumentTypes,
Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...)
bootstraps an interest-rate curve from market data. The dates of the bootstrapped curve
correspond to the maturity dates of the input instruments. You must enter the optional
arguments for Basis, Compounding, Interpmethod, IRBootstrapOptionsObj, and
DiscountCurve as parameter/value pairs.
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Examples

Use the bootstrap Method to Create an IRDataCurve Object

In this bootstrapping example, InstrumentTypes, Instruments, and a Settle date
are defined:

InstrumentTypes = {'Deposit';'Deposit';...
'Futures';'Futures';'Futures';'Futures';'Futures';'Futures';...
'Swap';'Swap';'Swap';'Swap';};

Instruments = [datenum('08/10/2007'),datenum('09/17/2007'),.0532000; ...
datenum('08/10/2007'),datenum('11/17/2007'),.0535866; ...
datenum('08/08/2007'),datenum('19-Dec-2007'),9485; ...
datenum('08/08/2007'),datenum('19-Mar-2008'),9502; ...
datenum('08/08/2007'),datenum('18-Jun-2008'),9509.5; ...
datenum('08/08/2007'),datenum('17-Sep-2008'),9509; ...
datenum('08/08/2007'),datenum('17-Dec-2008'),9505.5; ...
datenum('08/08/2007'),datenum('18-Mar-2009'),9501; ...
datenum('08/08/2007'),datenum('08/08/2014'),.0530; ...
datenum('08/08/2007'),datenum('08/08/2019'),.0551; ...
datenum('08/08/2007'),datenum('08/08/2027'),.0565; ...
datenum('08/08/2007'),datenum('08/08/2037'),.0566];

CurveSettle = datenum('08/10/2007');

Use the bootstrap method to create an IRDataCurve object.

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip');

To create the plot for the bootstrapped market data:

PlottingDates = (datenum('08/11/2007'):30:CurveSettle+365*25)';
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
ylim([0 .06])
datetick
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Use the bootstrap Method to Create an IRDataCurve Object That Includes
Bonds

In this bootstrapping example, InstrumentTypes, Instruments, and a Settle date
are defined:

CurveSettle = datenum('8-Mar-2010');

InstrumentTypes = {'Deposit';'Deposit';'Deposit';'Deposit';...
    'Futures';'Futures';'Futures';'Futures';'Swap';'Swap';'Bond';'Bond'};
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Instruments = [datenum('8-Mar-2010'),datenum('8-Apr-2010'),.003; ...
    datenum('8-Mar-2010'),datenum('8-Jun-2010'),.005; ...
    datenum('8-Mar-2010'),datenum('8-Sep-2010'),.007; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2011'),.009; ...
    datenum('8-Mar-2010'),datenum('18-Jun-2011'),9840; ...
    datenum('8-Mar-2010'),datenum('17-Sep-2011'),9820; ...
    datenum('8-Mar-2010'),datenum('17-Dec-2011'),9810; ...
    datenum('8-Mar-2010'),datenum('18-Mar-2012'),9800; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2015'),.025; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2020'),.035; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2030'),99; ...
    datenum('8-Mar-2010'),datenum('8-Mar-2040'),101];

When bonds are used, InstrumentCouponRate must be specified:

InstrumentCouponRate = [zeros(10,1);.045;.05];

Note, for parameters that are only applicable to bonds (InstrumentFirstCouponDate,
InstrumentLastCouponDate, InstrumentIssueDate, InstrumentFace) the entries
for non-bond instruments (deposits and futures) are ignored.

Use the bootstrap method to create an IRDataCurve object.

bootModel = IRDataCurve.bootstrap('Forward', CurveSettle, ...
InstrumentTypes, Instruments,'InterpMethod','pchip',...
'InstrumentCouponRate',InstrumentCouponRate);

Create the plot for the bootstrapped market data.

PlottingDates = datemnth(CurveSettle,1:30*12);
plot(PlottingDates, getParYields(bootModel, PlottingDates),'r')
ylim([0 .06])
datetick
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Use IRBootstrapOptionsObj with bootstrap for Negative Zero Interest-Rates

Use the IRBootstrapOptionsObj optional argument with the bootstrap method to
allow for negative zero rates when solving for the swap zero points.

Settle = datenum('15-Mar-2015'); 
InstrumentTypes = {'Deposit';'Deposit';'Swap';'Swap';'Swap';'Swap';}; 

Instruments = [Settle,datenum('15-Jun-2015'),.001; ... 
Settle,datenum('15-Dec-2015'),.0005; ... 
Settle,datenum('15-Mar-2016'),-.001; ... 
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Settle,datenum('15-Mar-2017'),-0.0005; ... 
Settle,datenum('15-Mar-2018'),.0017; ... 
Settle,datenum('15-Mar-2020'),.0019]; 

irbo = IRBootstrapOptions('LowerBound',-1); 

bootModel = IRDataCurve.bootstrap('zero', Settle, InstrumentTypes,... 
    Instruments,'IRBootstrapOptions',irbo); 

bootModel.getZeroRates(datemnth(Settle,1:60))

ans = 60×1

    0.0012
    0.0011
    0.0010
    0.0009
    0.0008
    0.0008
    0.0007
    0.0006
    0.0005
   -0.0000
      ⋮

Note that optional argument for LowerBound is set to -1 for negative zero rates when
solving the swap zero points.

See Also
“@IRDataCurve” on page A-7 | “@IRBootstrapOptions” on page A-2 | toRateSpec

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“IRDataCurve Bootstrapping Based on Market Instruments” on page 9-7
“Bootstrapping a Swap Curve”
“Dual Curve Bootstrapping” on page 9-17
“Interest-Rate Curve Objects and Workflow” on page 9-2
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Introduced in R2008b
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cdsoptprice
Price payer and receiver credit default swap options

Syntax
[Payer,Receiver] =
cdsoptprice(ZeroData,ProbData,Settle,OptionMaturity,CDSMaturity,Stri
ke,SpreadVol)
[Payer,Receiver] =
cdsoptprice(ZeroData,ProbData,Settle,OptionMaturity,CDSMaturity,Stri
ke,SpreadVol,Name,Value)

Description
[Payer,Receiver] =
cdsoptprice(ZeroData,ProbData,Settle,OptionMaturity,CDSMaturity,Stri
ke,SpreadVol) computes the price of payer and receiver credit default swap options.

[Payer,Receiver] =
cdsoptprice(ZeroData,ProbData,Settle,OptionMaturity,CDSMaturity,Stri
ke,SpreadVol,Name,Value) computes the price of payer and receiver credit default
swap options with additional options specified by one or more Name,Value pair
arguments.

Input Arguments
ZeroData

M-by-2 vector of dates and zero rates or an IRDataCurve object of zero rates. For more
information on an IRDataCurve object, see “Creating an IRDataCurve Object” on page 9-
6.

ProbData

P-by-2 array of dates and default probabilities.
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Settle

Settlement date is a serial date number or date character vector. Settle must be earlier
than the maturity date.

OptionMaturity

N-by-1 vector of serial date numbers or date character vectors containing the option
maturity dates.

CDSMaturity

N-by-1 vector of serial date numbers or date character vectors containing the CDS
maturity dates.

Strike

N-by-1 vector of option strikes expressed in basis points.

SpreadVol

N-by-1 vector of annualized credit spread volatilities expressed as a positive decimal
number.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Note Any optional input of size N-by-1 is also acceptable as an array of size 1-by-N, or as
a single value applicable to all contracts. Single values are internally expanded to an
array of size N-by-1.

AdjustedForwardSpread

N-by-1 vector of adjusted forward spreads (in basis points) to be used when pricing CDS
index options.

Default: unadjusted forward spread normally used for single-name CDS options
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Basis

N-by-1 vector of contract day-count basis:

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Default: 2 (actual/360)

BusDayConvention

Business day conventions, specified by a character vector or N-by-1 cell array of character
vectors of business day conventions. The selection for business day convention
determines how non-business days are treated. Non-business days are defined as
weekends plus any other date that businesses are not open (e.g. statutory holidays).
Values are:

• actual — Non-business days are effectively ignored. Cash flows that fall on non-
business days are assumed to be distributed on the actual date.

• follow — Cash flows that fall on a non-business day are assumed to be distributed on
the following business day.
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• modifiedfollow — Cash flows that fall on a non-business day are assumed to be
distributed on the following business day. However if the following business day is in a
different month, the previous business day is adopted instead.

• previous — Cash flows that fall on a non-business day are assumed to be distributed
on the previous business day.

• modifiedprevious — Cash flows that fall on a non-business day are assumed to be
distributed on the previous business day. However if the previous business day is in a
different month, the following business day is adopted instead.

Default: actual

Knockout

N-by-1 vector of Boolean flags. If the credit default swaptions is a knockout, the flag is
True, otherwise it is False.

Default: False

PayAccruedPremium

N-by-1 vector of Boolean flags. If accrued premiums are paid upon default, the flag is
True, otherwise it is False.

Default: True

Period

N-by-1 vector of the number of premiums per year of the CDS. Allowed values are 1, 2, 3,
4, 6, and 12.

Default: 4

RecoveryRate

N-by-1 vector of recovery rates, expressed as a decimal from 0 to 1.

Default: 0.4

ZeroBasis

Basis of the zero curve. Choices are identical to Basis.

Default: 0 (actual/actual)
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ZeroCompounding

Compounding frequency of the zero curve. Allowed values are:

• 1 — Annual compounding
• 2 — Semiannual compounding
• 3 — Compounding three times per year
• 4 — Quarterly compounding
• 6 — Bimonthly compounding
• 12 — Monthly compounding
• −1 — Continuous compounding

Note  When ZeroData is an IRDataCurve object, the arguments ZeroCompounding
and ZeroBasis are implicit in ZeroData and are redundant inside this function. In that
case, specify these optional arguments when constructing the IRDataCurve object
before calling this function.

Default: 2 (Semiannual compounding)

Output Arguments
Payer

N-by-1 vector of prices for payer swap options in Basis points.

Receiver

N-by-1 vector of prices for receiver swap options in Basis points.

Examples

Obtain Payer and Receiver Values for a Credit Default Swap Option

Use cdsoptprice to generate Payer and Receiver values for a credit default swap
option.
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Settle = datenum('12-Jun-2012');
OptionMaturity = datenum('20-Sep-2012');
CDSMaturity = datenum('20-Sep-2017');
OptionStrike = 200;
SpreadVolatility = .4;

Zero_Time = [.5 1 2 3 4 5]';
Zero_Rate = [.5 .75 1.5 1.7 1.9 2.2]'/100;
Zero_Dates = daysadd(Settle,360*Zero_Time,1);
ZeroData = [Zero_Dates Zero_Rate];

Market_Time = [1 2 3 5 7 10]';
Market_Rate = [100 120 145 220 245 270]';
Market_Dates = daysadd(Settle,360*Market_Time,1);
MarketData = [Market_Dates Market_Rate];

ProbData = cdsbootstrap(ZeroData, MarketData, Settle);

[Payer,Receiver] = cdsoptprice(ZeroData, ProbData, Settle,...
OptionMaturity, CDSMaturity, OptionStrike, SpreadVolatility)

Payer = 223.5780

Receiver = 22.7460

Definitions

Credit Default Swap Option
A credit default swap (CDS) option, or credit default swaption, is a contract that provides
the option holder with the right, but not the obligation, to enter into a credit default swap
in the future.

CDS options can either be payer swaptions or receiver swaptions. In a payer swaption,
the option holder has the right to enter into a CDS in which they are paying premiums
and in a receiver swaption, the option holder is receiving premiums.
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Algorithms
The payer and receiver credit default swap options are computed using the Black's model
as described in O'Kane [1]:
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where

RPV01 is the risky present value of a basis point (see cdsrpv01).

Φ is the normal cumulative distribution function.

σ is the spread volatility.

t is the valuation date.

tE is the option expiry date.

T is the CDS maturity date.

F is the forward spread (from option expiry to CDS maturity).

K is the strike spread.

FEP is the front-end protection (from option initiation to option expiry).
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References
[1] O'Kane, D. Modelling Single-name and Multi-name Credit Derivatives. Wiley, 2008, pp.
156–169.

See Also
IRDataCurve | cdsbootstrap | cdsprice | cdsrpv01 | cdsspread

Topics
“Pricing a Single-Name CDS Option” on page 8-38
“Pricing a CDS Index Option” on page 8-40
“Credit Default Swap Option” on page 8-37

External Websites
Pricing and Valuation of Credit Default Swaps (4 min 22 sec)

Introduced in R2011a
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cmosched
Generate principal balance schedule for planned amortization class (PAC) or targeted
amortization class (TAC) bond

Syntax
[BalanceSchedule,InitialBalance] = cmosched(Principal,Coupon,
OriginalTerm,TermRemaining,PrepaySpeed)
[BalanceSchedule,InitialBalance] = cmosched( ___ ,TranchePrincipal)

Description
[BalanceSchedule,InitialBalance] = cmosched(Principal,Coupon,
OriginalTerm,TermRemaining,PrepaySpeed) generates a principal balance
schedule for planned amortization class (PAC) bonds using two bands of Public Securities
Association Prepayment Model (PSA) speeds or targeted amortization class (TAC) bonds
using a single PSA speed.

[BalanceSchedule,InitialBalance] = cmosched( ___ ,TranchePrincipal)
adds an optional argument for TranchePrincipal.

Examples

Calculate the Principal Balance Schedule for a CMO PAC Bond

Define the mortgage pool under consideration and generate a principal balance schedule
for planned amortization class (PAC) bonds using two bands of PSA speeds.

Principal = 128687000;
GrossRate = 0.0648;
OriginalTerm = 360;
TermRemaining = 325;
PrepaySpeed = [300 525];
PacPrincipal = 100250000;
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[BalanceSchedule, InitialBalance] ...
= cmosched(Principal, GrossRate, OriginalTerm, TermRemaining, ...
PrepaySpeed, PacPrincipal)

BalanceSchedule = 1×325
107 ×

    9.7996    9.5780    9.3602    9.1461    8.9357    8.7289    8.5257    8.3259    8.1296    7.9366    7.7469    7.5605    7.3773    7.1972    7.0202    6.8463    6.6754    6.5073    6.3422    6.1799    6.0204    5.8637    5.7096    5.5582    5.4094    5.2632    5.1194    4.9782    4.8394    4.7030    4.5689    4.4372    4.3077    4.1804    4.0554    3.9325    3.8118    3.6931    3.5765    3.4619    3.3494    3.2406    3.1353    3.0334    2.9348    2.8394    2.7470    2.6576    2.5711    2.4873

InitialBalance = 100250000

Input Arguments
Principal — Principal of the underlying mortgage pool
numeric

Principal of the underlying mortgage pool, specified as a scalar numeric value.
Data Types: double

Coupon — Coupon rate of the underlying mortgage pool
decimal

Coupon rate of the underlying mortgage pool, specified as a scalar decimal value.
Data Types: double

OriginalTerm — Original term in months of the underlying mortgage pool
numeric

Original term in months of the underlying mortgage pool, specified as a scalar numeric
value.
Data Types: double

TermRemaining — Terms remaining in months of the underlying mortgage pool
numeric

Terms remaining in months of the underlying mortgage pool, specified as a scalar
numeric value.
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Data Types: double

PrepaySpeed — PSA speed
matrix numeric | scalar numeric

PSA speed is specified as follows:

• For planned amortization class (PAC) bonds, PSA speed is specified as a 1-by-2 matrix,
where the first element is the lower band and the second element is the upper band.

• For targeted amortization class (TAC) bonds, the PSA speed is specified as a scalar
numeric value

Data Types: double

TranchePrincipal — Principal of the scheduled tranche
numeric

(Optional) Principal of the scheduled tranche, specified as a scalar numeric value. If
TranchePrincipal is unspecified or empty [], the principal of the scheduled tranche is
assumed to be the sum of the payment schedule calculated from the PSA prepayment
speeds.
Data Types: double

Output Arguments
BalanceSchedule — Number of terms remaining
matrix

Number of terms remaining, returned as a matrix of size 1-by-NUMTERMS, where
NUMTERMS is the number of terms remaining. Each column contains the scheduled
principal balance for the time period corresponding to the column number.

InitialBalance — Initial principal balance of the scheduled tranche
scalar

initial principal balance of the scheduled tranche, returned as a scalar numeric value.
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Definitions

Planned Amortization Class (PAC) Bond
PAC bonds are a type of CMO bond and are designed to largely eliminate prepayment risk
for investors.

They do this by transferring essentially all prepayment risk to other bonds in the CMO
that are called support bonds.

Targeted Amortization Class (TAC) Bond
TAC bonds are analogous to PAC bonds, but are structured differently.

TAC bonds offer one-sided protection, shielding investors from high prepayment rates up
to a specified PSA and do not protect against low prepayment rates.

References
[1] Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-

Backed Securities. John Wiley and Sons, New York, 2001.

[2] Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press,
2004.

See Also
cmoschedcf

Topics
“Create PAC and Sequential CMO” on page 5-63
“What Are CMOs?” on page 5-51
“Prepayment Risk” on page 5-52
“CMO Workflow” on page 5-60

Introduced in R2012a
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cmoschedcf
Generate cash flows for scheduled collateralized mortgage obligation (CMO) using PAC or
TAC model

Syntax
[Balance,Principal,Interest] = cmoschedcf(PrincipalPayments,
TranchePrincipalsTrancheCoupons,BalanceSchedule)

Description
[Balance,Principal,Interest] = cmoschedcf(PrincipalPayments,
TranchePrincipalsTrancheCoupons,BalanceSchedule) generates cash flows for a
scheduled CMO, such as the planned amortization class (PAC) or targeted amortization
class (TAC), given the underlying mortgage pool payments (or payments from another
CMO tranche). The output Balances, Principal, and Interest from this function can
be used as input into cmoseqcf to further divide the PAC, TAC, or support dividing a
tranche into sequential tranches.

Examples

Calculate Cash Flows for Each PAC Tranche

Define the mortgage pool under consideration for CMO structuring using mbscfamounts
or mbspassthrough. Calculate the underlying mortgage cash flow, define the PAC
schedule and CMO tranches, and calculate the cash flows for each tranche.

MortgagePrincipal = 1000000; % underlying mortgage
Coupon = 0.12;
Terms = 6; % months

[PrincipalBalance, MonthlyPayments, SchedPrincipalPayments, ...
InterestPayments, Prepayments] = ...
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mbspassthrough(MortgagePrincipal, Coupon, Terms, Terms, 0, []);
PrincipalPayments = SchedPrincipalPayments.' + Prepayments.'

PrincipalPayments = 1×6
105 ×

    1.6255    1.6417    1.6582    1.6747    1.6915    1.7084

Calculate the PAC schedule for CMO using cmosched.

PrepaySpeed = [100 300];
[BalanceSchedule, InitialBalance] ...
= cmosched(MortgagePrincipal, Coupon, Terms, Terms, PrepaySpeed, [])

BalanceSchedule = 1×6
105 ×

    8.3617    6.7180    5.0581    3.3828    1.6955         0

InitialBalance = 9.9886e+05

Define CMO tranches.

TranchePrincipals = ...
[InitialBalance; MortgagePrincipal-InitialBalance];
TrancheCoupons = [0.12; 0.12];

Calculate cash flows for each tranche.

[Balance, Principal, Interest] = ...
cmoschedcf(PrincipalPayments, TranchePrincipals, ...
TrancheCoupons, BalanceSchedule)

Balance = 2×6
105 ×

    8.3631    6.7213    5.0632    3.3885    1.6970         0
    0.0114    0.0114    0.0114    0.0114    0.0114    0.0000

Principal = 2×6
105 ×

    1.6255    1.6417    1.6582    1.6747    1.6915    1.6970
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         0         0         0         0         0    0.0114

Interest = 2×6
103 ×

    9.9886    8.3631    6.7213    5.0632    3.3885    1.6970
    0.0114    0.0114    0.0114    0.0114    0.0114    0.0114

Input Arguments
PrincipalPayments — Number of terms remaining for underlying principal
payments
numeric matrix

Number of terms remaining for underlying principal payments, specified as a matrix of
size 1-by-NUMTERMS, where NUMTERMS is the number of terms remaining. Each column
contains the underlying principal payment for the time period corresponding to the row
number. Calculate underlying principal payments using mbscfamounts or
mbspassthrough. The underlying principal payments can also be outputs from other
CMO cash flow functions.
Data Types: double

TranchePrincipals — Initial principal for the scheduled and the support tranche
numeric matrix

Initial principal for the scheduled and the support tranche, specified as a matrix of size 2-
by-1.
Data Types: double

TrancheCoupons — Coupons for the schedule tranche and the support tranche
matrix of coupon values

Coupons for the schedule tranche and the support tranche, specified as a matrix of size 2-
by-1 of coupon values. The weighted average coupon for the CMO should not exceed the
coupon of the underlying mortgage.
Data Types: double
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BalanceSchedule — Number of terms remaining for targeted balance
numeric matrix

Number of terms remaining for targeted balance, specified as a matrix of size 1-by-
NUMTERMS, where NUMTERMS is the number of terms remaining. Each element represents
the targeted balance schedule for the time period corresponding to that column.
Data Types: double

Output Arguments
Balance — Number of terms remaining and principal balances
matrix

Number of terms remaining and principal balances, returned as a matrix of size 2-by-
NUMTERMS, where NUMTERMS is the number of terms remaining. The first row is the
principal balances of the scheduled tranche, and the second row is the principal balances
of the support tranche at the time period corresponding to the column.

Principal — Number of terms remaining and principal payments
matrix

Number of terms remaining and principal payments, returned as a matrix of size 2-by-
NUMTERMS, where NUMTERMS is the number of terms remaining. The first row is the
principal payments of the scheduled tranche, and the second row is the principal
payments of the support tranche at the time period corresponding to the column.

Interest — Number of terms remaining and interest payments
scalar

Number of terms remaining and interest payments, returned as a matrix of size 2-by-
NUMTERMS, where NUMTERMS is the number of terms remaining. The first row is the
interest payments of the schedule tranche, and the second row is the interest payments of
the support tranche at the time period corresponding to the column.
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Definitions
Planned Amortization Class (PAC) Tranches
In a PAC CMO, there is a main tranche, known as the schedule tranche, and a support
tranche.

The main purpose of a schedule tranche is to give investors in the PAC tranche a more
certain cash flow.

Targeted Amortization Class (TAC) Tranches
TACs are like PACs, but principal payment is specified for only one prepayment rate.

If prepayment rates are higher or lower, then the principal payment to TAC holders are
higher or lower accordingly.

Schedule and Support Tranche
The main purpose of a PAC tranche is to give investors in the PAC tranche a more certain
cash flow.

The PAC tranche receives priority for receiving payments of principal and interest that
gives investors in the PAC tranche a steadier income. If prepayments differ from what was
expected, then the support tranche gets the variable portion of the payments. While
income to the support tranche is more variable, it is also higher yielding. Estimates of the
yield, average life, and lockout periods of the PAC tranche is more certain.

References
[1] Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-

Backed Securities. John Wiley and Sons, New York, 2001.

[2] Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press,
2004.

See Also
cmosched | cmoseqcf | mbscfamounts | mbspassthrough
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Topics
“Create PAC and Sequential CMO” on page 5-63
“What Are CMOs?” on page 5-51
“Prepayment Risk” on page 5-52
“CMO Workflow” on page 5-60

Introduced in R2012a

 cmoschedcf
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cmoseqcf
Generate cash flows for sequential collateralized mortgage obligation (CMO)

Syntax
[Balance,Principal,Interest] = cmoseqcf(PrincipalPayments,
TranchePrincipalsTrancheCoupons)
[Balances,Principal,Interest] = cmoseqcf( ___ ,HasZ)

Description
[Balance,Principal,Interest] = cmoseqcf(PrincipalPayments,
TranchePrincipalsTrancheCoupons) generates cash flows for a sequential CMO
without a Z-bond, given the underlying mortgage pool payments.

[Balances,Principal,Interest] = cmoseqcf( ___ ,HasZ) generates cash flows
for a sequential CMO with a Z-bond, given the underlying mortgage pool payments, by
adding an additional optional input for HasZ.

Examples

Calculate Cash Flows for a Sequential Collateralized Mortgage Obligation (CMO)

Define the mortgage pool under consideration for CMO structuring using mbscfamounts
or mbspassthrough and calculate the cash flows with an A and B tranche for a
sequential CMO.

MortgagePrincipal = 1000000;
Coupon = 0.12;
Terms = 6; % months

% Calculate underlying mortgage cash flows
[PrincipalBalance, MonthlyPayments, SchedPrincipalPayments, ...
InterestPayments, Prepayments] = ...
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mbspassthrough(MortgagePrincipal, Coupon, Terms, Terms, 0, []);
PrincipalPayments = SchedPrincipalPayments.' + Prepayments.'

PrincipalPayments = 1×6
105 ×

    1.6255    1.6417    1.6582    1.6747    1.6915    1.7084

Define CMO tranches, A and B.

TranchePrincipals = [500000; 500000];
TrancheCoupons = [0.12; 0.12];

Calculate cash flows for each tranche.

[Balance, Principal, Interest] = ...
cmoseqcf(PrincipalPayments, TranchePrincipals, TrancheCoupons, false)

Balance = 2×6
105 ×

    3.3745    1.7328    0.0746         0         0         0
    5.0000    5.0000    5.0000    3.3999    1.7084    0.0000

Principal = 2×6
105 ×

    1.6255    1.6417    1.6582    0.0746         0         0
         0         0         0    1.6001    1.6915    1.7084

Interest = 2×6
103 ×

    5.0000    3.3745    1.7328    0.0746         0         0
    5.0000    5.0000    5.0000    5.0000    3.3999    1.7084

 cmoseqcf
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Input Arguments
PrincipalPayments — Number of terms remaining for underlying principal
payments
numeric matrix

Number of terms remaining for underlying principal payments, specified as a matrix of
size 1-by-NUMTERMS, where NUMTERMS is the number of terms remaining. Each column
contains the underlying principal payment for the time period corresponding to the row
number. Calculate underlying principal payments using mbscfamounts or
mbspassthrough. The underlying principal payments can also be outputs from other
CMO cash flow functions.
Data Types: double

TranchePrincipals — Initial principal for each tranche
numeric matrix

Initial principal for each tranche, specified as a matrix of size NUMTRANCHES-by-1, where
NUMTRANCHES is the number of tranches in the sequential CMO. Each element of the
matrix represents the initial principal for each tranche. If the sequential CMO includes a
Z-bond (HasZ is true), the last element of this matrix is the principal of the Z-bond.
Data Types: double

TrancheCoupons — Coupon for each tranche
matrix of coupon values

Coupon for each tranche, specified as a matrix of size NUMTRANCHES-by-1, where
NUMTRANCHES is the number of tranches in the sequential CMO. Each element of the
matrix represents the coupon for each tranche. If the sequential CMO includes a Z-bond
(HasZ is true), the last element of this matrix is the coupon of the Z-bond. The weighted
average coupon for the CMO should not exceed the coupon of the underlying mortgage.
Data Types: double

HasZ — Indicates that the sequential CMO contains a Z-bond
false (default) | true | false

(Optional) Indicates that the sequential CMO contains a Z-bond, specified as a Boolean
(true or false). A value of true indicates that the sequential CMO contains a Z-bond,
and the last element of TranchePrincipals and TrancheCoupons is treated as that of
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the Z-bond. A value of false indicates that there is no Z-bond in the sequential CMO, and
the last element of TranchePrincipals and TrancheCoupons is treated as an ordinary
tranche.
Data Types: logical

Output Arguments
Balance — Principal balance for time period and tranche
matrix

Principal balance for time period and tranche, returned as a matrix of size NUMTRANCHES-
by-NUMTERMS, where NUMTRANCHES is the number of terms remaining and NUMTRANCHES
is the number of tranches. Each element represents the principal balance at the time
period corresponding to the column, and for the tranche corresponding to the row.

Principal — Principal payments for time period and tranche
matrix

Principal payments for time period and tranche, returned as a matrix of size
NUMTRANCHES-by-NUMTERMS, where NUMTRANCHES is the number of terms remaining and
NUMTRANCHES is the number of tranches. Each element represents the principal
payments made at the time period corresponding to the column, and to the tranche
corresponding to the row.

Interest — Interest payments for time period and tranche
matrix

Interest payments for time period and tranche, returned as a matrix of size
NUMTRANCHES-by-NUMTERMS, where NUMTRANCHES is the number of terms remaining and
NUMTRANCHES is the number of tranches. Each element represents the interest payments
made at the time period corresponding to the column, and to the tranche corresponding
to the row.

Definitions
Sequential Pay CMO
A sequential pay CMO involves tranches that pay off principal sequentially.
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For example, consider the following case, where all principal from the underlying
mortgage pool is repaid on tranche A first, then tranche B, then tranche C. Interest is
paid on each tranche as long as the principal for the tranche has not been retired.

CMO Tranche
Tranche is a term often used to describe a specific class of bonds within an offering
wherein each tranche offers varying degrees of risk to the investor.

References
[1] Hayre, Lakhbir, ed. Salomon Smith Barney Guide to Mortgage-Backed and Asset-

Backed Securities. John Wiley and Sons, New York, 2001.

[2] Lyuu, Yuh-Dah. Financial Engineering and Computation. Cambridge University Press,
2004.

See Also
cmosched | cmoschedcf | mbscfamounts | mbspassthrough

Topics
“Create PAC and Sequential CMO” on page 5-63
“What Are CMOs?” on page 5-51
“Prepayment Risk” on page 5-52
“CMO Workflow” on page 5-60

Introduced in R2012a
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convfactor
Bond conversion factors

Syntax
CF = convfactor(RefDate,Maturity,CouponRate)
CF =
convfactor(RefDate,Maturity,CouponRate,'ParameterName',ParameterValu
e, ...)

Description
CF = convfactor(RefDate,Maturity,CouponRate) computes a conversion factor
for a bond futures contract.

CF =
convfactor(RefDate,Maturity,CouponRate,'ParameterName',ParameterValu
e, ...) accepts optional inputs as one or more comma-separated parameter-value pairs.
'ParameterName' is the name of the parameter inside single quotes. ParameterValue
is the value corresponding to 'ParameterName'. Specify parameter/value pairs in any
order. Names are case-insensitive. convfactor computes a conversion factor for a bond
futures contract, given a Convention value for a US Treasury bond, German bond, UK
Gilt, or Japanese Government Bond.

Input Arguments
RefDate

Reference dates, for which conversion factor is computed (usually the first day of delivery
months).

Maturity

Maturity date of the underlying bond.

 convfactor
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CouponRate

Annual coupon rate of the underlying bond in decimal.

Parameter–Value Pairs
Enter the following inputs only as parameter–value pairs.

Convention

Conversion factor convention. Scalar. Valid values are:

• 1 = US Treasury bond (30-year) and Treasury note (10-year) futures contract
• 2 = US 2-year and 5-year Treasury note futures contract
• 3 = German Bobl, Bund, Buxl, and Schatz
• 4 = UK gilts
• 5 = Japanese Government Bonds (JGBs)

Default: 1

FirstCouponDate

Irregular or normal first coupon date.

RefYield

Reference semiannual yield.

Default: 0.06 (6%)

StartDate

Forward starting date of payments.

Output Arguments
CF

N-by1 vector of conversion factors against the 6% yield par-bond.
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Examples

Compute the Conversion Factors For a Bond Futures Contract

This example shows how to calculate CF, given the following RefDate, Maturity, and
CouponRate.

RefDate  = {'1-Dec-2002';
               '1-Mar-2003';
               '1-Jun-2003';
               '1-Sep-2003';
               '1-Dec-2003';
               '1-Sep-2003';
               '1-Dec-2002';
               '1-Jun-2003'};
 
Maturity = {'15-Nov-2012';
               '15-Aug-2012';
               '15-Feb-2012';
               '15-Feb-2011';
               '15-Aug-2011';
               '15-Aug-2010';
               '15-Aug-2009';
               '15-Feb-2010'};
 
CouponRate = [0.04; 0.04375; 0.04875; 0.05; 0.05; 0.0575; 0.06; 0.065];
 
CF = convfactor(RefDate, Maturity, CouponRate)

CF = 8×1

    0.8539
    0.8858
    0.9259
    0.9418
    0.9403
    0.9862
    1.0000
    1.0266

 convfactor
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Compute the Conversion Factor For a German Bond

This example shows how to calculate cf, given the following RefDate, Maturity, and
CouponRate for a German bond.

cf = convfactor('3/10/2009','1/04/2018', .04,.06,3)

cf = 0.8659

Definitions

Conversion Factors
Conversion factors of US Treasury bonds and other government bonds are based on a
bond yielding 6%.

Optionally, you can specify other types of bonds and yields using inputs for RefYield and
Convention. For US Treasury bonds, verify the output of convfactor by comparing the
output against the quotations provided by the Chicago Board of Trade (https://
www.cmegroup.com/company/cbot.html).

For German bonds, verify the output of convfactor by comparing the output against the
quotations provided by Eurex (https://www.eurexchange.com).

For UK Gilts, verify the output of convfactor by comparing the output against the
quotations provided by Euronext (https://www.euronext.com).

For Japanese Government Bonds, verify the output of convfactor by comparing the
output against the quotations provided by the Tokyo Stock Exchange (https://
www.jpx.co.jp/english/).

References
Burghardt, G., T. Belton, M. Lane, and J. Papa. The Treasury Bond Basis. McGraw-Hill,
2005.

Krgin, Dragomir. Handbook of Global Fixed Income Calculations. John Wiley & Sons,
2002.
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See Also
bndfutimprepo | bndfutprice | tfutbyprice | tfutbyyield | tfutimprepo

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Managing Present Value with Bond Futures” on page 7-16

Introduced in R2009b
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fitFunction
Custom fit interest-rate curve object to bond market data

Class
@IRFunctionCurve on page A-13

Syntax
CurveObj = IRFunctionCurve.fitFunction(Type,Settle,FunctionHandle,Instruments,IRFitOptionsObj)

CurveObj = IRFunctionCurve.fitFunction(Type,Settle,FunctionHandle,Instruments,IRFitOptionsObj,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
Type Type of interest-rate curve for a bond: zero, forward, or

discount.
Settle Scalar for the Settle date of the curve.
FunctionHandle Function handle that defines the interest-rate curve. The

function handle takes two numeric vectors (time-to-maturity
and a vector of function coefficients) and returns one numeric
output (interest rate or discount factor). For more information
on defining a function handle, see the MATLAB Programming
Fundamentals documentation.

Instruments N-by-4 data matrix for Instruments where the first column is
Settle date, the second column is Maturity, the third
column is the clean price, and the fourth column is a
CouponRate for the bond.

IRFitOptionsObj Object constructed from IRFitOptions.
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Compounding (Optional) Scalar that sets the compounding frequency per
year for the IRFunctionCurve object:

• −1 = Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Basis (Optional) Day-count basis of the bond. A scalar of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

 fitFunction
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Instrument Parameters
For each bond Instrument, you can specify the following additional instrument
parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a
bond instrument's Basis value from the curve's Basis value.

InstrumentPeriod (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.

InstrumentBasis (Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
InstrumentEndMonthRu
le

(Optional) End-of-month rule. A vector. This rule applies only
when Maturity is an end-of-month date for a month having
30 or fewer days. 0 = ignore rule, meaning that a bond's
coupon payment date is always the same numerical day of
the month. 1 = set rule on (default), meaning that a bond's
coupon payment date is always the last actual day of the
month.

InstrumentIssueDate (Optional) Date when an instrument was issued.
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InstrumentFirstCoupo
nDate

(Optional) Date when a bond makes its first coupon payment;
used when bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both
specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.

InstrumentLastCoupon
Date

(Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period. In
the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is
followed only by the bond's maturity cash flow date. If you do
not specify a LastCouponDate, the cash flow payment dates
are determined from other inputs.

InstrumentFace (Optional) Face or par value. Default = 100.

Note When using Instrument parameter/value pairs, you can specify simple interest for
a bond by specifying the InstrumentPeriod value as 0. If InstrumentBasis and
InstrumentPeriod are not specified for a bond, the following default values are used:
Basis is 0 (act/act) and Period is 2.

Description
CurveObj = IRFunctionCurve.fitFunction(Type, Settle, FunctionHandle,
Instruments, IRFitOptionsObj, 'Parameter1', Value1, 'Parameter2',
Value2, ...) fits a bond to a custom fitting function. You must enter the optional
arguments for Basis and Compounding as parameter/value pairs.

Examples
Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];
CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];

 fitFunction
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Instruments = [Settle Maturity CleanPrice CouponRate];
CurveSettle = datenum('30-Apr-2008');
OptOptions = optimoptions('lsqnonlin','display','iter');
functionHandle = @(t,theta) polyval(theta,t);    

CustomModel = IRFunctionCurve.fitFunction('Zero', CurveSettle, ...
functionHandle,Instruments, ...
IRFitOptions([.05 .05 .05],'FitType','price',...
'OptOptions',OptOptions));

                                        Norm of      First-order 
 Iteration  Func-count     f(x)          step          optimality   CG-iterations
     0          4         38036.7                      4.92e+04
     1          8         38036.7             10       4.92e+04            0
     2         12         38036.7            2.5       4.92e+04            0
     3         16         38036.7          0.625       4.92e+04            0
     4         20         38036.7        0.15625       4.92e+04            0
     5         24         30741.5      0.0390625       1.72e+05            0
     6         28         30741.5       0.078125       1.72e+05            0
     7         32         30741.5      0.0195312       1.72e+05            0
     8         36         28713.6     0.00488281       2.33e+05            0
     9         40         20323.3     0.00976562       9.47e+05            0
    10         44         20323.3      0.0195312       9.47e+05            0
    11         48         20323.3     0.00488281       9.47e+05            0
    12         52         20323.3      0.0012207       9.47e+05            0
    13         56         19698.8    0.000305176       1.08e+06            0
    14         60           17493    0.000610352          7e+06            0
    15         64           17493      0.0012207          7e+06            0
    16         68           17493    0.000305176          7e+06            0
    17         72         15455.1    7.62939e-05       2.25e+07            0
    18         76         15455.1    0.000177499       2.25e+07            0
    19         80         13317.1     3.8147e-05       3.18e+07            0
    20         84         12865.3    7.62939e-05       7.83e+07            0
    21         88         11779.8    7.62939e-05       7.58e+06            0
    22         92         11747.6    0.000152588       1.45e+05            0
    23         96         11720.9    0.000305176       2.33e+05            0
    24        100         11667.2    0.000610352       1.48e+05            0
    25        104         11558.6      0.0012207       3.55e+05            0
    26        108         11335.5     0.00244141       1.57e+05            0
    27        112         10863.8     0.00488281       6.36e+05            0
    28        116         9797.14     0.00976562       2.53e+05            0
    29        120         6882.83      0.0195312       9.18e+05            0
    30        124         6882.83      0.0373993       9.18e+05            0
    31        128         3218.45     0.00934981       1.96e+06            0
    32        132         612.703      0.0186996       3.01e+06            0
    33        136         13.0998      0.0253882       3.05e+06            0
    34        140       0.0762922     0.00154002       5.05e+04            0
    35        144       0.0731652    3.61102e-06           29.9            0
    36        148       0.0731652    6.32335e-08          0.063            0

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to 
its initial value is less than the default value of the function tolerance.

See Also
“@IRFitOptions” on page A-11 | “@IRFunctionCurve” on page A-13
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Topics
“Creating an IRFunctionCurve Object” on page 9-22
“Fitting Interest Rate Curve Functions” on page 9-33
“Using fitFunction to Create Custom Fitting Function” on page 9-29
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Creating Interest-Rate Curve Objects” on page 9-4

External Websites
Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk
Applications (30 min 00 sec)

Introduced in R2008b
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fitNelsonSiegel
Fit Nelson-Siegel function to bond market data

Class
@IRFunctionCurve on page A-13

Syntax
CurveObj = IRFunctionCurve.fitNelsonSiegel(Type,Settle,Instruments)

CurveObj = IRFunctionCurve.fitNelsonSiegel(Type,Settle,Instruments,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
Type Type of interest-rate curve for a bond: zero or forward.
Settle Scalar for the Settle date of the curve.
Instruments N-by-4 data matrix for Instruments where the first column is

Settle date, the second column is Maturity, the third
column is the clean price, and the fourth column is a
CouponRate for the bond.

Compounding (Optional) Scalar that sets the compounding frequency per
year for the IRFunctionCurve object:

• -1 = Continuous compounding
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Basis (Optional) Day-count basis of the interest-rate curve. A scalar
of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

 fitNelsonSiegel
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IRFitOptions (Optional) Object constructed from IRFitOptions. When
using IRFitOption, the default FitType is
DurationWeightedPrice. Duration weighted price refers to
the form of the objective function that needs to be minimized
to find the optimal Nelson-Siegel parameters. Specifically, this
objective function minimizes using the following three
algorithms:

• The difference between observed and model-predicted
yields for each bond, ObsY_i – PredY_i

• The difference between observed and model-predicted
prices for each bond, ObsP_i – PredP_i

• The difference between observed and model-predicted
prices, weighted by the inverse of the duration of each
bond (ObsP_i – PredP_i) / D_i. Weighting price by inverse
duration converts the pricing errors into yield fitting
errors, to a first approximation.

Instrument Parameters
For each bond Instrument, you can specify the following additional instrument
parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a
bond instrument's Basis value from the curve's Basis value.

InstrumentPeriod (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
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InstrumentBasis (Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis (Financial Toolbox).
InstrumentEndMonthRu
le

(Optional) End-of-month rule. A vector. This rule applies only
when Maturity is an end-of-month date for a month having
30 or fewer days. 0 = ignore rule, meaning that a bond's
coupon payment date is always the same numerical day of
the month. 1 = set rule on (default), meaning that a bond's
coupon payment date is always the last actual day of the
month.

InstrumentIssueDate (Optional) Date when an instrument was issued.
InstrumentFirstCoupo
nDate

(Optional) Date when a bond makes its first coupon payment;
used when bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both
specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.

 fitNelsonSiegel
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InstrumentLastCoupon
Date

(Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period. In
the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is
followed only by the bond's maturity cash flow date. If you do
not specify a LastCouponDate, the cash flow payment dates
are determined from other inputs.

InstrumentFace (Optional) Face or par value. Default = 100.

Note When using Instrument parameter/value pairs, you can specify simple for a bond
by specifying the InstrumentPeriod value as 0. If InstrumentBasis and
InstrumentPeriod are not specified for a bond, the following default values are used:
Basis is 0 (act/act) and Period is 2.

Description
CurveObj = IRFunctionCurve.fitNelsonSiegel(Type, Settle,
Instruments, 'Parameter1', Value1, 'Parameter2', Value2, ...) fits a
Nelson-Siegel function to market data for a bond. You must enter the optional arguments
for Basis, Compounding, and IRFitOptionsObj as parameter/value pairs. After
creating a Nelson-Siegel model, you can view the model parameters using:

CurveObj.Parameters

where the order of parameters is [Beta0,Beta1,Beta2,tau1].

Examples

Use the Nelson-Siegel Function to Fit Bond Market Data

This example shows how to use the Nelson-Siegel function to fit bond market data.

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
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datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
Instruments = [Settle Maturity CleanPrice CouponRate];
PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);

NSModel = IRFunctionCurve.fitNelsonSiegel('Zero',datenum('30-Apr-2008'),Instruments);

NSModel.Parameters

ans = 1×4

    4.6617   -1.0227   -0.3484    1.2386

% create the plot
plot(PlottingPoints, getParYields(NSModel, PlottingPoints),'r')
hold on
scatter(Maturity,Yield,'black')
datetick('x')
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Algorithms
The Nelson-Siegel model proposes that the instantaneous forward curve can be modeled
with the following:

f e
m
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m m

= + +

- -

b b b
t

t t
0 1 2

This can be integrated to derive an equation for the zero curve (see [6] for more
information on the equations and the derivation):
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See [1] for more information.
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See Also
“@IRFitOptions” on page A-11 | “@IRFunctionCurve” on page A-13

Topics
“Fitting IRFunctionCurve Object Using Nelson-Siegel Method” on page 9-22
“Fitting Interest Rate Curve Functions” on page 9-33
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“Using fitFunction to Create Custom Fitting Function” on page 9-29
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Creating Interest-Rate Curve Objects” on page 9-4

External Websites
Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk
Applications (30 min 00 sec)

Introduced in R2008b
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fitSmoothingSpline
Fit smoothing spline to bond market data

Class
@IRFunctionCurve on page A-13

Syntax
CurveObj = IRFunctionCurve.fitSmoothingSpline(Type,Settle,Instruments,Lambdafun)

CurveObj = IRFunctionCurve.fitSmoothingSpline(Type,Settle,Instruments,Lambdafun,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments

Note You must have a license for Curve Fitting Toolbox software to use the
fitSmoothingSpline method.

Type Type of interest-rate curve for a bond: Forward, Zero, or
Discount.

Settle Scalar for the Settle date of the curve.
Instruments N-by-4 data matrix for Instruments where the first column is

Settle date, the second column is Maturity, the third column is
the clean price, and the fourth column is a CouponRate for the
bond.
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Lambdafun Penalty function that takes as its input time and returns a penalty
value. Use a function handle to support the penalty function. The
function handle for the penalty function which takes one numeric
input (time-to-maturity) and returns one numeric output (penalty to
be applied to the curvature of the spline). For more information on
defining a function handle, see the MATLAB Programming
Fundamentals documentation.

Note The smoothing spline represents the forward curve. The spline
is penalized for curvature by specifying a penalty function. This fit
may only be done with a FitType of DurationWeightedPrice.

Knots (Optional) Vector of knot locations (times-to-maturity); by default,
knots is set to be a vector comprised of 0 and the time to maturity of
all input instruments. The default is for the spline type to be cubic
but you can specify any spline type by explicitly specifying the knots.
User-defined knots can be specified using the following command,
wherek is the order: augknt(knots,k).

Compounding (Optional) Scalar that sets the compounding frequency per year for
the IRFunctionCurve object:

• −1 = Continuous compounding (default)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding
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Basis (Optional) Day-count basis of the interest-rate curve. A scalar of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Instrument Parameters
For each bond Instrument, you can specify the following additional instrument
parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a
bond instrument's Basis value from the curve's Basis value.

InstrumentPeriod (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
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InstrumentBasis (Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
InstrumentEndMonthRu
le

(Optional) End-of-month rule. A vector. This rule applies only
when Maturity is an end-of-month date for a month having
30 or fewer days. 0 = ignore rule, meaning that a bond's
coupon payment date is always the same numerical day of
the month. 1 = set rule on (default), meaning that a bond's
coupon payment date is always the last actual day of the
month.

InstrumentIssueDate (Optional) Date when an instrument was issued.
InstrumentFirstCoupo
nDate

(Optional) Date when a bond makes its first coupon payment;
used when bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both
specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.
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InstrumentLastCoupon
Date

(Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period. In
the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is
followed only by the bond's maturity cash flow date. If you do
not specify a LastCouponDate, the cash flow payment dates
are determined from other inputs.

InstrumentFace (Optional) Face or par value. Default = 100.

Note When using Instrument parameter/value pairs, you can specify simple interest for
a bond by specifying the InstrumentPeriod value as 0. If InstrumentBasis and
InstrumentPeriod are not specified for a bond, the following default values are used:
Basis is 0 (act/act) and Period is 2.

Description
Fcurve = IRFunctionCurve.fitSmoothingSpline(Type, Settle,
Instruments, Lambdafun, 'Parameter1', Value1, 'Parameter2',
Value2, ...) fits a smoothing spline to market data for a bond. You must enter the
optional arguments for Basis, Compounding, and Knots as parameter/value pairs.

Examples

Use a Smoothing Spline Function to Fit Market Data For a Bond

This example shows how to use a smoothing spline function to fit market data for a bond.

Settle = repmat(datenum('30-Apr-2008'),[6 1]);
Maturity = [datenum('07-Mar-2009');datenum('07-Mar-2011');...
datenum('07-Mar-2013');datenum('07-Sep-2016');...
datenum('07-Mar-2025');datenum('07-Mar-2036')];

CleanPrice = [100.1;100.1;100.8;96.6;103.3;96.3];
CouponRate = [0.0400;0.0425;0.0450;0.0400;0.0500;0.0425];
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Instruments = [Settle Maturity CleanPrice CouponRate];
PlottingPoints = datenum('07-Mar-2009'):180:datenum('07-Mar-2036');
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity);

% use the AUGKNT function to construct the knots for a cubic spline at every 5 years
CustomKnots = augknt(0:5:30,4);
SmoothingModel = IRFunctionCurve.fitSmoothingSpline('Zero',datenum('30-Apr-2008'),...
Instruments,@(t) 1000,'knots', CustomKnots);

% create the plot
plot(PlottingPoints, getParYields(SmoothingModel, PlottingPoints),'b')
hold on
scatter(Maturity,Yield,'black')
datetick('x')
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Fitting an IRFunctionCurve Object Using the Smoothing Spline Method With the
Penalty Function

Use the fitSmoothinSpline method to fit the interest-rate curve and model the
Lambdafun penalty function. First, load the data.

load ukdata20080430

Convert the repo rates to be equivalent zero coupon bonds.

RepoCouponRate = repmat(0,size(RepoRates));
RepoPrice = bndprice(RepoRates, RepoCouponRate, RepoSettle, RepoMaturity);

Aggregate the data.

Settle = [RepoSettle;BondSettle];
Maturity = [RepoMaturity;BondMaturity];
CleanPrice = [RepoPrice;BondCleanPrice];
CouponRate = [RepoCouponRate;BondCouponRate];
Instruments = [Settle Maturity CleanPrice CouponRate];
InstrumentPeriod = [repmat(0,6,1);repmat(2,31,1)];
CurveSettle = datenum('30-Apr-2008');

Choose the parameters for the Lambdafun input argument.

L = 9.2;
S = -1;
mu = 1;

Define the Lambdafun penalty function.

lambdafun = @(t) exp(L - (L-S)*exp(-t/mu));
t = 0:.1:25;
y = lambdafun(t);
figure
semilogy(t,y);
title('Penalty Function for VRP Approach')
ylabel('Penalty')
xlabel('Time')
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Use the fitSmoothinSpline method to fit the interest-rate curve and model the
Lambdafun penalty function.

VRPModel = IRFunctionCurve.fitSmoothingSpline('Forward',CurveSettle,...
Instruments,lambdafun,'Compounding',-1, 'InstrumentPeriod',InstrumentPeriod)

VRPModel = 

             Type: Forward
           Settle: 733528 (30-Apr-2008)
      Compounding: -1
            Basis: 0 (actual/actual)

Plot the smoothing spline interest-rate curve for the forward rates.

PlottingDates = CurveSettle+20:30:CurveSettle+365*25;
TimeToMaturity = yearfrac(CurveSettle,PlottingDates);
VRPForwardRates = getForwardRates(VRPModel, PlottingDates);
figure;plot(TimeToMaturity,VRPForwardRates)
title('Smoothing Spline model of UK instantaneous nominal forward curve')
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Algorithms
The term structure can be modeled with a spline — specifically, one way to model the
term structure is by representing the forward curve with a cubic spline. To ensure that
the spline is sufficiently smooth, a penalty is imposed relating to the curvature (second
derivative) of the spline:

where the first term is the difference between the observed price P and the predicted

price, P̆ , (weighted by the bond's duration, D) summed over all bonds in our data set and
the second term is the penalty term (where λ is a penalty function and f is the spline).

See [3], [4], [5] below.
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There have been different proposals for the specification of the penalty function λ. One
approach, advocated by [4], and currently used by the UK Debt Management Office, is a
penalty function of the following form:
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See Also
“@IRFunctionCurve” on page A-13

Topics
“Fitting IRFunctionCurve Object Using Smoothing Spline Method” on page 9-26
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“Fitting Interest Rate Curve Functions” on page 9-33
“Interest-Rate Curve Objects and Workflow” on page 9-2
“Creating Interest-Rate Curve Objects” on page 9-4

External Websites
Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk
Applications (30 min 00 sec)

Introduced in R2008b
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fitSvensson
Fit Svensson function to bond market data

Class
@IRFunctionCurve on page A-13

Syntax
CurveObj = IRFunctionCurve.fitSvensson(Type, Settle,Instruments)

CurveObj = IRFunctionCurve.fitSvensson(Type,Settle,Instruments,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
Type Type of interest-rate curve for a bond: zero or forward.
Settle Scalar for the Settle date of the curve.
Instruments N-by-4 data matrix for Instruments where the first column is

Settle date, the second column is Maturity, the third
column is the clean price, and the fourth column is a
CouponRate for the bond.

Compounding (Optional) Scalar that sets the compounding frequency per year
for the IRFunctionCurve object:

• -1 = Continuous compounding
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Basis (Optional) Day-count basis of the interest-rate curve. A scalar of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
IRFitOptions (Optional) Object constructed from IRFitOptions.

Instrument Parameters
For each bond Instrument, you can specify the following additional instrument
parameters as parameter/value pairs. For example, InstrumentBasis distinguishes a
bond instrument's Basis value from the curve's Basis value.

InstrumentPeriod (Optional) Coupons per year of the bond. A vector of
integers. Allowed values are 0, 1, 2 (default), 3, 4, 6, and 12.
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InstrumentBasis (Optional) Day-count basis of the bond. A vector of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis (Financial Toolbox).
InstrumentEndMonthRu
le

(Optional) End-of-month rule. A vector. This rule applies only
when Maturity is an end-of-month date for a month having
30 or fewer days. 0 = ignore rule, meaning that a bond's
coupon payment date is always the same numerical day of
the month. 1 = set rule on (default), meaning that a bond's
coupon payment date is always the last actual day of the
month.

InstrumentIssueDate (Optional) Date when an instrument was issued.
InstrumentFirstCoupo
nDate

(Optional) Date when a bond makes its first coupon payment;
used when bond has an irregular first coupon period. When
FirstCouponDate and LastCouponDate are both
specified, FirstCouponDate takes precedence in
determining the coupon payment structure. If you do not
specify a FirstCouponDate, the cash flow payment dates
are determined from other inputs.

11 Functions — Alphabetical List

11-2280



InstrumentLastCoupon
Date

(Optional) Last coupon date of a bond before the maturity
date; used when bond has an irregular last coupon period. In
the absence of a specified FirstCouponDate, a specified
LastCouponDate determines the coupon structure of the
bond. The coupon structure of a bond is truncated at the
LastCouponDate, regardless of where it falls, and is
followed only by the bond's maturity cash flow date. If you do
not specify a LastCouponDate, the cash flow payment dates
are determined from other inputs.

InstrumentFace (Optional) Face or par value. Default = 100.

Note When using Instrument parameter/value pairs, you can specify simple interest for
a bond by specifying the InstrumentPeriod value as 0. If InstrumentBasis and
InstrumentPeriod are not specified for a bond, the following default values are used:
Basis is 0 (act/act) and Period is 2.

Description
CurveObj = IRFunctionCurve.fitSvensson(Type, Settle, Instruments,
'Parameter1', Value1, 'Parameter2', Value2, ...) fits the Svensson function
to bond market data. You must enter the optional arguments for Basis, Compounding,
and IRFitOptions as parameter/value pairs. After creating a Svensson model, you can
view the model parameters using:

CurveObj.Parameters

where the order of parameters is [Beta0,Beta1,Beta2,Beta3,tau1,tau2].

Examples

Use a Svensson Function to Fit Bond Market Data

This example shows how to use a Svensson function to fit bond market data.

Settle = datenum('15-Apr-2014'); 
Maturity = datemnth(Settle,12*[1 2 3 5 7 10 20 30]'); 
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CleanPrice = [100.1 100.1 100.2 99.0 101.8 99.2 101.7 100.2]'; 
CouponRate = [0.0200 0.0275 0.035 0.042 0.0475 0.0525 0.055 0.052]'; 
Instruments = [repmat(Settle,size(Maturity)) Maturity CleanPrice CouponRate]; 
PlottingPoints = datemnth(Settle,1:360); 
Yield = bndyield(CleanPrice,CouponRate,Settle,Maturity); 

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',Settle,Instruments); 

SvenssonModel.Parameters 

ans = 1×6

    1.8297   -1.2299    1.6316   12.3891    1.6982    8.9422

% create the plot
plot(PlottingPoints, getParYields(SvenssonModel, PlottingPoints),'g') 
hold on 
scatter(Maturity,Yield,'black') 
datetick('x') 
legend({'Svensson Fitted Curve','Yields'},'location','best')
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Algorithms
A similar model to the Nelson-Siegel is the Svensson model, which adds two additional
parameters to account for greater flexibility in the term structure. This model proposes
that the forward rate can be modeled with the following form:

As above, this can be integrated to derive an equation for the zero curve:
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External Websites
Calibration and Simulation of Interest Rate Models in MATLAB (29 min 03 sec)
Calibration and Simulation Best Practices: Multifactor Interest Rate Models for Risk
Applications (30 min 00 sec)

Introduced in R2008b
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getDiscountFactors
Get discount factors for input dates for IRDataCurve

Class
@IRDataCurve on page A-7

Syntax
F = getDiscountFactors(CurveObj,InpDates)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRDataCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.

Description
F = getDiscountFactors(CurveObj,InpDates) returns discount factors for the
input dates.

Examples

Get Discount Factors For Input Dates for an IRDataCurve

This example shows how to get discount factors for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
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Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getDiscountFactors(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.9986
    0.9971
    0.9956
    0.9940
    0.9924
    0.9907
    0.9890
    0.9873
    0.9855
    0.9836
      ⋮

See Also
“@IRDataCurve” on page A-7

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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getDiscountFactors
Get discount factors for input dates for IRFunctionCurve

Class
@IRFunctionCurve on page A-13

Syntax
F = getDiscountFactors(CurveObj,InpDates)

Arguments
CurveObj Interest-rate curve object that is constructed using the

IRFunctionCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.

Description
F = getDiscountFactors(CurveObj,InpDates) returns discount factors for the
input dates.

Examples

Get Discount Factors for Input Dates For an IRFunctionCurve

This example shows how to get discount factors for input dates for an
IRFunctionCurve.
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irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getDiscountFactors(irfc, today+30:30:today+720)

ans = 24×1

    0.9984
    0.9967
    0.9950
    0.9933
    0.9916
    0.9899
    0.9881
    0.9864
    0.9846
    0.9828
      ⋮

See Also
“@IRFunctionCurve” on page A-13

Topics
“Creating an IRFunctionCurve Object” on page 9-22
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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getForwardRates
Get forward rates for input dates for IRDataCurve

Class
@IRDataCurve on page A-7

Syntax
F = getForwardRates(CurveObj,InpDates)

F = getForwardRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRDataCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.
Compounding (Optional) Scalar that sets the compounding frequency per year

for forward rates. The default Compounding value is
CurveObj.Compounding. Acceptable values are:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding
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Basis (Optional) Day-count basis values for the forward rates:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Description
F =
getForwardRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',V
alue2, ...) returns forward rates for the input dates. getForwardRates returns
discrete forward rates for the intervals input into this method. For example, running the
following code:

getForwardRates(irdc, {Date1, Date2, Date3}) 

gives three forwards rates and the three tenors are: [Settle, Date1], [Date1,
Date2], and [Date2, Date3].

You must enter the optional arguments for Basis and Compounding as parameter/value
pairs. The getForwardRates method returns forward rates corresponding to the
periodicity of the dates input to getForwardRates. For example, where the dates are
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monthly, monthly forward rates are returned. The first element of the output is the
forward rate from the Settle to one month, the second element is the forward rate from
one month to two months, and so on.

Examples

Get Forward Rates For Input Dates for an IRDataCurve

This example shows how to get forward rates for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getForwardRates(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.0174
    0.0180
    0.0187
    0.0193
    0.0199
    0.0205
    0.0212
    0.0218
    0.0224
    0.0230
      ⋮

Use getForwardRates to Compute the Five Year Forward Rate in Five Years Time

Use getForwardRates to compute the forward rate from the Settle date to 5 years
from March 1, 2017 and then the forward rate for the period from 5 years to 10 years
from March 1, 2017.

Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = daysadd(736755,[360 2*360 3*360 5*360 7*360 10*360 20*360 30*360],1);
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irdc = IRDataCurve('Zero',today,Dates,Data);
getForwardRates(irdc,datemnth(irdc.Settle,12*[5 10]))

ans = 2×1

    0.0335
    0.0457

The first element (.0312) is the forward rate from the Settle to 5 years from March 1,
2017. The second rate (0.0458) is the forward rate for the period from 5 years to 10
years from March 1, 2017, in other words, the 5-year forward rate 5 years from March 1,
2017.

Compute the Six Month Forward Rates in 1 Month, 2 Months and 3 Months

Use the following data to create an IRDataCurve object:

Data = [0.1 0.30 0.70 1.05 1.45 1.71 2.12 2.43 2.85 3.57]/100;
Settle = datenum('08-Aug-2016'); % Today's date
Dates = datemnth(Settle,[3 6 9 12*[1 2 3 5 7 10 20]]);
irdc = IRDataCurve('Zero',Settle,Dates,Data)

irdc = 
             Type: Zero
           Settle: 736550 (08-Aug-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [10x1 double]
             Data: [10x1 double]

Compute the implied 6 month forward rates in 1 month, 2 months, and 3 months from the
Settle date.

IntervalMonth = 6; % Interval for 6 month forward rates
FwdMonths = [1 2 3]'; % Starting in 1, 2, and 3 months from Settle
N = length(FwdMonths);
FwdRates_6M = zeros(N,1);

for k = 1:N
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    FwdDates = datemnth(irdc.Settle, [FwdMonths(k) FwdMonths(k)+IntervalMonth]);
    f = getForwardRates(irdc,FwdDates);
    FwdRates_6M(k) = f(2);
end

[FwdMonths FwdRates_6M]

ans = 3×2

    1.0000    0.0050
    2.0000    0.0074
    3.0000    0.0101

See Also
“@IRDataCurve” on page A-7

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b

11 Functions — Alphabetical List

11-2294



getForwardRates
Get forward rates for input dates for IRFunctionCurve

Class
@IRFunctionCurve on page A-13

Syntax
F = getForwardRates(CurveObj,InpDates)

F = getForwardRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRFunctionCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.
Compounding (Optional) Scalar that sets the compounding frequency per year

for the forward rates are:

• −1 = Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding
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Basis (Optional) Day-count basis for the forward rates:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Description
F =
getForwardRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',V
alue2, ...) returns forward rates for the input dates. You must enter the optional
arguments for Basis and Compounding as parameter/value pairs.

Examples

Get Forward Rates For Input Dates For an IRFunctionCurve

This example shows how to get forward rates for input dates for an IRFunctionCurve.
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irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getForwardRates(irfc, today+30:30:today+720)

ans = 24×1

    0.0202
    0.0205
    0.0207
    0.0210
    0.0212
    0.0215
    0.0217
    0.0219
    0.0222
    0.0224
      ⋮

Compute the Implied 2-Year Forward Rates in 1 Year, 2 Years, 5 Years, and 10
Years

This example shows how to compute the implied 2-year forward rates in 1 year, 2 years, 5
years, and 10 years from the Settle date by using the getForwardRates method.

Use the following data for an IRFunctionCurve object that is created when using the 
fitSvensson method.

Settle = datenum('15-Apr-2014');
Maturity = datemnth(Settle,12*[1 2 3 5 7 10 20 30]');

CleanPrice = [100.1 100.1 100.2 99.0 101.8 99.2 101.7 100.2]';
CouponRate = [0.0200 0.0275 0.035 0.042 0.0475 0.0525 0.055 0.052]';
Instruments = [repmat(Settle,size(Maturity)) Maturity CleanPrice CouponRate];

SvenssonModel = IRFunctionCurve.fitSvensson('Zero',Settle,Instruments);

Compute the implied 2-year forward rates in 1 year, 2 years, 5 years, and 10 years from
the Settle date.

IntervalMonth = 12.*2;         % Interval months for 2-year forward rates
FwdMonths = 12.*[1 2 5 10]';   % Starting in 1, 2, 5, and 10 years from Settle
N = length(FwdMonths);
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FwdRates_2Y = zeros(N,1);

for k = 1:N
    FwdDates = datemnth(SvenssonModel.Settle, [FwdMonths(k) FwdMonths(k)+IntervalMonth]);
    f = getForwardRates(SvenssonModel,FwdDates);
    FwdRates_2Y(k) = f(2);
end

[FwdMonths FwdRates_2Y]

ans = 4×2

   12.0000    0.0418
   24.0000    0.0504
   60.0000    0.0620
  120.0000    0.0629

See Also
“@IRFunctionCurve” on page A-13

Topics
“Creating an IRFunctionCurve Object” on page 9-22
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b

11 Functions — Alphabetical List

11-2298



getParYields
Get par yields for input dates for IRDataCurve

Class
@IRDataCurve on page A-7

Syntax
F = getParYields(CurveObj,InpDates)

F = getParYields(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRDataCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.
Compounding (Optional) Scalar that sets the compounding frequency per year

for the par yield rates are:

• −1 = Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding
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Basis (Optional) Day-count basis values for the par yield rates:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Description
F =
getParYields(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Valu
e2, ...) returns par yields for the input dates. You must enter the optional arguments
for Basis and Compounding as parameter/value pairs.

Examples

Get Par Yields For Input Dates For an IRDataCurve

This example shows how to get par yields for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
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Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getParYields(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.0175
    0.0177
    0.0181
    0.0183
    0.0186
    0.0189
    0.0194
    0.0197
    0.0200
    0.0203
      ⋮

Compute Par Yields From a Curve With Simple Interest Compounding

This example shows how set the compounding of an IRDataCurve to Zero (simple
interest) and then compute par yields from that curve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data,'Compounding',0);
SimpleInt = irdc.getParYields(Dates(1), 'Basis', 2, 'Compounding', 1)

SimpleInt = 0.0209

See Also
“@IRDataCurve” on page A-7

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2
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Introduced in R2008b
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getParYields
Get par yields for input dates for IRFunctionCurve

Class
@IRFunctionCurve on page A-13

Syntax
F = getParYields(CurveObj,InpDates)

F = getParYields(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRFunctionCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.
Compounding (Optional) Scalar that sets the compounding frequency per year

for par yield rates are:

• −1 = Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

 getParYields

11-2303



Basis (Optional) Day-count basis values for par yield rates:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Description
F =
getParYields(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Valu
e2, ...) returns par yields for the input dates. You must enter the optional arguments
for Basis and Compounding as parameter/value pairs.

Examples

Get Par Yields For Input Dates For an IRFunctionCurve

This example shows how to get par yields for input dates for an IRFunctionCurve.
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irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getParYields(irfc, today+30:30:today+720)

ans = 24×1

    0.0204
    0.0204
    0.0206
    0.0206
    0.0208
    0.0209
    0.0207
    0.0210
    0.0210
    0.0212
      ⋮

See Also
“@IRFunctionCurve” on page A-13

Topics
“Creating an IRFunctionCurve Object” on page 9-22
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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getZeroRates
Get zero rates for input dates for IRDataCurve

Class
@IRDataCurve on page A-7

Syntax
F = getZeroRates(CurveObj,InpDates)

F = getZeroRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRDataCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.
Compounding (Optional) Scalar that sets the compounding frequency per year

for zero rates. The default Compounding value is
CurveObj.Compounding. Acceptable values are:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding)
• 1 = Annual compounding
• 2 = Semiannual compounding
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding
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Basis (Optional) Day-count basis values for zero rates:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Description
F =
getZeroRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Valu
e2, ...) returns zero rates for the input dates. You must enter the optional arguments
for Basis and Compounding as parameter/value pairs.

Examples

Get Zero Rates For Input Dates For an IRDataCurve

This example shows how to get zero rates for input dates for an IRDataCurve.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
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Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data);
getZeroRates(irdc, CurveSettle+30:30:CurveSettle+720)

ans = 24×1

    0.0174
    0.0177
    0.0180
    0.0183
    0.0187
    0.0190
    0.0193
    0.0196
    0.0199
    0.0202
      ⋮

See Also
“@IRDataCurve” on page A-7

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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getZeroRates
Get zero rates for input dates for IRFunctionCurve

Class
@IRFunctionCurve on page A-13

Syntax
F = getZeroRates(CurveObj,InpDates)

F = getZeroRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRFunctionCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.
Compounding (Optional) Scalar that sets the compounding frequency per year

for zero rates are:

• −1 = Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding
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Basis (Optional) Day-count basis value for zero rates:

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Description
F =
getZeroRates(CurveObj,InpDates,'Parameter1',Value1,'Parameter2',Valu
e2, ...) returns zero rates for the input dates. You must enter the optional arguments
for Basis and Compounding as parameter/value pairs.

Examples

Get Zero Rates For Input Dates For an IRFunctionCurve

This example shows how to get zero rates for input dates for an IRFunctionCurve.
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irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
getZeroRates(irfc, today+30:30:today+720)

ans = 24×1

    0.0201
    0.0202
    0.0204
    0.0205
    0.0206
    0.0207
    0.0209
    0.0210
    0.0211
    0.0212
      ⋮

See Also
“@IRFunctionCurve” on page A-13

Topics
“Creating an IRFunctionCurve Object” on page 9-22
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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IRBootstrapOptions
Construct specific options for bootstrapping interest-rate curve object

Class
@IRBootstrapOptions on page A-2

Syntax
mybootoptions = IRBootstrapOptions('Param1',Value1)

Arguments
ConvexityAdjustment (Optional) Controls the convexity adjustment to

interest-rate futures. This can be specified as a
function handle that takes one numeric input
(time-to-maturity) and returns one numeric
output, ConvexityAdjustment. For more
information on defining a function handle, see
the MATLAB Programming Fundamentals
documentation.

Alternatively, you can define
ConvexityAdjustment as an N-by-1 vector of
values, where N is the number of interest-rate
futures.

In either case, the ConvexityAdjustment is
subtracted from the futures rate.
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LowerBound (Optional) Specifies a lower bound for rates
associated with bonds or swaps. LowerBound
can be a scalar or N-by-1 vector where N is the
number of swaps and bonds. By default,
LowerBound is 0.

UpperBound (Optional) Specifies an upper bound for rates
associated with bonds or swaps. UpperBound
can be a scalar or N-by-1 vector where N is the
number of swaps and bonds. By default,
UpperBound is 1. Specify an upper bound that is
greater than 1 when bootstrapping a discount
curve.

Description
mybootoptions = IRBootstrapOptions('Param1',Value1) constructs an
IRBootstrapOptionsObj structure. The IRBootstrapOptionsObj is used with the
bootstrap method.

Examples

Create IRBootstrapOptionsObj to Use With the bootstrap Method

Set the ConvexityAdjustment to control interest-rate futures.

mybootoptions = IRBootstrapOptions('ConvexityAdjustment',repmat(.005,10,1))

mybootoptions = 
  IRBootstrapOptions with properties:

    ConvexityAdjustment: [10x1 double]
             LowerBound: 0
             UpperBound: 1

Use mybootoptions as the optional argument, IRBootstrapOptionsObj, to use with
the bootstrap method.

 IRBootstrapOptions
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Create an IRBootstrapOptionsObj to Use With Negative Zero Interest-Rates

Use an IRBootstrapOptionsObj optional argument with the bootstrap method to
allow for negative zero rates when solving the swap zero points.

Settle = datenum('15-Mar-2015'); 
InstrumentTypes = {'Deposit';'Deposit';'Swap';'Swap';'Swap';'Swap';}; 

Instruments = [Settle,datenum('15-Jun-2015'),.001; ... 
Settle,datenum('15-Dec-2015'),.0005; ... 
Settle,datenum('15-Mar-2016'),-.001; ... 
Settle,datenum('15-Mar-2017'),-0.0005; ... 
Settle,datenum('15-Mar-2018'),.0017; ... 
Settle,datenum('15-Mar-2020'),.0019]; 

irbo = IRBootstrapOptions('LowerBound',-1); 

bootModel = IRDataCurve.bootstrap('zero', Settle, InstrumentTypes,... 
    Instruments,'IRBootstrapOptions',irbo); 

bootModel.getZeroRates(datemnth(Settle,1:60))

ans = 60×1

    0.0012
    0.0011
    0.0010
    0.0009
    0.0008
    0.0008
    0.0007
    0.0006
    0.0005
   -0.0000
      ⋮

Note that IRBootstrapOptions optional argument for LowerBound is set to -1 for
negative zero rates when solving the swap zero points.
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See Also
“@IRDataCurve” on page A-7

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“IRDataCurve Bootstrapping Based on Market Instruments” on page 9-7
“Bootstrapping a Swap Curve”
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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IRDataCurve
Construct interest-rate curve object from dates and data

Class
@IRDataCurve on page A-7

Syntax
CurveObj = IRDataCurve(Type,Settle,Dates,Data)

CurveObj = IRDataCurve(Type,Settle,Dates,Data,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
Type Type of interest-rate curve. Acceptable values are forward,

zero, or discount.
Settle Scalar for the Settle date of the curve.
Dates Dates corresponding to rate data.
Data Interest-rate data for the curve object.
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Compounding (Optional) Scalar that sets the compounding frequency per year
for the IRDataCurve object:

• −1 = Continuous compounding
• 0 = Simple interest (no compounding) for “zero” and

“discount” curve types only, not supported for “forward”
curves

• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

Note Simple interest can be specified for an instrument by
specifying the Compounding value as 0 and is supported for
“zero” and “discount” curve types only (not supported for
“forward” curves).

 IRDataCurve
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Basis (Optional) Day-count basis of the interest-rate curve. A scalar of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
InterpMethod (Optional) Values are:

• 'linear' — Linear interpolation (default).
• 'constant' — Piecewise constant interpolation.
• 'pchip' — Piecewise cubic Hermite interpolation.
• 'spline' — Cubic spline interpolation.

Description
CurveObj =
IRDataCurve(Type,Settle,Dates,Data,'Parameter1',Value1,'Parameter2',
Value2, ...) constructs an interest-rate curve with the specified Dates and Data. You
must enter the optional arguments for Basis, Compounding, and InterpMethod as
parameter/value pairs.
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Alternatively, an IRDataCurve object can be bootstrapped from market data using the
bootstrap method.

After an IRDataCurve curve object is constructed, you can use the following methods to
determine the forward rates, zero rates, and discount factors. In addition, you can use the
toRateSpec method to convert the interest-rate curve object to a RateSpec structure.

Method Description
getForwardRates Returns forward rates for input dates.
getZeroRates Returns zero rates for input dates.
getDiscountFactors Returns discount factors for input dates.
getParYields Returns par yields for input dates.
toRateSpec Converts to be a RateSpec object; this structure is

identical to the RateSpec produced by the Financial
Instruments Toolbox function intenvset.

bootstrap Bootstraps an interest rate curve from market data.

Examples
CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Zero',CurveSettle,Dates,Data)

irdc = 

             Type: Zero
           Settle: 736391 (02-Mar-2016)
      Compounding: 2
            Basis: 0 (actual/actual)
     InterpMethod: linear
            Dates: [8x1 double]
             Data: [8x1 double]

See Also
“@IRDataCurve” on page A-7
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Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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IRFitOptions
Construct specific options for fitting interest-rate curve object

Class
@IRFitOptions on page A-11

Syntax
myfitoptions = IRFitOptions(InitialGuess)

myfitoptions = IRFitOptions(InitialGuess,'Parameter1',Value1)

Arguments
InitialGuess Initial guess for the parameters of the curve function. Vector of

values for the starting point of the optimization.
FitType (Optional) Price, Yield, or DurationWeightedPrice

determines which is minimized in the curve fitting process. The
default is DurationWeightedPrice.

UpperBound (Optional) Lower bound for the parameters of the curve function.
LowerBound (Optional) Upper bound for the parameters of the curve function.
OptOptions (Optional) Optimization solver options constructed with

optimoptions from the Optimization Toolbox (optimset is also
supported).

Description
myfitoptions = IRFitOptions('Param1',Value1) constructs the IRFitOptions
structure with an initial guess or with an initial guess and bounds. You must enter the
optional arguments for FitType, UpperBound, LowerBound, and OptOptions as
parameter/value pairs.

 IRFitOptions
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Note IRFitOptions constructor must be used with fitFunction method when
building a custom fitting function.

Examples
myfitoptions = IRFitOptions([7 2 1 0],'FitType','yield')

myfitoptions = 

  Properties:
         FitType: 'yield'
    InitialGuess: [7 2 1 0]
      UpperBound: []
      LowerBound: []
      OptOptions: []

See Also
“@IRFunctionCurve” on page A-13

Topics
“Creating an IRFunctionCurve Object” on page 9-22
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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IRFunctionCurve
Construct interest-rate curve object from function handle or function and fit to market
data

Class
@IRFunctionCurve on page A-13

Syntax
CurveObj = IRFunctionCurve(Type,Settle,FunctionHandle)

CurveObj = IRFunctionCurve(Type,Settle,FunctionHandle,'Parameter1',Value1,'Parameter2',Value2, ...)

Arguments
Type Type of interest-rate curve: zero, forward, or discount.
Settle Scalar for the Settle date of the curve.
Compounding (Optional) Scalar that sets the compounding frequency per year

for the IRFunctionCurve object:

• −1 = Continuous compounding
• 1 = Annual compounding
• 2 = Semiannual compounding (default)
• 3 = Compounding three times per year
• 4 = Quarterly compounding
• 6 = Bimonthly compounding
• 12 = Monthly compounding

 IRFunctionCurve
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Basis (Optional) Day-count basis of the bond. A scalar of integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
FunctionHandle Function handle that defines the interest-rate curve. The

function handle requires one numeric input (time-to-maturity)
and returns one numeric output (interest rate or discount
factor). For more information on defining a function handle, see
the MATLAB Programming Fundamentals documentation.

Parameters Fitted parameters for function.

Description
CurveObj =
IRFunctionCurve(Type,Settle,FunctionHandle,'Parameter1',Value1,'Para
meter2',Value2, ...) constructs an interest-rate curve object directly by specifying a
function handle. You must enter the optional arguments for Basis and Compounding as
parameter/value pairs.
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After you use the IRFunctionCurve constructor to create an IRFunctionCurve object,
you can fit the bond using the following methods.

Method Description
getForwardRates Returns forward rates for input dates.
getZeroRates Returns zero rates for input dates.
getDiscountFactors Returns discount factors for input dates.
getParYields Returns par yields for input dates.
toRateSpec Converts to be a RateSpec object.

This RateSpec structure is identical to the
RateSpec produced by the Financial
Instruments Toolbox function intenvset.

Alternatively, you can construct an IRFunctionCurve object using the following static
methods.

Static Method Description
fitNelsonSiegel Fits a Nelson-Siegel function to market data.
fitSvensson Fits a Svensson function to market data.
fitSmoothingSpline Fits a smoothing spline function to market data.
fitFunction Fits a custom function to market data.

Examples
irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t))

irfc = 

  Properties:
    FunctionHandle: @(t)polyval([-0.0001,0.003,0.02],t)
              Type: 'Forward'
            Settle: 733599
       Compounding: 2
             Basis: 0

 IRFunctionCurve
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See Also
“@IRCurve” on page A-4

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Creating an IRFunctionCurve Object” on page 9-22
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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liborduration
Duration of LIBOR-based interest-rate swap

Syntax
[PayFixDuration,GetFixDuration] = liborduration(SwapFixRate,Tenor,Settle)

Arguments
SwapFixRate Scalar or column vector of swap fixed rates in decimal.
Tenor Scalar or column vector indicating life of the swap in years.

Fractional numbers are rounded upward.
Settle Scalar or column vector of settlement dates.

Description
[PayFixDuration,GetFixDuration] =
liborduration(SwapFixRate,Tenor,Settle) computes the duration of LIBOR-
based interest-rate swaps.

PayFixDuration is the modified duration, in years, realized when entering pay-fix side
of the swap.

GetFixDuration is the modified duration, in years, realized when entering receive-fix
side of the swap.

Examples

Compute the Duration of LIBOR-Based Interest-Rate Swaps

This example shows how to compute the duration of LIBOR-based interest-rate swaps
using the following data.

 liborduration
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SwapFixRate = 0.0383;
Tenor = 7;
Settle = datenum('11-Oct-2002');

[PayFixDuration GetFixDuration] = liborduration(SwapFixRate,... 
Tenor, Settle)

PayFixDuration = -4.7567

GetFixDuration = 4.7567

See Also
liborfloat2fixed | liborprice

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Managing Present Value with Bond Futures” on page 7-16

Introduced before R2006a
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liborfloat2fixed
Compute par fixed-rate of swap given 3-month LIBOR data

Syntax
[FixedSpec,ForwardDates,ForwardRates] = liborfloat2fixed(ThreeMonthRates,Settle,Tenor,StartDate,Interpolation,ConvexAdj,RateParam,InArrears,Sigma,FixedCompound,FixedBasis)

Arguments
ThreeMonthRates Three-month Eurodollar futures data or forward rate

agreement data. (A forward rate agreement stipulates that a
certain interest rate applies to a certain principal amount for
a given future time period.) An n-by-3 matrix in the form of
[month year IMMQuote]. The floating rate is assumed to
compound quarterly and to accrue on an actual/360 basis.

Settle Settlement date of the swap. Scalar.
Tenor Life of the swap. Scalar.
StartDate (Optional) Scalar value to denote reference date for valuation

of (forward) swap. This in effect allows forward swap
valuation. Default = Settle.

Interpolation (Optional) Interpolation method to determine applicable
forward rate for months when no Eurodollar data is available.
Default is 1 (linear). Other possible values are:

• 0 (nearest)

• 2 (cubic)

.
ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes whether futures/

forward convexity adjustment is required. Pertains to forward
rate adjustments when those rates are taken from Eurodollar
futures data.

 liborfloat2fixed

11-2329



RateParam (Optional) Short-rate model's parameters (Hull-White) [a S],
where the short-rate process is:

dr t ar dt Sdz= ( ) -ÈÎ ˘̊ +q .

Default = [0.05 0.015].
InArrears (Optional) Default = 0 (off). Set to 1 for on. If on, the routine

does an automatic a convexity adjustment to forward rates.
Sigma (Optional) Overall annual volatility of caplets.
FixedCompound (Optional) Scalar value. Compounding or frequency of

payment on the fixed side. Also, the reset frequency. Default
= 4 (quarterly). Other values are 1, 2, and 12.

FixedBasis (Optional) Scalar value. Basis of the fixed side.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)

For more information, see basis on page Glossary-0 .

Description
[FixedSpec,ForwardDates,ForwardRates] =
liborfloat2fixed(ThreeMonthRates,Settle,Tenor,StartDate,
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Interpolation,ConvexAdj,RateParam,InArrears,Sigma,FixedCompound,Fixe
dBasis) computes forward rates, dates, and the swap fixed rate.

FixedSpec specifies the structure of the fixed-rate side of the swap:

• Coupon: Par-swap rate
• Settle: Start date
• Maturity: End date
• Period: Frequency of payment
• Basis: Accrual basis

ForwardDates are dates corresponding to ForwardRates (all third Wednesdays of the
month, spread three months apart). The first element is the third Wednesday immediately
after Settle.

ForwardRates are forward rates corresponding to the forward dates, quarterly
compounded, and on the actual/360 basis.

Note To preserve input integrity, Tenor is rounded upward to the closest integer.
Currently traded tenors are 2, 5, and 10 years.

The function assumes that floating-rate observations occur quarterly on the third
Wednesday of a delivery month. The first delivery month is the month of the first third
Wednesday after Settle. Floating-side payments occur on the third-month anniversaries
of observation dates.

Examples

Compute the Par Fixed-Rate of a Swap Given 3-Month LIBOR Data

This example shows how to compute the par fixed-rate of a swap given 3-month LIBOR
data. Use the supplied EDdata.xls file as input to a liborfloat2fixed computation.

[EDFutData, textdata] = xlsread('EDdata.xls');
Settle                = datenum('15-Oct-2002');
Tenor                 = 2;

 liborfloat2fixed
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[FixedSpec, ForwardDates, ForwardRates] =... 
liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)

FixedSpec = struct with fields:
      Coupon: 0.0222
      Settle: '16-Oct-2002'
    Maturity: '16-Oct-2004'
      Period: 4
       Basis: 1

ForwardDates = 8×1

      731505
      731596
      731687
      731778
      731869
      731967
      732058
      732149

ForwardRates = 8×1

    0.0177
    0.0166
    0.0170
    0.0188
    0.0214
    0.0248
    0.0279
    0.0305

See Also
liborduration | liborprice

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
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“Fitting the Diebold Li Model”
“Managing Present Value with Bond Futures” on page 7-16

Introduced before R2006a

 liborfloat2fixed
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liborprice
Price swap given swap rate

Syntax
Price = liborprice(ThreeMonthRates,Settle,Tenor,SwapRate,StartDate,Interpolation,ConvexAdj,RateParam,InArrears,Sigma,FixedCompound,FixedBasis)

Arguments
ThreeMonthRates Three-month Eurodollar futures data or forward rate

agreement data. (A forward rate agreement stipulates that
a certain interest rate applies to a certain principal amount
for a given future time period.) An n-by-3 matrix in the form
of [month year IMMQuote]. The floating rate is assumed
to compound quarterly and to accrue on an actual/360
basis.

Settle Settlement date of swap. Scalar.
Tenor Life of the swap. Scalar.
SwapRate Swap rate in decimal.
StartDate (Optional) Scalar value to denote reference date for

valuation of (forward) swap. This in effect allows forward
swap valuation. Default = Settle.

Interpolation (Optional) Interpolation method to determine applicable
forward rate for months when no Eurodollar data is
available. Default is 'linear' or 1. Other possible values
are 'Nearest' or 0, and 'Cubic' or 2.

ConvexAdj (Optional) Default = 0 (off). 1 = on. Denotes whether
futures/forward convexity adjustment is required. Pertains
to forward rate adjustments when those rates are taken
from Eurodollar futures data.
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RateParam (Optional) Short-rate model's parameters (Hull-White)
[a S], where the short-rate process is:

dr t ar dt Sdz= ( ) -ÈÎ ˘̊ +q .

Default = [0.05 0.015].
InArrears (Optional) Default = 0 (off). Set to 1 for on. If on, the

routine does an automatic convexity adjustment to forward
rates.

Sigma (Optional) Overall annual volatility of caplets.
FixedCompound (Optional) Scalar value. Compounding or frequency of

payment on the fixed side. Also, the reset frequency. Default
= 4 (quarterly). Other values are 1, 2, and 12.

FixedBasis (Optional) Scalar value. Basis of the fixed side.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)

For more information, see basis on page Glossary-0 .

 liborprice
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Description
Price =
liborprice(ThreeMonthRates,Settle,Tenor,SwapRate,StartDate,Interpola
tion,ConvexAdj,RateParam,InArrears,Sigma,FixedCompound,FixedBasis)
computes the price per $100 notional value of a swap given the swap rate. A positive
result indicates that fixed side is more valuable than the floating side.

Price is the present value of the difference between floating and fixed-rate sides of the
swap per $100 notional.

Examples

Compute the Price Per $100 Notional Value of a Swap Given the Swap Rate

This example shows that a swap paying the par swap rate has a value of 0.

% load the input data  
[EDFutData, textdata] = xlsread('EDdata.xls');
Settle = datenum('15-Oct-2002');
Tenor = 2;

% compute the fixed rate from the Eurodollar data
FixedSpec = liborfloat2fixed(EDFutData(:,1:3), Settle, Tenor)

FixedSpec = struct with fields:
      Coupon: 0.0222
      Settle: '16-Oct-2002'
    Maturity: '16-Oct-2004'
      Period: 4
       Basis: 1

% compute the price of a par swap
Price = liborprice(EDFutData(:,1:3), Settle, Tenor, FixedSpec.Coupon)

Price = 2.7756e-15

Price is effectively equal to 0.
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See Also
liborduration | liborfloat2fixed

Topics
“Analysis of Bond Futures” on page 7-13
“Managing Interest-Rate Risk with Bond Futures”
“Fitting the Diebold Li Model”
“Managing Present Value with Bond Futures” on page 7-16

Introduced before R2006a
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mbscfamounts
Cash flow and time mapping for mortgage pool

Syntax
[CFlowAmounts,CFlowDates,TFactors,Factors,Payment,Principal,Interest,Prepayment] = mbscfamounts(Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Settle Settlement date. A serial date number or date character

vector. Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default =

GrossRate.
Delay (Optional) Delay in days. Default is 0 (no delay).
PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to

the benchmark model. Default = 0. If you input a customized
prepayment matrix, set PrepaySpeed to [].

PrepayMatrix (Optional) Used only when PrepaySpeed is unspecified.
Customized prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds
to each mortgage-backed security, and each row corresponds
to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS)-by-1
vectors.
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Description
[CFlowAmounts,CFLowDates,TFactors,Factors,Payment,Principal,Interest
,Prepayment] = mbscfamounts(Settle,
Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatr
ix) computes cash flows between settle and maturity dates, the corresponding time
factors in months from settle, and the mortgage factor (the fraction of loan principal
outstanding).

CFlowAmounts is a vector of cash flows starting from Settle through end of the last
month (Maturity).

CFlowDates indicates when cash flows occur, including at Settle. A negative number at
Settle indicates that accrued interest is due.

TFactors is a vector of times in months from Settle, corresponding to each cash flow.

Factors is a vector of mortgage factors (the fraction of the balance still outstanding at
the end of each month).

Payment is a NMBS-by-P matrix of total monthly payment.

Principal is a NMBS-by-P matrix of principal portion of the payment

Interest is a NMBS-by-P matrix of interest portion of the payment.

Prepayment is a NMBS-by-P matrix of unscheduled payment of principal.

Examples

Calculate Cash Flow Amounts and Dates, Time Factors, and Mortgage Factors for
a Single Mortgage

Given a mortgage with the following characteristics, compute the cash flow amounts and
dates, the time factors, and the mortgage factors.

Define the mortgage characteristics.

Settle      = datenum('17-April-2002');
Maturity    = datenum('1-Jan-2030');

 mbscfamounts
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IssueDate   = datenum('1-Jan-2000');
GrossRate   = 0.08125;
CouponRate  = 0.075;
Delay       = 14;
PrepaySpeed = 100;

Use mbscfamonts to evaluate the mortgage.

[CFlowAmounts, CFLowDates, TFactors, Factors] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, PrepaySpeed)

CFlowAmounts = 1×334

   -0.0033    0.0118    0.0120    0.0121    0.0120    0.0119    0.0119    0.0118    0.0117    0.0117    0.0116    0.0115    0.0115    0.0114    0.0114    0.0113    0.0112    0.0112    0.0111    0.0110    0.0110    0.0109    0.0109    0.0108    0.0107    0.0107    0.0106    0.0106    0.0105    0.0105    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0097    0.0096    0.0096    0.0095    0.0095    0.0094    0.0094

CFLowDates = 1×334

      731323      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798

TFactors = 1×334

         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333

Factors = 1×334

    1.0000    0.9944    0.9887    0.9828    0.9769    0.9711    0.9653    0.9595    0.9538    0.9481    0.9424    0.9368    0.9311    0.9255    0.9199    0.9144    0.9089    0.9034    0.8979    0.8925    0.8871    0.8817    0.8763    0.8710    0.8657    0.8604    0.8552    0.8499    0.8447    0.8396    0.8344    0.8293    0.8242    0.8191    0.8140    0.8090    0.8040    0.7990    0.7941    0.7892    0.7842    0.7794    0.7745    0.7697    0.7649    0.7601    0.7553    0.7506    0.7458    0.7411

The result is contained in four 334-element row vectors.

Compute Cash Flow Amounts and Dates, Time Factors, and Mortgage Factors for
a Mortgage Portfolio

Given a portfolio of mortgage-backed securities, use mbscfamounts to compute the cash
flows and other factors from the portfolio.

Define characteristics for a mortgage portfolio.
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Settle   = datenum(['13-Jan-2000';'17-Apr-2002';'17-May-2002']);
Maturity    = datenum('1-Jan-2030');
IssueDate   = datenum('1-Jan-2000');
GrossRate   = 0.08125;
CouponRate  = [0.075; 0.07875; 0.0775];
Delay       = 14;
PrepaySpeed = 100;

Use mbscfamonts to evaluate the mortgage.

[CFlowAmounts, CFlowDates, TFactors, Factors] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, PrepaySpeed)

CFlowAmounts = 3×361

   -0.0025    0.0071    0.0072    0.0074    0.0076    0.0077    0.0079    0.0080    0.0082    0.0084    0.0085    0.0087    0.0088    0.0090    0.0091    0.0093    0.0094    0.0095    0.0097    0.0098    0.0099    0.0101    0.0102    0.0103    0.0104    0.0106    0.0107    0.0108    0.0109    0.0110    0.0111    0.0110    0.0110    0.0109    0.0109    0.0108    0.0107    0.0107    0.0106    0.0106    0.0105    0.0104    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100
   -0.0035    0.0121    0.0123    0.0124    0.0123    0.0122    0.0122    0.0121    0.0120    0.0120    0.0119    0.0118    0.0118    0.0117    0.0116    0.0116    0.0115    0.0115    0.0114    0.0113    0.0113    0.0112    0.0111    0.0111    0.0110    0.0110    0.0109    0.0108    0.0108    0.0107    0.0107    0.0106    0.0105    0.0105    0.0104    0.0104    0.0103    0.0103    0.0102    0.0101    0.0101    0.0100    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0096    0.0096
   -0.0034    0.0122    0.0123    0.0123    0.0122    0.0121    0.0121    0.0120    0.0119    0.0119    0.0118    0.0117    0.0117    0.0116    0.0116    0.0115    0.0114    0.0114    0.0113    0.0112    0.0112    0.0111    0.0111    0.0110    0.0109    0.0109    0.0108    0.0108    0.0107    0.0106    0.0106    0.0105    0.0105    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0097    0.0096    0.0096    0.0095

CFlowDates = 3×361

      730498      730517      730546      730577      730607      730638      730668      730699      730730      730760      730791      730821      730852      730883      730911      730942      730972      731003      731033      731064      731095      731125      731156      731186      731217      731248      731276      731307      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978
      731323      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798
      731353      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798      732829

TFactors = 3×361

         0    1.0667    2.0667    3.0667    4.0667    5.0667    6.0667    7.0667    8.0667    9.0667   10.0667   11.0667   12.0667   13.0667   14.0667   15.0667   16.0667   17.0667   18.0667   19.0667   20.0667   21.0667   22.0667   23.0667   24.0667   25.0667   26.0667   27.0667   28.0667   29.0667   30.0667   31.0667   32.0667   33.0667   34.0667   35.0667   36.0667   37.0667   38.0667   39.0667   40.0667   41.0667   42.0667   43.0667   44.0667   45.0667   46.0667   47.0667   48.0667   49.0667
         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333
         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333

Factors = 3×361

    1.0000    0.9992    0.9982    0.9970    0.9957    0.9942    0.9925    0.9907    0.9887    0.9865    0.9841    0.9816    0.9789    0.9761    0.9731    0.9699    0.9666    0.9631    0.9594    0.9556    0.9517    0.9475    0.9433    0.9389    0.9343    0.9296    0.9247    0.9197    0.9146    0.9093    0.9039    0.8985    0.8932    0.8878    0.8825    0.8772    0.8720    0.8668    0.8616    0.8564    0.8512    0.8461    0.8410    0.8359    0.8309    0.8258    0.8208    0.8159    0.8109    0.8060
    1.0000    0.9944    0.9887    0.9828    0.9769    0.9711    0.9653    0.9595    0.9538    0.9481    0.9424    0.9368    0.9311    0.9255    0.9199    0.9144    0.9089    0.9034    0.8979    0.8925    0.8871    0.8817    0.8763    0.8710    0.8657    0.8604    0.8552    0.8499    0.8447    0.8396    0.8344    0.8293    0.8242    0.8191    0.8140    0.8090    0.8040    0.7990    0.7941    0.7892    0.7842    0.7794    0.7745    0.7697    0.7649    0.7601    0.7553    0.7506    0.7458    0.7411
    1.0000    0.9942    0.9883    0.9824    0.9766    0.9707    0.9649    0.9592    0.9534    0.9477    0.9420    0.9364    0.9307    0.9251    0.9195    0.9140    0.9085    0.9030    0.8975    0.8921    0.8866    0.8813    0.8759    0.8706    0.8653    0.8600    0.8547    0.8495    0.8443    0.8391    0.8339    0.8288    0.8237    0.8186    0.8136    0.8085    0.8035    0.7985    0.7936    0.7887    0.7837    0.7789    0.7740    0.7692    0.7643    0.7595    0.7548    0.7500    0.7453    0.7406

Each output is a 3-by-361 element matrix padded with NaN's wherever elements are
missing.
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Calculate Payment, Principal, Interest, and Prepayment for a Single Mortgage

Given a mortgage with the following characteristics, compute payments, principal,
interest, and prepayment.

Define the mortgage characteristics.

Settle      = datenum('17-April-2002');
Maturity    = datenum('1-Jan-2030');
IssueDate   = datenum('1-Jan-2000');
GrossRate   = 0.08125;
CouponRate  = 0.075;
Delay       = 14;
PrepaySpeed = 100;

Use mbscfamonts to evaluate the mortgage.

[Payment, Principal, Interest, Prepayment] = ... 
mbscfamounts(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, PrepaySpeed)

Payment = 1×334

   -0.0033    0.0118    0.0120    0.0121    0.0120    0.0119    0.0119    0.0118    0.0117    0.0117    0.0116    0.0115    0.0115    0.0114    0.0114    0.0113    0.0112    0.0112    0.0111    0.0110    0.0110    0.0109    0.0109    0.0108    0.0107    0.0107    0.0106    0.0106    0.0105    0.0105    0.0104    0.0103    0.0103    0.0102    0.0102    0.0101    0.0101    0.0100    0.0099    0.0099    0.0098    0.0098    0.0097    0.0097    0.0096    0.0096    0.0095    0.0095    0.0094    0.0094

Principal = 1×334

      731323      731337      731368      731398      731429      731460      731490      731521      731551      731582      731613      731641      731672      731702      731733      731763      731794      731825      731855      731886      731916      731947      731978      732007      732038      732068      732099      732129      732160      732191      732221      732252      732282      732313      732344      732372      732403      732433      732464      732494      732525      732556      732586      732617      732647      732678      732709      732737      732768      732798

Interest = 1×334

         0    0.9333    1.9333    2.9333    3.9333    4.9333    5.9333    6.9333    7.9333    8.9333    9.9333   10.9333   11.9333   12.9333   13.9333   14.9333   15.9333   16.9333   17.9333   18.9333   19.9333   20.9333   21.9333   22.9333   23.9333   24.9333   25.9333   26.9333   27.9333   28.9333   29.9333   30.9333   31.9333   32.9333   33.9333   34.9333   35.9333   36.9333   37.9333   38.9333   39.9333   40.9333   41.9333   42.9333   43.9333   44.9333   45.9333   46.9333   47.9333   48.9333

Prepayment = 1×334

    1.0000    0.9944    0.9887    0.9828    0.9769    0.9711    0.9653    0.9595    0.9538    0.9481    0.9424    0.9368    0.9311    0.9255    0.9199    0.9144    0.9089    0.9034    0.8979    0.8925    0.8871    0.8817    0.8763    0.8710    0.8657    0.8604    0.8552    0.8499    0.8447    0.8396    0.8344    0.8293    0.8242    0.8191    0.8140    0.8090    0.8040    0.7990    0.7941    0.7892    0.7842    0.7794    0.7745    0.7697    0.7649    0.7601    0.7553    0.7506    0.7458    0.7411
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References
[1] PSA Uniform Practices, SF-4

See Also
cmosched | cmoschedcf | cmoseqcf | mbsnoprepay | mbspassthrough

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced in R2012a
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mbsconvp
Convexity of mortgage pool given price

Syntax
Convexity = mbsconvp(Price,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Price Clean price for every $100 face value.
Settle Settlement date. A serial date number or date character

vector. Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate Net coupon rate, in decimal. Default = GrossRate.
Delay Delay in days.
PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to

the benchmark model. Default = 0. Set PrepaySpeed to [] if
you input a customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is unspecified.
Customized prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to
each mortgage-backed security, and each row corresponds to
each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS-by-1)
vectors.
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Description
Convexity =
mbsconvp(Price,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,
PrepaySpeed,PrepayMatrix) computes mortgage-backed security convexity, given
time information, price at settlement, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has
been outstanding (the loan's age).

Examples

Compute a Mortgage-Backed Security Convexity

This example shows how to compute a mortgage-backed security convexity, given a
mortgage-backed security with the following characteristics.

Price      = 101;
Settle     = '15-Apr-2002';
Maturity   = '1 Jan 2030';
IssueDate  = '1-Jan-2000';
GrossRate  = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

Convexity = mbsconvp(Price, Settle, Maturity, IssueDate,... 
GrossRate, CouponRate, Delay, Speed)

Convexity = 71.6299

References

[1] PSA Uniform Practices, SF-49
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See Also
mbsconvy | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsconvy
Convexity of mortgage pool given yield

Syntax
Convexity = mbsconvy(Yield,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Yield Mortgage yield, compounded monthly (in decimal).
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate Net coupon rate, in decimal. Default = GrossRate.
Delay Delay in days.
PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the

benchmark model. Default = 0. Set PrepaySpeed to [] if you
input a customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is unspecified.
Customized prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to
each mortgage-backed security, and each row corresponds to each
month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.

 mbsconvy
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Description
Convexity =
mbsconvy(Yield,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,
PrepaySpeed,PrepayMatrix) computes mortgage-backed security convexity, given
time information, semiannual mortgage yield, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has
been outstanding (the loan's age).

Examples

Compute the Convexity of a Mortgage Pool Given Yield

This example shows how to compute the convexity of mortgage pool given yield for a
mortgage-backed security with the following characteristics.

Yield      = 0.07125;
Settle     = '15-Apr-2002';
Maturity   = '1 Jan 2030';
IssueDate  = '1-Jan-2000';
GrossRate  = 0.08125;
Speed      = 100;
CouponRate = 0.075;
Delay = 14;

Convexity = mbsconvy(Yield, Settle, Maturity, IssueDate, ... 
GrossRate, CouponRate, Delay, Speed)

Convexity = 72.8263

References

[1] PSA Uniform Practices, SF-49
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See Also
mbsconvp | mbsdurp | mbsdury | mbsnoprepay | mbspassthrough

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsdurp
Duration of mortgage pool given price

Syntax
[YearDuration,ModDuration] = mbsdurp(Price,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Price Clean price for every $100 face value.
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than or equal to Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay in days.
PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the

benchmark model. Default = 0. Set PrepaySpeed to [] if you
input a customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is unspecified.
Customized prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to
each mortgage-backed security, and each row corresponds to each
month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.
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Description
[YearDuration,ModDuration] =
mbsdurp(Price,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,P
repaySpeed,PrepayMatrix) computes the mortgage-backed security Macaulay
(YearDuration) in years and modified (ModDuration) durations in years, given time
information, price at settlement, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has
been outstanding (the loan's age).

Examples

Find the Duration of a Mortgage Pool

This example shows how to find the duration of mortgage pool given a mortgage-backed
security with the following characteristics.

Price = 101;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;;
Delay = 14;
Speed = 100;

[YearDuration, ModDuration] = mbsdurp(Price, Settle, Maturity,... 
IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration = 6.4380

ModDuration = 6.2080

References
[1] PSA Uniform Practices, SF-49
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See Also
mbsconvp | mbsconvy | mbsdury | mbsnoprepay | mbspassthrough

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsdury
Duration of mortgage pool given yield

Syntax
[YearDuration,ModDuration] = mbsdury(Yield,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Yield Mortgage yield, compounded monthly, in decimal.
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate Net coupon rate, in decimal. Default = GrossRate.
Delay Delay in days.
PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the

benchmark model. Default = 0. Set PrepaySpeed to [] if you
input a customized prepayment matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is unspecified.
Customized prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to
each mortgage-backed security, and each row corresponds to
each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.
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Description
[YearDuration,ModDuration] =
mbsdury(Yield,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,P
repaySpeed,PrepayMatrix) computes the mortgage-backed security Macaulay
(YearDuration) and Modified (ModDuration) durations, given time information, yield
to maturity, and optionally, a prepayment model.

Note If you specify the PSA or FHA model, it is seasoned with how long the debt has
been outstanding (the loan's age).

Examples

Find the Duration of a Mortgage Pool Given the Yield

This example shows how to find the duration of mortgage pool given a mortgage-backed
security with the following characteristics.

Yield = 0.07298413;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
Speed = 100;
CouponRate = 0.075;
Delay = 14;

[YearDuration, ModDuration] = mbsdury(Yield, Settle, Maturity,... 
IssueDate, GrossRate, CouponRate, Delay, Speed)

YearDuration = 6.4380

ModDuration = 6.2080

References
[1] PSA Uniform Practices, SF-49
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See Also
mbsconvp | mbsconvy | mbsdurp | mbsnoprepay | mbspassthrough

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsnoprepay
End-of-month mortgage cash flows and balances without prepayment

Syntax
[Balance,Interest,Payment,Principal] = mbsnoprepay(OriginalBalance,GrossRate,Term)

Arguments
OriginalBalance Original face value in dollars.
GrossRate Gross coupon rate (including fees), in decimal.
Term Term of the mortgage in months.

All inputs are number of mortgage-backed securities (NMBS)-by-1 vectors.

Description
[Balance,Interest,Payment,Principal] =
mbsnoprepay(OriginalBalance,GrossRate,Term) computes end-of-month
mortgage balance, interest payments, principal payments, and cash flow payments with
zero prepayment rate.

The function returns amortizing cash flows and balances over a specified term with no
prepayment. When the lengths of pass-throughs are not the same, MATLAB software pads
the shorter ones with NaN.

Balance lists the end-of-month balances over the life of the pass-through.

Interest lists all end-of-month interest payments over the life of the pass-through.

Payment lists all end-of-month payments over the life of the pass-through.

Principal lists all scheduled end-of-month principal payments over the life of the pass-
through.
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All outputs are Term-by-1 vectors.

Examples
Given mortgage pools with the following characteristics, compute an amortization
schedule.
OriginalBalance = 400000000;
CouponRate = 0.08125;
Term = [357; 355]; % Three- and five-month old mortgage pools.

[Balance, Interest, Payment, Principal] = ... 
mbsnoprepay(OriginalBalance, CouponRate, Term);

See Also
mbsconvp | mbsconvy | mbsdurp | mbspassthrough

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsoas2price
Price given option-adjusted spread

Syntax
Price = mbsoas2price(ZeroCurve,OAS,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix)

Arguments
ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.
• Column 2: Spot rates with maturities corresponding to the

dates in Column 1, in decimal (for example, 0.075).
• Column 3: Compounding of the rates in Column 2. (This is the

agency spot rate on the settlement date.)
OAS Option-adjusted spreads in basis points.
Settle Settlement date (scalar only). A serial date number or date

character vector. Date when option-adjusted spread is calculated.
Settle must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date number or date
character vector.

IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner and

receipt by bondholder. Default = 0 (no delay between payment
and receipt).
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Interpolation Interpolation method. Computes the corresponding spot rates for
the bond's cash flow. Available methods are (0) nearest, (1) linear,
and (2) cubic spline. Default = 1. See interp1 for more
information.

PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the
benchmark model. Default = end of month's CPR. Set
PrepaySpeed to [] if you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are padded with
NaNs. Each column corresponds to a mortgage-backed security,
and each row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.

Description
Price =
mbsoas2price(ZeroCurve,OAS,Settle,Maturity,IssueDate,GrossRate,Coupo
nRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix) computes the clean
price of a pass-through security for each $100 face value of outstanding principal.

Examples

Compute the Theoretical Price of a Mortgage Pool

Given an option-adjusted spread, a spot curve, and a prepayment assumption, compute
theoretical price of a mortgage pool. First, create the bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

Choose a settlement date.
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Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:

OAS           = [26.0502; 28.6348; 31.2222];
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
PrepaySpeed   = [0 50 100];

Calculate the theoretical price from the option-adjusted spread.
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Price = mbsoas2price(ZeroCurve, OAS, Settle, Maturity, ... 
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... 
PrepaySpeed)

Price = 3×1

   95.0006
   95.0006
   95.0006

See Also
mbspassthrough | mbsprice2oas | mbsyield2oas

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsoas2yield
Yield given option-adjusted spread

Syntax
[MYield,BEMBSYield] = mbsoas2yield(ZeroCurve,OAS,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix)

Arguments
ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.
• Column 2: Spot rates with maturities corresponding to the

dates in Column 1, in decimal (for example, 0.075).
• Column 3: Compounding of the rates in Column 2. (This is

the agency spot rate on the settlement date.)
OAS Option-adjusted spreads in basis points.
Settle Settlement date (scalar only). A serial date number or date

character vector. Date when option-adjusted spread is
calculated. Settle must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date number or date
character vector.

IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner

and receipt by bondholder. Default = 0 (no delay between
payment and receipt).
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Interpolation Interpolation method. Computes the corresponding spot rates
for the bond's cash flow. Available methods are (0) nearest, (1)
linear, and (2) cubic spline. Default = 1. See interp1 for
more information.

PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to
the benchmark model. Default = end of month's CPR. Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are padded
with NaNs. Each column corresponds to a mortgage-backed
security, and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.

Description
[MYield,BEMBSYield] =
mbsoas2yield(ZeroCurve,OAS,Settle,Maturity,IssueDate,GrossRate,Coupo
nRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix) computes the
mortgage and bond-equivalent yields of a pass-through security.

MYield is the yield to maturity of the mortgage-backed security (the mortgage yield).
This yield is compounded monthly (12 times per year). For example:

0.075 (7.5%)

BEMBSYield is the corresponding bond equivalent yield of the mortgage-backed security.
This yield is compounded semiannually (two times per year). For example:

0.0761 (7.61%)

Examples
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Compute the Theoretical Yield to Maturity of a Mortgage Pool

Given an option-adjusted spread, a spot curve, and a prepayment assumption, compute
the theoretical yield to maturity of a mortgage pool. First, create the bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:
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OAS           = [26.0502; 28.6348; 31.2222];
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
PrepaySpeed   = [0 50 100];

Compute the mortgage yield and bond equivalent mortgage yield.

[MYield BEMBSYield] = mbsoas2yield(ZeroCurve, OAS, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ... 
Interpolation, PrepaySpeed)

MYield = 3×1

    0.0802
    0.0814
    0.0828

BEMBSYield = 3×1

    0.0816
    0.0828
    0.0842

See Also
mbsoas2price | mbspassthrough | mbsprice2oas | mbsyield2oas

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbspassthrough
Mortgage pool cash flows and balances with prepayment

Syntax
[Balance,Payment,Principal,Interest,Prepayment] = mbspassthrough(OriginalBalance,GrossRate,OriginalTerm,TermRemaining,PrepaySpeed,PrepayMatrix)

Arguments
OriginalBalance Original balance value in dollars (balance at the beginning of

each TermRemaining).
GrossRate Gross coupon rate (including fees), in decimal.
OriginalTerm Term of the mortgage in months.
TermRemaining (Optional) Number of full months between settlement and

maturity.
PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to

the benchmark model. Default = 0 (no prepayment). Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Used only when PrepaySpeed is unspecified.
Customized prepayment vector. A NaN-padded matrix of size
max(TermRemaining)-by-NMBS. Each column corresponds to
each mortgage-backed security, and each row corresponds to
each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.

Description
[Balance,Payment,Principal,Prepayment,Interest] =
mbspassthrough(OriginalBalance,GrossRate,OriginalTerm,TermRemaining,
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PrepaySpeed,PrepayMatrix) calculates mortgage pool cash flows and balances with
prepayments.

All outputs are TermRemaining-by-1 vectors of end-of-month values.

Balance is a matrix for the principal balance at end of month.

Payment is a matrix for the total monthly payment.

Principal is a matrix for the principal portion of the payment.

Interest is a matrix for the interest portion of the payment.

Prepayment is a matrix that indicates any unscheduled principal payment.

By default, the securities are seasoned. The applicable CPR depends upon
TermRemaining based on a 30-year prepayment model (PSA or FHA). You may supply a
different CPR vector of size TermRemaining-by-1.

Examples

Compute the Cash Flow of Principal, Interest, and Prepayment of a Pass-Through
Security

This example shows how to compute the cash flows and balances of a 3-month old
mortgage pool with original term of 360 months, assuming a prepayment speed of 100.

OriginalBalance = 100000;
GrossRate = 0.08125;
OriginalTerm = 360;
TermRemaining = 357;
PrepaySpeed = 100;

[Balance, Payment, Principal, Interest, Prepayment] =... 
mbspassthrough(OriginalBalance, GrossRate, OriginalTerm,... 
TermRemaining, PrepaySpeed)

Balance = 357×1
104 ×

    9.9866
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    9.9715
    9.9548
    9.9363
    9.9161
    9.8942
    9.8707
    9.8454
    9.8185
    9.7900
      ⋮

Payment = 357×1

  743.9671
  743.4693
  742.8468
  742.0999
  741.2285
  740.2329
  739.1132
  737.8699
  736.5034
  735.0139
      ⋮

Principal = 357×1

   66.8837
   67.2915
   67.6904
   68.0802
   68.4607
   68.8317
   69.1929
   69.5442
   69.8854
   70.2163
      ⋮

Interest = 357×1

  677.0833
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  676.1777
  675.1564
  674.0196
  672.7678
  671.4012
  669.9203
  668.3257
  666.6179
  664.7976
      ⋮

Prepayment = 357×1

   66.8676
   83.5494
  100.2000
  116.8108
  133.3731
  149.8785
  166.3183
  182.6840
  198.9672
  215.1593
      ⋮

See Also
mbswal

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsprice
Mortgage-backed security price given yield

Syntax
[Price,AccrInt] = mbsprice(Yield,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Yield Mortgage yield, compounded monthly (in decimal).
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner and

receipt by bondholder. Default = 0 (no delay between payment and
receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the
benchmark model. Default = 0 (no prepayment). Set PrepaySpeed
to [] if you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are padded with
NaNs. Each column corresponds to a mortgage-backed security,
and each row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.
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Description
[Price,AccrInt] =
mbsprice(Yield,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,
PrepaySpeed,PrepayMatrix) computes a mortgage-backed security price, given time
information, mortgage yield at settlement, and optionally, a prepayment model.

All outputs are scalar values.

Price is the clean price for every $100 face value of the securities.

AccrInt is the accrued interest of the mortgage-backed securities.

Examples

Determine the Mortgage-Backed Security Price Given the Yield

This example shows how to determine the mortgage-backed security price given a
mortgage-backed security with the following characteristics.

Yield = 0.0725;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, CouponRate, Delay, Speed)

Price = 101.3147

AccrInt = 0.2917

 mbsprice

11-2371



Determine the Mortgage-Backed Security Price Using a Customized
PrePaytMatrix

This example shows how to determine the mortgage-backed security price, given a
mortgage-backed security, and PrePaytMatrix with the following characteristics:

Yield = 0.0725;
Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);

[Price AccrInt] = mbsprice(Yield, Settle, Maturity, IssueDate,...
GrossRate, PrepayMatrix)

Price = 360×1

   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
   34.8583
      ⋮

AccrInt = 360×1

    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
    0.0194
      ⋮
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References
[1] PSA Uniform Practices, SF-49

See Also
mbsyield

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsprice2oas
Option-adjusted spread given price

Syntax
OAS = mbsprice2oas(ZeroCurve,Price,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix)

Arguments
ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.
• Column 2: Spot rates with maturities corresponding to the

dates in Column 1, in decimal (for example, 0.075).
• Column 3: Compounding of the rates in Column 2. Values

are 1 (annual), 2 (semiannual, 3 (three times per year),
4 (quarterly), 6 (bimonthly), 12 (monthly), and
-1 (continuous).

Price Clean price for every $100 face value of bond issue.
Settle Settlement date (scalar only). A serial date number or date

character vector. Date when option-adjusted spread is
calculated. Settle must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date number or date
character vector.

IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner

and receipt by bondholder. Default = 0 (no delay between
payment and receipt.
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Interpolation Interpolation method. Computes the corresponding spot rates
for the bond's cash flow. Available methods are (0) nearest, (1)
linear, and (2) cubic spline. Default = 1. See interp1 for
more information.

PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to
the benchmark model. Default = end of month's CPR. Set
PrepaySpeed to [] if you input a customized prepayment
matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are padded
with NaNs. Each column corresponds to a mortgage-backed
security, and each row corresponds to each month after
settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.

Description
OAS =
mbsprice2oas(ZeroCurve,Price,Settle,Maturity,IssueDate,GrossRate,Cou
ponRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix) computes the
monthly option-adjusted spread in basis points.

Examples

Calculate the Option-Adjusted Spread of a 30-Year Fixed-Rate Mortgage

Calculate the option-adjusted spread of a 30-year fixed-rate mortgage with about a 28-
year weighted average maturity remaining, given assumptions of 0, 50, and 100 PSA
prepayments. First, create the bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
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         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:

Price         = 95;
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
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PrepaySpeed   = [0; 50; 100];
Interpolation = 1;

Compute the option-adjusted spread.

OAS = mbsprice2oas(ZeroCurve, Price, Settle, Maturity, ...
IssueDate, GrossRate, CouponRate, Delay, Interpolation, ... 
PrepaySpeed)

OAS = 3×1

   26.0508
   28.6355
   31.2232

See Also
mbsoas2price | mbsoas2yield | mbsyield2oas

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsprice2speed
Implied PSA prepayment speeds given price

Syntax
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] = mbsprice2speed(Price,Settle,Maturity,IssueDate,GrossRate,PrepayMatrix,CouponRate,Delay)

Arguments
Price Clean price for every $100 face value.
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
PrepayMatrix Customized prepayment matrix. A matrix of size

max(TermRemaining)-by-NMBS. Missing values are padded with
NaNs. Each column corresponds to a mortgage-backed security, and
each row corresponds to each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner and

receipt by bondholder. Default = 0 (no delay between payment and
receipt.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS)-by-1
vectors.

Description
[ImpSpdOnPrc,ImpSpdOnDur,ImpSpdOnCnv] =
mbsprice2speed(Price,Settle,Maturity,IssueDate,GrossRate,PrepayMatri
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x,CouponRate,Delay) computes PSA prepayment speeds implied by pool prices and
projected (user-defined) prepayment vectors. The calculated PSA speed produces the
same price, modified duration, or modified convexity, depending upon the output
requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment speed for the pass-
through to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment speed for the pass-
through to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment speed for the pass-
through to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples

Compute PSA Prepayment Speeds

This example shows how to compute the equivalent PSA benchmark prepayment speeds
for a mortgage pool with the following characteristics and prepayment matrix.

Price        = 101;
Settle       = datenum('1-Jan-2000');
Maturity     = datenum('1-Jan-2030');
IssueDate    = datenum('1-Jan-2000');
GrossRate    = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate   = 0.075;
Delay        = 14;

[ImpSpdOnPrc, ImpSpdOnDur, ImpSpdOnCnv] = ... 
mbsprice2speed(Price,Settle, Maturity, IssueDate, ... 
GrossRate, PrepayMatrix, CouponRate, Delay)

ImpSpdOnPrc = 118.5980

ImpSpdOnDur = 118.3946

ImpSpdOnCnv = 109.5115
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References
[1] PSA Uniform Practices, SF-49

See Also
mbsprice | mbsyield2speed

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbswal
Weighted average life of mortgage pool

Compatibility
PSA

Syntax
WAL =  mbswal(Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner and

receipt by bondholder. Default = 0 (no delay between payment and
receipt).

PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the
benchmark model. Default = end of month's CPR. Set
PrepaySpeed to [] if you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are padded with
NaNs. Each column corresponds to a mortgage-backed security, and
each row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.
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Description
WAL =
mbswal(Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySp
eed,PrepayMatrix) computes the weighted average life, in number of years, of a
mortgage pool, as measured from the settlement date.

Examples

Determine the Weighted Average Life of a Mortgage Pool

This example shows how to determine the weighted average life of a mortgage pool, given
a pass-through security with the following characteristics.

Settle = datenum('15-Apr-2002');
Maturity = datenum('1 Jan 2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

WAL = mbswal(Settle, Maturity, IssueDate, GrossRate, ... 
CouponRate, Delay, Speed)

WAL = 10.5477

References

[1] PSA Uniform Practices, SF-49

See Also
mbspassthrough
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Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsyield
Mortgage-backed securities yield given price

Syntax
[MYield,BEMBSYield] = mbsyield(Price,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,PrepaySpeed,PrepayMatrix)

Arguments
Price Clean price for every $100 face value.
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner and

receipt by bondholder. Default = 0 (no delay between payment and
receipt.

PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the
benchmark model. Default = 0 (no prepayment). Set PrepaySpeed
to [] if you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are padded with
NaNs. Each column corresponds to a mortgage-backed security, and
each row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.
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Description
[MYield,BEMBSYield] =
mbsyield(Price,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,
PrepaySpeed,PrepayMatrix) computes a mortgage-backed security yield to maturity
and the bond equivalent yield, given time information, price at settlement, and optionally,
a prepayment model.

MYield is the yield to maturity of the mortgage-backed security (the mortgage yield).
This yield is compounded monthly (12 times a year).

BEMBSYield is the corresponding bond equivalent yield of the mortgage-backed security.
This yield is compounded semiannually (two times a year).

Examples

Determine a Mortgage-Backed Security Yield Given the Price

This example shows how to determine the mortgage-backed security yield, given a
mortgage-backed security with the following characteristics.

Price = 102;
Settle = '15-Apr-2002';
Maturity = '1 Jan 2030';
IssueDate = '1-Jan-2000';
GrossRate = 0.08125;
CouponRate = 0.075;
Delay = 14;
Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity, ... 
IssueDate, GrossRate, CouponRate, Delay,  Speed)

MYield = 0.0715

BEMBSYield = 0.0725
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Determine Multiple Mortgage-Backed Securities Yields Given the Price

This example shows how to determine multiple mortgage-backed securities yields, given a
portfolio of mortgage-backed securities with the following characteristics.

Price = 102;
Settle = datenum(['13-Feb-2000';'17-Apr-2002';'17-May-2002';... 
'13-Jan-2000']);
Maturity  = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
CouponRate = [0.075; 0.07875; 0.0775; 0.08125];
Delay = 14;
Speed = 100;

[MYield, BEMBSYield] = mbsyield(Price, Settle, Maturity,... 
IssueDate, GrossRate, CouponRate, Delay,  Speed)

MYield = 4×1

    0.0717
    0.0751
    0.0739
    0.0779

BEMBSYield = 4×1

    0.0728
    0.0763
    0.0750
    0.0791

References
[1] PSA Uniform Practices, SF-49

See Also
mbsprice
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Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsyield2oas
Option-adjusted spread given yield

Syntax
OAS = mbsyield2oas(ZeroCurve,Yield,Settle,Maturity,IssueDate,GrossRate,CouponRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix)

Arguments
ZeroCurve A matrix of three columns:

• Column 1: Serial date numbers.
• Column 2: Spot rates with maturities corresponding to the dates

in Column 1, in decimal (for example, 0.075).
• Column 3: Compounding of the rates in Column 2. Values are

1 (annual), 2 (semiannual, 3 (three times per year), 4 (quarterly),
6 (bimonthly), 12 (monthly), and -1 (continuous).

Yield Mortgage yield, compounded monthly (in decimal).
Settle Settlement date (scalar only). A serial date number or date

character vector. Date when option-adjusted spread is calculated.
Settle must be earlier than Maturity.

Maturity Maturity date. Scalar or vector in serial date number or date
character vector.

IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner and

receipt by bondholder. Default = 0 (no delay between payment and
receipt).
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Interpolation Interpolation method. Computes the corresponding spot rates for
the bond's cash flow. Available methods are (0) nearest, (1) linear,
and (2) cubic spline. Default = 1. See interp1 for more
information.

PrepaySpeed (Optional) Relation of the conditional payment rate (CPR) to the
benchmark model. Default = end of month's CPR. Set
PrepaySpeed to [] if you input a customized prepayment matrix.

PrepayMatrix (Optional) Customized prepayment matrix. A matrix of size
max(TermRemaining)-by-NMBS. Missing values are padded with
NaNs. Each column corresponds to a mortgage-backed security, and
each row corresponds to each month after settlement.

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.

Description
OAS =
mbsyield2oas(ZeroCurve,Yield,Settle,Maturity,IssueDate,GrossRate,Cou
ponRate,Delay,Interpolation,PrepaySpeed,PrepayMatrix) computes the
option-adjusted spread in basis points.

Examples

Calculate the Option-Adjusted Spread of a 30-Year Fixed-Rate Mortgage Pool

Calculate the option-adjusted spread of a 30-year, fixed-rate mortgage pool with about 28-
year weighted average maturity left, given assumptions of 0, 50, and 100 PSA
prepayments. First, create the bonds matrix:

Bonds = [datenum('11/21/2002')  0        100  0  2  1;
         datenum('02/20/2003')  0        100  0  2  1;
         datenum('07/31/2004')  0.03     100  2  3  1;
         datenum('08/15/2007')  0.035    100  2  3  1;
         datenum('08/15/2012')  0.04875  100  2  3  1;
         datenum('02/15/2031')  0.05375  100  2  3  1];

 mbsyield2oas

11-2389



Choose a settlement date.

Settle = datenum('20-Aug-2002');

Assume the following clean prices for the bonds:

Prices =  [ 98.97467;
            98.58044;
           100.10534;
            98.18054;
           101.38136;
            99.25411];

Use the following formula to compute spot compounding for the bonds:

SpotCompounding = 2*ones(size(Prices));

Compute the zero curve.

[ZeroRatesP, CurveDatesP] = zbtprice(Bonds, Prices, Settle);
ZeroCurve = [CurveDatesP, ZeroRatesP, SpotCompounding]

ZeroCurve = 6×3
105 ×

    7.3154    0.0000    0.0000
    7.3163    0.0000    0.0000
    7.3216    0.0000    0.0000
    7.3327    0.0000    0.0000
    7.3510    0.0000    0.0000
    7.4185    0.0000    0.0000

Assign the following parameters:

Price         = 95;
Maturity      = datenum('02-Jan-2030');
IssueDate     = datenum('02-Jan-2000');
GrossRate     = 0.08125;
CouponRate    = 0.075;
Delay         = 14;
Interpolation = 1;
PrepaySpeed   = [0 50 100];

Compute the yield, and from the yield, compute the option-adjusted spread.
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[mbsyld, beyld] = mbsyield(Price, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, PrepaySpeed);

OAS = mbsyield2oas(ZeroCurve, mbsyld, Settle, ...
Maturity, IssueDate, GrossRate, CouponRate, Delay, ... 
Interpolation, PrepaySpeed)

OAS = 3×1

   26.0508
   28.6355
   31.2232

See Also
mbsoas2price | mbsoas2yield | mbsprice2oas

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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mbsyield2speed
Implied PSA prepayment speeds given yield

Syntax
[ImpSpdOnYld,ImpSpdOnDur,ImpSpdOnCnv] = mbsyield2speed(Yield,Settle,Maturity,IssueDate,GrossRate,PrepayMatrix,CouponRate,Delay)

Arguments
Yield Mortgage yield, compounded monthly, in decimal.
Settle Settlement date. A serial date number or date character vector.

Settle must be earlier than Maturity.
Maturity Maturity date. A serial date number or date character vector.
IssueDate Issue date. A serial date number or date character vector.
GrossRate Gross coupon rate (including fees), in decimal.
PrepayMatrix Customized prepayment matrix. A matrix of size

max(TermRemaining)-by-NMBS. Missing values are padded with
NaNs. Each column corresponds to a mortgage-backed security,
and each row corresponds to each month after settlement.

CouponRate (Optional) Net coupon rate, in decimal. Default = GrossRate.
Delay (Optional) Delay (in days) between payment from homeowner and

receipt by bondholder. Default = 0 (no delay between payment
and receipt).

All inputs (except PrepayMatrix) are number of mortgage-backed securities (NMBS) by 1
vectors.

Description
[ImpSpdOnYld,ImpSpdOnDur,ImpSpdOnCnv] =
mbsyield2speed(Yield,Settle,Maturity,IssueDate,GrossRate,PrepayMatri
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x,CouponRate,Delay) computes PSA prepayment speeds implied by pool yields and
projected (user-defined) prepayment vectors. The calculated PSA speed produces the
same yield, modified duration, or modified convexity, depending upon the output
requested.

ImpSpdOnPrc calculates the equivalent PSA benchmark prepayment speed for the pass-
through to carry the same price.

ImpSpdOnDur calculates the equivalent PSA benchmark prepayment speed for the pass-
through to carry the same modified duration.

ImpSpdOnCnv calculates the equivalent PSA benchmark prepayment speed for the pass-
through to carry the same modified convexity.

All outputs are NMBS-by-1 vectors.

Examples
Calculate the equivalent PSA benchmark prepayment speeds for a security with these
characteristics and prepayment matrix.
Yield = 0.065;
Settle = datenum('1-Jan-2000');
Maturity = datenum('1-Jan-2030');
IssueDate = datenum('1-Jan-2000');
GrossRate = 0.08125;
PrepayMatrix = 0.005*ones(360,1);
CouponRate = 0.075;
Delay = 14;

[ImpSpdOnYld, ImpSpdOnDur, ImpSpdOnCnv] = ... 
mbsyield2speed(Yield, Settle, Maturity, IssueDate, GrossRate, ... 
PrepayMatrix, CouponRate, Delay)

ImpSpdOnYld =

  117.7644

ImpSpdOnDur =

  116.7436

ImpSpdOnCnv =

  108.3309
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References
[1] PSA Uniform Practices, SF-49

See Also
mbsprice2speed | mbsyield

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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psaspeed2default
Benchmark default

Syntax
[ADRPSA,MDRPSA] = psaspeed2default(DefaultSpeed)

Arguments
DefaultSpeed Annual speed relative to the benchmark. PSA benchmark =

100.

Description
[ADRPSA,MDRPSA] = psaspeed2default(DefaultSpeed) computes the benchmark
default on the performing balance of mortgage-backed securities per PSA benchmark
speed.

ADRPSA is the PSA default rate, in decimal (360-by-1).

MDRPSA is the PSA monthly default rate, in decimal (360-by-1).

Examples

Compute the Benchmark Default Rates on the Performing Balance of Mortgage-
Backed Securities Per PSA Benchmark Speed

This example shows how to compute the benchmark default rates on the performing
balance of mortgage-backed securities per PSA benchmark speed, given a mortgage-
backed security with annual speed set at the PSA default benchmark.
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DefaultSpeed = 100;

[ADRPSA, MDRPSA] = psaspeed2default(DefaultSpeed)

ADRPSA = 360×1

    0.0002
    0.0004
    0.0006
    0.0008
    0.0010
    0.0012
    0.0014
    0.0016
    0.0018
    0.0020
      ⋮

MDRPSA = 360×1
10-3 ×

    0.0167
    0.0333
    0.0500
    0.0667
    0.0834
    0.1001
    0.1167
    0.1334
    0.1501
    0.1668
      ⋮

See Also
psaspeed2rate

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
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“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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psaspeed2rate
Single monthly mortality rate given PSA speed

Syntax
[CPRPSA,SMMPSA]= psaspeed2rate(PSASpeed)

Arguments
PSASpeed Any value > 0 representing the annual speed relative to the

benchmark. PSA benchmark = 100.

Description
[CPRPSA,SMMPSA]= psaspeed2rate(PSASpeed) calculates vectors of PSA
prepayments, each containing 360 prepayment elements, to represent the 360 months in
a 30-year mortgage pool.

CPRPSA is the PSA conditional prepayment rate, in decimal [360-by-1].

SMMPSA is the PSA single monthly mortality rate, in decimal [360-by-1].

Examples

Compute the Prepayment and Mortality Rates

This example shows how to compute the prepayment and mortality rates, given a
mortgage-backed security with annual speed set at the PSA default benchmark.

PSASpeed = [100 200];
 
[CPRPSA, SMMPSA]= psaspeed2rate(PSASpeed);
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% view the plot of the output
psaspeed2rate(PSASpeed)

See Also
psaspeed2default

Topics
“Generating Prepayment Vectors” on page 5-4
“Mortgage Prepayments” on page 5-6
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“Prepayment Modeling with a Two Factor Hull White Model and a LIBOR Market Model”
“What Are Mortgage-Backed Securities?” on page 5-2

Introduced before R2006a
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stepcpncfamounts
Cash flow amounts and times for bonds and stepped coupons

Syntax
[CFlows,CDates,CTimes] = stepcpncfamounts(Settle,Maturity,ConvDates,CouponRates,Period,Basis,EndMonthRule,Face)

Arguments
Settle Settlement date. A scalar or vector of serial date numbers.

Settle must be earlier than Maturity.
Maturity Maturity date. A scalar or vector of serial date numbers.
ConvDates Matrix of serial date numbers representing conversion dates

after Settle. Size = number of instruments by maximum
number of conversions. Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond in decimal
form. Size = number of instruments by maximum number of
conversions + 1. First column of this matrix contains rates
applicable between Settle and the first conversion date (date
in the first column of ConvDates). Fill unspecified entries with
NaN.

ConvDates has the same number of rows as CouponRates to
reflect the same number of bonds. However, ConvDates has
one less column than CouponRates. This situation is illustrated
by
Settle---------ConvDate1-----------ConvDate2------------Maturity

        Rate1               Rate2                 Rate3

Period (Optional) Coupons per year of the bond. A vector of integers.
Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default = 2.
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Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only

when Maturity is an end-of-month date for a month having 30
or fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the month. 1
= set rule on (default), meaning that a bond's coupon payment
date is always the last actual day of the month.

Face (Optional) Face value of each bond in the portfolio. Default =
100.

Note All arguments must be scalars or number of bonds (NUMBONDS)-by-1 vectors, except
for ConvDates and CouponRates.
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Description
[CFlows,CDates,CTimes] =
stepcpncfamounts(Settle,Maturity,ConvDates,CouponRates,Period,Basis,
EndMonthRule,Face) returns matrices of cash flow amounts, cash flow dates, and time
factors for a portfolio of NUMBONDS stepped-coupon bonds.

CFlows is a matrix of cash flow amounts. The first entry in each row vector is a negative
number indicating the accrued interest due at settlement. If no accrued interest is due,
the first column is 0.

CDates is a matrix of cash flow dates in serial date number form. At least two columns
are always present, one for settlement and one for maturity.

CTimes is a matrix of time factors for the SIA semiannual price/yield conversion.

DiscountFactor = (1 + Yield/2).^(-TFactor) 

Time factors are in units of semiannual coupon periods. In computing time factors, use
SIA actual/actual conventions for all time factor calculations.

Note For bonds with fixed coupons, use cfamounts. If you use a fixed-coupon bond with
stepcpncfamounts, MATLAB software generates an error.

Examples
This example generates stepped cash flows for three different bonds, all paying interest
semiannually. Their life span is about 18–19 years each:

• Bond A has two conversions, but the first one occurs on the settlement date and
immediately expires.

• Bond B has three conversions, with conversion dates exactly on the coupon dates.
• Bond C has three conversions, with some conversion dates not on the coupon dates. It

has the longest maturity. This case illustrates that only cash flows for full periods after
conversion dates are affected, as illustrated below.
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The following table illustrates the interest rate characteristics of this bond portfolio.

Bond A Dates Bond A Rates Bond B Dates Bond B Rates Bond C Dates Bond C Rates
Settle (02-
Aug-92)

7.5% Settle (02-
Aug-92)

7.5% Settle (02-
Aug-92)

2.5%

First
Conversion (02-
Aug-92)

8.875% First
Conversion (15-
Jun-97))

8.875% First
Conversion (14-
Jun-97))

5.0%

Second
Conversion (15-
Jun-03)

9.25% Second
Conversion (15-
Jun-01)

9.25% Second
Conversion (14-
Jun-01)

7.5%

Maturity (15-
Jun-10)

NaN Third
Conversion (15-
Jun-05)

10.0% Third
Conversion (14-
Jun-05)

10.0%

  Maturity (15-
Jun-10)

NaN Maturity (15-
Jun-11)

NaN

Settle   = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),...
             nan;
            datenum('15-Jun-1997'), datenum('15-Jun-2001'),... 
            datenum('15-Jun-2005');
            datenum('14-Jun-1997'), datenum('14-Jun-2001'),... 
            datenum('14-Jun-2005')];
        
Maturity = [datenum('15-Jun-2010'); 
            datenum('15-Jun-2010'); 
            datenum('15-Jun-2011')];

CouponRates = [0.075 0.08875 0.0925 nan;
               0.075 0.08875 0.0925 0.1;
               0.025 0.05    0.0750 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

Call stepcpncfamounts to compute cash flows and timings.
[CFlows, CDates, CTimes] = stepcpncfamounts(Settle, Maturity, ... 
ConvDates, CouponRates);

Visualize the third bond cash flows (2.5 - 5 - 7.5 - 10) using the cfplot function.

cfplot(CDates(3,:),CFlows(3,:));
xlabel('Dates in Serial Number Format')
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ylabel('Relative Amounts of Cash Flows')
title('CashFlow of 2.5 - 5 - 7.5 - 10 Stepped Coupon Bond')

See Also
cfplot | stepcpnprice | stepcpnyield

Topics
“Cash Flows from Stepped-Coupon Bonds” on page 6-11
“Price and Yield of Stepped-Coupon Bonds” on page 6-12
“Managing Present Value with Bond Futures” on page 7-16
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Introduced before R2006a
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stepcpnprice
Price bond with stepped coupons

Syntax
[Price,AccruedInterest] = stepcpnprice(Yield,Settle,Maturity,ConvDates,CouponRates,Period,Basis,EndMonthRule,Face)

Arguments
Yield Scalar or vector containing yield to maturity of instruments.
Settle Settlement date. A scalar or vector of serial date numbers.

Settle must be earlier than Maturity.
Maturity Maturity date. A scalar or vector of serial date numbers.
ConvDates Matrix of serial date numbers representing conversion dates

after Settle. Size = number of instruments by maximum
number of conversions. Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond in decimal
form. Size = number of instruments by maximum number of
conversions + 1. First column of this matrix contains rates
applicable between Settle and the first conversion date (date
in the first column of ConvDates). Fill unspecified entries with
NaN.

ConvDates has the same number of rows as CouponRate to
reflect the same number of bonds. However, ConvDates has one
less column than CouponRate. This situation is illustrated by
Settle---------ConvDate1-----------ConvDate2------------Maturity

        Rate1               Rate2                 Rate3

Period (Optional) Coupons per year of the bond. A vector of integers.
Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default = 2.
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Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only

when Maturity is an end-of-month date for a month having 30
or fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the month. 1
= set rule on (default), meaning that a bond's coupon payment
date is always the last actual day of the month.

Face (Optional) Face value of each bond in the portfolio. Default =
100.

Note All arguments must be scalars or number of bonds (NUMBONDS)-by-1 vectors, except
for ConvDates and CouponRates.
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Description
[Price,AccruedInterest] =
stepcpnprice(Yield,Settle,Maturity,ConvDates,CouponRates,Period,Basi
s,EndMonthRule,Face) computes the price of bonds with stepped coupons given the
yield to maturity. The function supports any number of conversion dates.

Price is a NUMBONDS-by-1 vector of clean prices.

AccruedInterest is a NUMBONDS-by-1 vector of accrued interest payable at settlement
dates.

Note For bonds with fixed coupons, use bndprice. If you use a fixed-coupon bond with
stepcpnprice, you receive the error: incorrect number of inputs.

Examples
Compute the price and accrued interest due on a portfolio of stepped-coupon bonds
having a yield of 7.221%, given three conversion scenarios:

• Bond A has two conversions, the first one falling on the settle date and immediately
expiring.

• Bond B has three conversions, with conversion dates exactly on the coupon dates.
• Bond C has three conversions, with one or more conversion dates not on coupon dates.

This case illustrates that only cash flows for full periods after conversion dates are
affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond portfolio.

Bond A Dates Bond A Rates Bond B Dates Bond B Rates Bond C Dates Bond C Rates
Settle (02-
Aug-92)

7.5% Settle (02-
Aug-92)

7.5% Settle (02-
Aug-92)

7.5%
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Bond A Dates Bond A Rates Bond B Dates Bond B Rates Bond C Dates Bond C Rates
First
Conversion (02-
Aug-92)

8.875% First
Conversion (15-
Jun-97)

8.875% First
Conversion (14-
Jun-97)

8.875%

Second
Conversion (15-
Jun-03)

9.25% Second
Conversion (15-
Jun-01)

9.25% Second
Conversion (14-
Jun-01)

9.25%

Maturity (15-
Jun-10)

NaN Third
Conversion (15-
Jun-05)

10.0% Third
Conversion (14-
Jun-05)

10.0%

  Maturity (15-
Jun-10)

NaN Maturity (15-
Jun-10)

NaN

Yield = 0.07221;
Settle   = datenum('02-Aug-1992');
ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'),... 
             nan;
            datenum('15-Jun-1997'), datenum('15-Jun-2001'),... 
            datenum('15-Jun-2005');
            datenum('14-Jun-1997'), datenum('14-Jun-2001'),... 
            datenum('14-Jun-2005')];
Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;
               0.075 0.08875 0.0925 0.1;
               0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

[Price, AccruedInterest] = ...
stepcpnprice(Yield, Settle, Maturity, ConvDates, CouponRates, ... 
Period, Basis, EndMonthRule, Face)

Price =

  117.3824
  113.4339
  113.4339

AccruedInterest =

    1.1587
    0.9792
    0.9792
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References
This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest. 3rd Edition. Vol. 1, pp. 120–123, on zero-coupon instruments pricing.

See Also
bndprice | cdprice | stepcpncfamounts | stepcpnprice | stepcpnyield |
tbillprice

Topics
“Cash Flows from Stepped-Coupon Bonds” on page 6-11
“Price and Yield of Stepped-Coupon Bonds” on page 6-12
“Managing Present Value with Bond Futures” on page 7-16

Introduced before R2006a
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stepcpnyield
Yield to maturity of bond with stepped coupons

Syntax
Yield = stepcpnyield(Price,Settle,Maturity,ConvDates,CouponRate,Period,Basis,EndMonthRule,Face)

Arguments
Price Vector containing price of the bonds.
Settle Settlement date. A vector of serial date numbers. Settle must

be earlier than Maturity.
Maturity Maturity date. A vector of serial date numbers.
ConvDates Matrix of serial date numbers representing conversion dates

after Settle. Size = number of instruments by maximum
number of conversions. Fill unspecified entries with NaN.

CouponRates Matrix indicating the coupon rates for each bond in decimal
form. Size = number of instruments by maximum number of
conversions + 1. First column of this matrix contains rates
applicable between Settle and the first conversion date (date
in the first column of ConvDates). Fill unspecified entries with
NaN.

ConvDates has the same number of rows as CouponRate to
reflect the same number of bonds. However, ConvDates has
one less column than CouponRate. This situation is illustrated
by
Settle---------ConvDate1-----------ConvDate2------------Maturity

         Rate1               Rate2                 Rate3

Period (Optional) Coupons per year of the bond. A vector of integers.
Allowed values are 0, 1, 2, 3, 4, 6, and 12. Default = 2.
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Basis (Optional) Day-count basis of the instrument. A vector of
integers.

• 0 = actual/actual (default)
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (BMA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
EndMonthRule (Optional) End-of-month rule. A vector. This rule applies only

when Maturity is an end-of-month date for a month having 30
or fewer days. 0 = ignore rule, meaning that a bond's coupon
payment date is always the same numerical day of the month. 1
= set rule on (default), meaning that a bond's coupon payment
date is always the last actual day of the month.

Face (Optional) Face value of each bond in the portfolio. Default =
100.

Note All arguments must be number of bonds (NUMBONDS)-by-1 vectors, except for
ConvDates and CouponRate.
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Description
Yield =
stepcpnyield(Price,Settle,Maturity,ConvDates,CouponRate,Period,Basis
,EndMonthRule,Face) computes the yield to maturity of bonds with stepped coupons
given the price. The function supports any number of conversion dates.

Yield is a NUMBONDS-by-1 vector of yields to maturity in decimal form.

Note For bonds with fixed coupons, use bndyield. You receive the error incorrect
number of inputs if you use a fixed-coupon bond with stepcpnyield.

Examples
Find the yield to maturity of three stepped-coupon bonds of known price, given three
conversion scenarios:

• Bond A has two conversions, the first one falling on the settle date and immediately
expiring.

• Bond B has three conversions, with conversion dates exactly on the coupon dates.
• Bond C has three conversions, with one or more conversion dates not on coupon dates.

This case illustrates that only cash flows for full periods after conversion dates are
affected, as illustrated below.

The following table illustrates the interest rate characteristics of this bond portfolio.

Bond A Dates Bond A Rates Bond B Dates Bond B Rates Bond C Dates Bond C Rates
Settle (02-
Aug-92)

7.5% Settle (02-
Aug-92)

7.5% Settle (02-
Aug-92)

7.5%

First
Conversion (02-
Aug-92)

8.875% First
Conversion (15-
Jun-97)

8.875% First
Conversion (14-
Jun-97)

8.875%
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Bond A Dates Bond A Rates Bond B Dates Bond B Rates Bond C Dates Bond C Rates
Second
Conversion (15-
Jun-03)

9.25% Second
Conversion (15-
Jun-01)

9.25% Second
Conversion (14-
Jun-01)

9.25%

Maturity (15-
Jun-10)

NaN Third
Conversion (15-
Jun-05)

10.0% Third
Conversion (14-
Jun-05)

10.0%

  Maturity (15-
Jun-10)

NaN Maturity (15-
Jun-10)

NaN

format long
Price = [117.3824; 113.4339; 113.4339];
Settle = datenum('02-Aug-1992');

ConvDates = [datenum('02-Aug-1992'), datenum('15-Jun-2003'), nan;
datenum('15-Jun-1997'), datenum('15-Jun-2001'), datenum('15-Jun-2005'); 
datenum('14-Jun-1997'), datenum('14-Jun-2001'), datenum('14-Jun-2005')];
        
Maturity = datenum('15-Jun-2010');

CouponRates = [0.075 0.08875 0.0925 nan;
               0.075 0.08875 0.0925 0.1;
               0.075 0.08875 0.0925 0.1];
Basis = 1;
Period = 2;
EndMonthRule = 1;
Face = 100;

Yield = stepcpnyield(Price, Settle, Maturity, ConvDates, ... 
CouponRates, Period, Basis, EndMonthRule, Face)

Yield =

0.07221440204915
0.07221426780036
0.07221426780036

References
This function adheres to SIA Fixed Income Securities Formulas for Price, Yield, and
Accrued Interest. 3rd Edition. Vol. 1, pp. 120–123, on zero-coupon instruments pricing.

See Also
bndprice | cdprice | stepcpncfamounts | stepcpnprice | stepcpnprice |
tbillprice | zeroprice
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Topics
“Cash Flows from Stepped-Coupon Bonds” on page 6-11
“Price and Yield of Stepped-Coupon Bonds” on page 6-12
“Managing Present Value with Bond Futures” on page 7-16

Introduced before R2006a
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tfutbyprice
Future prices of Treasury bonds given spot price

Syntax
[QtdFutPrice,AccrInt] = tfutbyprice(SpotCurve,Price,SettleFut,MatFut,ConvFactor,CouponRate,Maturity,Interpolation)

Arguments
SpotCurve Treasury spot curve; a number of futures (NFUT) by 3 matrix in the

form of [SpotDates SpotRates Compounding].

Allowed compounding values are −1, 1, 2 (default), 3, 4, and 12,
where −1 is continuous compounding.

Price Scalar or vector containing prices of Treasury bonds or notes per
$100 notional. Use bndprice for theoretical value of bond.

SettleFut Scalar or vector of identical elements containing settlement date of
futures contract.

MatFut Scalar or vector containing maturity dates (or anticipated delivery
dates) of futures contract.

ConvFactor Conversion factor. See convfactor.
CouponRate Scalar or vector containing underlying bond annual coupon in

decimal.
Maturity Scalar or vector containing underlying bond maturity.
Interpolation (Optional) Interpolation method. Available methods are (0) nearest,

(1) linear, and (2) cubic. Default = 1. See interp1 for more
information.

Inputs (except SpotCurve) must either be a scalar or a vector of size equal to the
number of Treasury futures (NFUT) by 1 or 1-by-NFUT.
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Description
[QtdFutPrice,AccrInt] =
tfutbyprice(SpotCurve,Price,SettleFut,MatFut,ConvFactor,CouponRate,M
aturity,Interpolation) computes future prices of Treasury notes and bonds given
the spot price. The output arguments are:

• QtdFutPrice — Quoted futures price, per $100 notional.
• AccrInt — Accrued interest due at delivery date, per $100 notional.

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an
IRDataCurve object with a Dates property to create a vector of dates and data
acceptable for tfutbyprice. For more information, see “Converting an IRDataCurve or
IRFunctionCurve Object” on page 9-41.

Examples

Determine the Future Prices of Treasury Bonds Given the Spot Price

This example shows how to determine the future price of two Treasury bonds based upon
a spot rate curve constructed from data for November 14, 2002.

% construct spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'),        0;
         datenum('05/15/2003'),        0;
         datenum('10/31/2004'),  0.02125;
         datenum('11/15/2007'),     0.03;
         datenum('11/15/2012'),     0.04;
         datenum('02/15/2031'),  0.05375];

Yields  = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;     

Settle = datenum('11/15/2002');                  

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve  = [CurveDates, ZeroRates];

% calculate a particular bond's future quoted price
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RefDate    = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut     = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity   = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Price = [114.416; 113.171];
Interpolation = 1;

[QtdFutPrice, AccrInt] = tfutbyprice(SpotCurve, Price, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice = 2×1

  114.0409
  113.4029

AccrInt = 2×1

    1.9891
    0.4448

See Also
convfactor | tfutbyyield

Topics
“Computing Treasury Bill Price and Yield” (Financial Toolbox)
“Treasury Bills Defined” (Financial Toolbox)

Introduced before R2006a
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tfutbyyield
Future prices of Treasury bonds given current yield

Syntax
[QtdFutPrice,AccrInt] = tfutbyyield(SpotCurve,Yield,SettleFut,MatFut,ConvFactor,CouponRate,Maturity,Interpolation)

Arguments
SpotCurve Treasury spot curve. A number of futures (NFUT)-by-3 matrix in the

form of [SpotDates SpotRates Compounding].

Allowed compounding values are −1, 1, 2 (default), 3, 4, and 12,
where −1 is continuous compounding.

Yield Scalar or vector containing yield to maturity of bonds. Use
bndyield for theoretical value of bond yield.

SettleFut Scalar or vector of identical elements containing settlement date of
futures contract.

MatFut Scalar or vector containing maturity dates (or anticipated delivery
dates) of futures contract.

ConvFactor Conversion factor. See convfactor.
CouponRate Scalar or vector containing underlying bond annual coupon in

decimal.
Maturity Scalar or vector containing underlying bond maturity.
Interpolation (Optional) Interpolation method. Available methods are (0) nearest

(1) linear, and (2) cubic. Default = 1. See interp1 for more
information.

Inputs (except SpotCurve) must either be a scalar or a vector of size equal to the
number of Treasury futures (NFUT) by 1 or 1-by-NFUT.
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Description
[QtdFutPrice,AccrInt] =
tfutbyyield(SpotCurve,Yield,SettleFut,MatFut,ConvFactor,CouponRate,M
aturity,Interpolation) computes future prices of Treasury notes and bonds given
current yields of Treasury bonds/notes. The output arguments are:

• QtdFutPrice — Quoted futures price, per $100 notional.
• AccrInt — Accrued Interest due at delivery date, per $100 notional.

In addition, you can use the Financial Instruments Toolbox method getZeroRates for an
IRDataCurve object with a Dates property to create a vector of dates and data
acceptable for tfutbyyield. For more information, see “Converting an IRDataCurve or
IRFunctionCurve Object” on page 9-41.

Examples

Determine Future Prices of Treasury Bonds Given the Current Yield

This example shows how to determine the future price of two Treasury bonds based upon
a spot rate curve constructed from data for November 14, 2002.

% construct spot curve from Nov 14, data
Bonds = [datenum('02/13/2003'),        0;
         datenum('05/15/2003'),        0;
         datenum('10/31/2004'),  0.02125;
         datenum('11/15/2007'),     0.03;
         datenum('11/15/2012'),     0.04;
         datenum('02/15/2031'),  0.05375];

Yields  = [1.20; 1.25; 1.86; 2.99; 4.02; 4.93]/100;

Settle = datenum('11/15/2002');

[ZeroRates, CurveDates] = ...
zbtyield(Bonds, Yields, Settle);

SpotCurve  = [CurveDates, ZeroRates];

% calculate a particular bond's future quoted price
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RefDate    = [datenum('1-Dec-2002'); datenum('1-Mar-2003')];
MatFut     = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
Maturity   = [datenum('15-Aug-2009');datenum('15-Aug-2010')];
CouponRate = [0.06;0.0575];
ConvFactor = convfactor(RefDate, Maturity, CouponRate);
Yield = [0.03576; 0.03773];
Interpolation = 1;

[QtdFutPrice, AccrInt] = tfutbyyield(SpotCurve, Yield, Settle, ...
MatFut, ConvFactor, CouponRate, Maturity, Interpolation)

QtdFutPrice = 2×1

  114.0416
  113.4034

AccrInt = 2×1

    1.9891
    0.4448

See Also
convfactor | tfutbyprice

Topics
“Computing Treasury Bill Price and Yield” (Financial Toolbox)
“Treasury Bills Defined” (Financial Toolbox)

Introduced before R2006a

11 Functions — Alphabetical List

11-2422



tfutimprepo
Implied repo rates for Treasury bond future given price

Syntax
ImpliedRepo = tfutimprepo(ReinvestData,Price,QtdFutPrice,Settle,MatFut,ConvFactor,CouponRate,Maturity)

Arguments
ReinvestData Number of futures (NFUT) by 2 matrix of rates and bases for

the reinvestment of intervening coupons in the form of
[ReinvestRate ReinvestBasis].

ReinvestRate is the simple reinvestment rate, in decimal.
Specify ReinvestBasis as 0 = not reinvested, 2 = actual/
360, or 3 = actual/365.

Price Current bond price per $100 notional.
QtdFutPrice Quoted bond futures price per $100 notional.
Settle Settlement/valuation date of futures contract.
MatFut Maturity date (or anticipated delivery dates) of futures

contract.
ConvFactor Conversion factor. See convfactor.
CouponRate Underlying bond annual coupon, in decimal.
Maturity Underlying bond maturity date.

Inputs (except ReinvestData) must either be a scalar or a vector of size equal to the
number of Treasury futures (NFUT) by 1 or 1-by-NFUT.

Description
ImpliedRepo =
tfutimprepo(ReinvestData,Price,QtdFutPrice,Settle,MatFut,ConvFactor,

 tfutimprepo

11-2423



CouponRate,Maturity) computes the implied repo rate that prevents arbitrage of
Treasury bond futures, given the clean price at the settlement and delivery dates.

ImpliedRepo is the implied annual repo rate, in decimal, with an actual/360 basis.

Examples

Compute the Implied Repo Rates for Treasury Bond Futures Given the Price

This example shows how to compute the implied repo rate given the following set of data.

ReinvestData = [0.018  3];
Price = [114.4160; 113.1710];
QtdFutPrice = [114.1201; 113.7090];
Settle = datenum('11/15/2002'); 
MatFut = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor = [1; 0.9854];
CouponRate = [0.06; 0.0575];
Maturity = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
 
ImpliedRepo = tfutimprepo(ReinvestData, Price, QtdFutPrice, ...
Settle, MatFut, ConvFactor, CouponRate, Maturity)

ImpliedRepo = 2×1

    0.0200
    0.0200

See Also
tfutpricebyrepo | tfutyieldbyrepo

Topics
“Computing Treasury Bill Price and Yield” (Financial Toolbox)
“Treasury Bills Defined” (Financial Toolbox)

Introduced before R2006a
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tfutpricebyrepo
Calculates Treasury bond futures price given the implied repo rates

Syntax
[QtdFutPrice,AccrInt] = tfutpricebyrepo(RepoData,ReinvestData,Price,Settle,MatFut,ConvFactor,CouponRate,Maturity)

Arguments
RepoData Number of futures (NFUT) by 2 matrix of simple term repo/

funding rates in decimal and their bases in the form of
[RepoRate RepoBasis].

Specify RepoBasis as 2 = actual/360 or 3 = actual/365.
ReinvestData Number of futures (NFUT) by 2 matrix of rates and bases for the

reinvestment of intervening coupons in the form of
[ReinvestRate ReinvestBasis].

ReinvestRate is the simple reinvestment rate, in decimal.
Specify ReinvestBasis as 0 = not reinvested, 2 = actual/360,
or 3 = actual/365.

Price Quoted clean prices of Treasury bonds per $100 notional at
Settle.

Settle Settlement/valuation date of futures contract.
MatFut Maturity date (or anticipated delivery dates) of futures contract.
ConvFactor Conversion factor. See convfactor.
CouponRate Underlying bond annual coupon, in decimal.
Maturity Underlying bond maturity date.

Inputs (except RepoData and ReinvestData) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.
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Description
[QtdFutPrice,AccrInt] =
tfutpricebyrepo(RepoData,ReinvestData,Price,Settle,MatFut,ConvFactor
,CouponRate,Maturity) computes the theoretical futures bond price given the
settlement price, the repo/funding rates, and the reinvestment rate.

QtdFutPrice is the quoted futures price, per $100 notional.

AccrInt is the accrued interest due at the delivery date, per $100 notional.

Examples

Compute Treasury Bond Futures Price Given the Implied Repo Rates

This example shows how to compute the quoted futures price and accrued interest due on
the target delivery date, given the following data.

RepoData     = [0.020  2];
ReinvestData = [0.018  3];
Price        = [114.416; 113.171];
Settle       = datenum('11/15/2002'); 
MatFut       = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor   = [1 ; 0.9854];
CouponRate   = [0.06;0.0575];
Maturity     = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
 
[QtdFutPrice AccrInt] = tfutpricebyrepo(RepoData, ... 
ReinvestData, Price, Settle, MatFut, ConvFactor, CouponRate, ... 
Maturity)

QtdFutPrice = 2×1

  114.1201
  113.7090

AccrInt = 2×1

    1.9891
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    0.4448

See Also
tfutimprepo | tfutyieldbyrepo

Topics
“Computing Treasury Bill Price and Yield” (Financial Toolbox)
“Treasury Bills Defined” (Financial Toolbox)

Introduced before R2006a
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tfutyieldbyrepo
Calculates Treasury bond futures yield given the implied repo rates

Syntax
FwdYield = tfutyieldbyrepo(RepoData,ReinvestData,Yield,Settle,MatFut,ConvFactor,CouponRate,Maturity)

Arguments
RepoData Number of futures (NFUT) by 2 matrix of simple term repo/funding

rates in decimal and their bases in the form of [RepoRate
RepoBasis].

Specify RepoBasis as 2 = actual/360 or 3 = actual/365.
ReinvestData Number of futures (NFUT) by 2 matrix of rates and bases for the

reinvestment of intervening coupons in the form of
[ReinvestRate ReinvestBasis].

ReinvestRate is the simple reinvestment rate, in decimal. Specify
ReinvestBasis as 0 = not reinvested, 2 = actual/360, or
3 = actual/365.

Yield Yield to maturity of Treasury bonds per $100 notional at Settle.
Settle Settlement/valuation date of futures contract.
MatFut Maturity date (or anticipated delivery dates) of futures contract.
ConvFactor Conversion factor. See convfactor.
CouponRate Underlying bond annual coupon, in decimal.
Maturity Underlying bond maturity date.

Inputs (except RepoData and ReinvestData) must either be a scalar or a vector of size
equal to the number of Treasury futures (NFUT) by 1 or 1-by-NFUT.
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Description
FwdYield =
tfutyieldbyrepo(RepoData,ReinvestData,Yield,Settle,MatFut,ConvFactor
,CouponRate,Maturity) computes the theoretical futures bond yield given the
settlement yield, the repo/funding rate, and the reinvestment rate.

FwdYield is the forward yield to maturity, in decimal, compounded semiannually.

Examples

Compute the Treasury Bond Futures Yield Given the Implied Repo Rates

This example shows how to compute the quoted futures bond yield, given the following
data.

RepoData     = [0.020  2];
ReinvestData = [0.018  3];
Yield        = [0.0215; 0.0257];
Settle       = datenum('11/15/2002'); 
MatFut       = [datenum('15-Dec-2002'); datenum('15-Mar-2003')];
ConvFactor   = [1; 0.9854];
CouponRate   = [0.06; 0.0575];
Maturity     = [datenum('15-Aug-2009'); datenum('15-Aug-2010')];
 
FwdYield = tfutyieldbyrepo(RepoData, ReinvestData, Yield,... 
    Settle, MatFut, ConvFactor, CouponRate, Maturity)

FwdYield = 2×1

    0.0221
    0.0282

See Also
tfutimprepo | tfutpricebyrepo
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Topics
“Computing Treasury Bill Price and Yield” (Financial Toolbox)
“Treasury Bills Defined” (Financial Toolbox)

Introduced before R2006a
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toRateSpec
Convert IRDataCurve object to RateSpec

Class
@IRDataCurve on page A-7

Syntax
F = toratespec(CurveObj,InpDates)

Arguments
CurveObj Interest-rate curve object that is constructed using IRDataCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.

Description
F = toratespec(CurveObj,InpDates) returns a RateSpec object that is identical to
the RateSpec structure created by the Financial Instruments Toolbox function
intenvset.

Examples

Convert an IRDataCurve Object to a RateSpec

This example shows how to convert an IRDataCurve object to a RateSpec. First, an
IRDataCurve object is created using the function IRDataCurve constructor with Dates

 toRateSpec
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and Data, then this object is converted to a RateSpec structure using the toRateSpec
method.

CurveSettle = datenum('2-Mar-2016');
Data = [2.09 2.47 2.71 3.12 3.43 3.85 4.57 4.58]/100;
Dates = datemnth(CurveSettle,12*[1 2 3 5 7 10 20 30]);
irdc = IRDataCurve('Forward',CurveSettle,Dates,Data);
toRateSpec(irdc, CurveSettle+30:30:CurveSettle+365)

ans = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 736391
    ValuationDate: 736391
            Basis: 0
     EndMonthRule: 1

See Also
“@IRDataCurve” on page A-7

Topics
“Creating Interest-Rate Curve Objects” on page 9-4
“Creating an IRDataCurve Object” on page 9-6
“Using the toRateSpec Method” on page 9-41
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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toRateSpec
Convert IRFunctionCurve object to RateSpec

Class
@IRFunctionCurve on page A-13

Syntax
F = toRateSpec(CurveObj,InpDates)

Arguments
CurveObj Interest-rate curve object that is constructed using

IRFunctionCurve.
InpDates Vector of input dates using MATLAB date format. The input dates

must be after the settle date.

Description
F = toRateSpec(CurveObj,InpDates) returns a RateSpec object that is identical to
the RateSpec structure created by the Financial Instruments Toolbox function
intenvset.

Examples

 toRateSpec
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Convert an IRFunctionCurve Object to a RateSpec

This example shows how to convert an IRFunctionCurve object to a RateSpec. First,
an IRFunctionCurve object is created using the function IRFunctionCurve
constructor, then a RateSpec structure is created using the toRateSpec method.

irfc = IRFunctionCurve('Forward',today,@(t) polyval([-0.0001 0.003 0.02],t));
toRateSpec(irfc, today+30:30:today+365)

ans = struct with fields:
           FinObj: 'RateSpec'
      Compounding: 2
             Disc: [12x1 double]
            Rates: [12x1 double]
         EndTimes: [12x1 double]
       StartTimes: [12x1 double]
         EndDates: [12x1 double]
       StartDates: 737299
    ValuationDate: 737299
            Basis: 0
     EndMonthRule: 1

See Also
“@IRFunctionCurve” on page A-13

Topics
“Creating an IRFunctionCurve Object” on page 9-22
“Using the toRateSpec Method” on page 9-41
“Interest-Rate Curve Objects and Workflow” on page 9-2

Introduced in R2008b
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zeroprice
Price zero-coupon instruments given yield

Syntax
Price = zeroprice(Yield,Settle,Maturity)
Price = zeroprice( ___ ,Period,Basis,EndMonthRule)

Description
Price = zeroprice(Yield,Settle,Maturity) prices zero-coupon instruments
given a yield. zeroprice calculates the prices for a portfolio of general short and long-
term zero-coupon instruments given the yield of reference bonds. In other words, if the
zero-coupon computed with this yield is used to discount the reference bond, the value of
that reference bond is equal to its price.

Price = zeroprice( ___ ,Period,Basis,EndMonthRule) adds optional arguments
for Period, Basis, and EndMonthRule.

Examples

Compute the Price of a Short-Term Zero-Coupon Instrument

This example shows how to compute the price of a short-term zero-coupon instrument.

Settle = '24-Jun-1993';
Maturity = '1-Nov-1993';
Period = 2;
Basis = 0;
Yield = 0.04;

Price = zeroprice(Yield, Settle, Maturity, Period, Basis)

Price = 98.6066

 zeroprice
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Compute the Prices of a Portfolio of Two Zero-Coupon Instruments

This example shows how to compute the prices of a portfolio of two zero-coupon
instruments, one short-term, and the other long-term.

Settle = '24-Jun-1993';
Maturity = ['01-Nov-1993'; '15-Jan-2024'];
Basis = [0; 1];
Yield = [0.04; 0.1];

Price = zeroprice(Yield, Settle, Maturity, [], Basis)

Price = 2×1

   98.6066
    5.0697

Input Arguments
Yield — Reference bond yield
scalar | vector

Reference bond yield, specified as a scalar or a NZERO-by-1 vector.
Data Types: double

Settle — Settlement date
serial date number

Settlement date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double
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Period — Number of coupons in one year
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

(Optional) Number of coupons in one year, specified as a positive integer for the values
1,2,4,6,12 in a NZERO-by-1 vector.
Data Types: double

Basis — Day-count basis of bond
0 (actual/actual) (default) | vector of positive integers of the set [1...13]

(Optional) Day-count basis of the bond, specified as a positive integer using a NZERO-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .
Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with value of 0 or 1

(Optional) End-of-month rule flag, specified as a nonnegative integer with a value of 0 or
1 using a NZERO-by-1 vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days.
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• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
Price — Price for each zero-coupon instrument
vector

Price for each zero-coupon instrument (per $100 notional), returned as a column vector.

Algorithms
To compute the price when Period is 1 or 0 for the quasi-coupon periods to redemption,
zeroprice uses the formula

Price
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Quasi-coupon periods are the coupon periods that would exist if the bond were paying
interest at a rate other than zero.

When there is more than one quasi-coupon period to the redemption date, zeroprice
uses the formula
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The elements of the equations are defined as follows.

Variable Definition
DSC Number of days from settlement date to next quasi-coupon date as if the

security paid periodic interest.
DSR Number of days from settlement date to the redemption date (call date,

put date, and so on).
E Number of days in quasi-coupon period.
M Number of quasi-coupon periods per year (standard for the particular

security involved).
Nq Number of quasi-coupon periods between settlement date and redemption

date. If this number contains a fractional part, raise it to the next whole
number.

Price Dollar price per $100 par value.
RV Redemption value.
Y Annual yield (decimal) when held to redemption.

References
[1] Mayle, Jan. Standard Securities Calculation Methods. 3rd Edition, Vol. 1, Securities

Industry Association, Inc., New York, 1993, ISBN 1-882936-01-9. Vol. 2, 1994,
ISBN 1-882936-02-7.

See Also
bndprice | cdprice | tbillprice | zeroyield

Topics
“Computing Treasury Bill Price and Yield” (Financial Toolbox)
“Pricing Treasury Notes” on page 6-7
“Pricing Corporate Bonds” on page 6-8
“Measuring Zero-Coupon Bond Function Quality” on page 6-6

Introduced before R2006a
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zeroyield
Yield of zero-coupon instruments given price

Syntax
Yield = zeroyield(Price,Settle,Maturity)
Yield = zeroyield( ___ ,Period,Basis,EndMonthRule)

Description
Yield = zeroyield(Price,Settle,Maturity) computes the yield of zero-coupon
instruments given price. zeroyield calculates the bond-equivalent yield for a portfolio of
general short and long-term zero-coupon instruments given the price of the instruments.
In other words, if the zero-coupon computed with this yield is used to discount the
reference bond, the value of that reference bond is equal to its price

Yield = zeroyield( ___ ,Period,Basis,EndMonthRule) adds optional arguments
for Period, Basis, and EndMonthRule.

Examples

Compute the Yield of a Short-Term Zero-Coupon Instrument

This example shows how to compute the yield of a short-term zero-coupon instrument.

Settle   = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis    = 0;
Price    = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield = 0.1490
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Compute the Yield of a Short-Term Zero-Coupon Instrument Using a Day-Count
Basis of 30/360 (SIA)

This example shows how to compute the yield of a short-term zero-coupon instrument
using a day-count basis of 30/360 (SIA).

Settle   = '24-Jun-1993';
Maturity = '1-Nov-1993';
Basis    = 1;
Price    = 95;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield = 0.1492

Compute the Yield of a Long-Term Zero-Coupon Instrument

This example shows how to compute the yield of a long-term zero-coupon instrument.

Settle   = '24-Jun-1993';
Maturity = '15-Jan-2024';
Basis    = 0;
Price    = 9;

Yield = zeroyield(Price, Settle, Maturity, [], Basis)

Yield = 0.0804

Input Arguments
Price — Reference bond price
scalar | vector

Reference bond price, specified as a scalar or a NZERO-by-1 vector.
Data Types: double
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Settle — Settlement date
serial date number

Settlement date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double

Maturity — Maturity date
serial date number

Maturity date, specified as a NZERO-by-1 vector of serial date numbers.
Data Types: double

Period — Number of coupons in one year
2 (semiannual) (default) | vector of positive integers from the set [1,2,3,4,6,12]

(Optional) Number of coupons in one year, specified as a positive integer for the values
1,2,4,6,12 in a NZERO-by-1 vector.
Data Types: double

Basis — Day-count basis of bond
0 (actual/actual) (default) | vector of positive integers of the set [1...13]

(Optional) Day-count basis of the bond, specified as a positive integer using a NZERO-by-1
vector.

• 0 = actual/actual
• 1 = 30/360 (SIA)
• 2 = actual/360
• 3 = actual/365
• 4 = 30/360 (PSA)
• 5 = 30/360 (ISDA)
• 6 = 30/360 (European)
• 7 = actual/365 (Japanese)
• 8 = actual/actual (ICMA)
• 9 = actual/360 (ICMA)
• 10 = actual/365 (ICMA)
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• 11 = 30/360E (ICMA)
• 12 = actual/365 (ISDA)
• 13 = BUS/252

For more information, see basis on page Glossary-0 .

Note When the Maturity date is fewer than 182 days away and the Basis is actual/
365, the zeroyield uses a simple-interest algorithm. If Maturity is more than 182 days
away, zeroyield uses present value calculations.

When the Basis is actual/360, the simple interest algorithm gives the money-market
yield for short (1–6 months to maturity) Treasury bills.

Data Types: double

EndMonthRule — End-of-month rule flag
1 (in effect) (default) | nonnegative integer with value of 0 or 1

(Optional) End-of-month rule flag, specified as a nonnegative integer with a value of 0 or
1 using a NZERO-by-1 vector. This rule applies only when Maturity is an end-of-month
date for a month having 30 or fewer days.

• 0 = Ignore rule, meaning that a bond coupon payment date is always the same
numerical day of the month.

• 1 = Set rule on, meaning that a bond coupon payment date is always the last actual
day of the month.

Data Types: double

Output Arguments
Yield — Bond-equivalent yield for each zero-coupon instrument
vector

Bond-equivalent yield for each zero-coupon instrument, returned as a column vector.
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Algorithms
To compute the yield when there is zero or one quasi-coupon period to redemption,
zeroyield uses the formula

Yield
RV P
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M E
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Quasi-coupon periods are the coupon periods which would exist if the bond was paying
interest at a rate other than zero. The first term calculates the yield on invested dollars.
The second term converts this yield to a per annum basis.

When there is more than one quasi-coupon period to the redemption date, zeroyield
uses the formula
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The elements of the equations are defined as follows.

Variable Definition
DSC Number of days from the settlement date to next quasi-coupon date as if

the security paid periodic interest.
DSR Number of days from the settlement date to redemption date (call date, put

date, and so on).
E Number of days in quasi-coupon period.
M Number of quasi-coupon periods per year (standard for the particular

security involved).
Nq Number of quasi-coupon periods between the settlement date and

redemption date. If this number contains a fractional part, raise it to the
next whole number.

P Dollar price per $100 par value.
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Variable Definition
RV Redemption value.
Yield Annual yield (decimal) when held to redemption.

References
[1] Mayle, Jan. Standard Securities Calculation Methods. 3rd Edition, Vol. 1, Securities

Industry Association, Inc., New York, 1993, ISBN 1-882936-01-9. Vol. 2, 1994,
ISBN 1-882936-02-7.

See Also
bndyield | cdyield | tbillyield | zeroprice

Topics
“Computing Treasury Bill Price and Yield” (Financial Toolbox)
“Pricing Treasury Notes” on page 6-7
“Pricing Corporate Bonds” on page 6-8
“Measuring Zero-Coupon Bond Function Quality” on page 6-6

Introduced before R2006a
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Pricing Options Structure
In this section...
“Introduction” on page B-2
“Default Structure” on page B-2
“Customizing the Structure” on page B-4

Introduction
The MATLAB Options structure provides additional input to most pricing functions. The
Options structure

• Tells pricing functions how to use the interest-rate tree to calculate instrument prices.
• Determines what additional information the Command Window displays along with

instrument prices.
• Tells pricing functions which method to use in pricing barrier options.

The pricing options structure is primarily used in the pricing of interest-rate-based
financial derivatives. However, the BarrierMethod field in the structure allows you to
use it in pricing equity barrier options as well.

You provide pricing options in an optional Options argument passed to a pricing
function. (See, for example, bondbyhjm, bdtprice, barrierbycrr, barrierbyeqp, or
barrierbyitt.)

Default Structure
If you do not specify the Options argument in the call to a pricing function, the function
uses a default structure. To observe the default structure, use derivset without any
arguments.

Options = derivset
 
Options = 
 
    Diagnostics: 'off'
       Warnings: 'on'
      ConstRate: 'on'
  BarrierMethod: 'unenhanced'

B Pricing Options Structure

B-2



The Options structure has four fields: Diagnostics on page B-3, Warnings on page
B-3, ConstRate on page B-3, and BarrierMethod on page B-3.

Diagnostics Field

Diagnostics indicates whether additional information is displayed if the tree is
modified. The default value for this option is 'off'. If Diagnostics is set to 'on' and
ConstRate is set to 'off', the pricing functions display information such as the number
of nodes in the last level of the tree generated for pricing purposes.

Warnings Field

Warnings indicates whether to display warning messages when the input tree is not
adequate for accurately pricing the instruments. The default value for this option is 'on'.
If both ConstRate and Warnings are 'on', a warning is displayed if any of the
instruments in the input portfolio have a cash flow date between tree dates. If ConstRate
is 'off', and Warnings is 'on', a warning is displayed if the tree is modified to match
the cash flow dates on the instruments in the portfolio.

ConstRate Field

ConstRate indicates whether the interest rates should be assumed constant between
tree dates. By default this option is 'on', which is not an arbitrage-free assumption. So
the pricing functions return an approximate price for instruments featuring cash flows
between tree dates. Instruments featuring cash flows only on tree nodes are not affected
by this option and return exact (arbitrage-free) prices. When ConstRate is 'off', the
pricing function finds the cash flow dates for all instruments in the portfolio. If these cash
flows do not align exactly with the tree dates, a new tree is generated and used for
pricing. This new tree features the same volatility and initial rate specifications of the
input tree but contains tree nodes for each date in which at least one instrument in the
portfolio has a cash flow. Keep in mind that the number of nodes in a tree grows
exponentially with the number of tree dates. So, setting ConstRate 'off' dramatically
increases the memory and processor demands on the computer.

BarrierMethod Field

When using binomial trees to price barrier options, this may require many tree steps to
achieve an accurate result when tree nodes do not align with the barrier level. With the
BarrierMethod field, the toolbox provides an enhancement method that improves the
accuracy of the results without having to use large trees.

The BarrierMethod field can be set to 'unenhanced' (default) or 'interp'. If you
specify 'unenhanced', no correction calculation is used. Otherwise, if you specify
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'interp', the toolbox provides an enhanced valuation by interpolating between nodes
on barrier boundaries.

You specify the barrier method in the last input argument, Options, of the functions
barrierbycrr, barrierbyeqp, barrierbyitt, crrprice, eqpprice, ittprice,
crrsens, eqpsens, or ittsens. Options is a structure that you create with the
function derivset. Using derivset, you specify whether to use the enhanced or the
unenhanced method.

For more information about this algorithm, see Derman, E., I. Kani, D. Ergener and I.
Bardhan, “Enhanced Numerical Methods for Options with Barriers,” Financial Analysts
Journal, (Nov. - Dec. 1995), pp. 65–74.

Customizing the Structure
Customize the Options structure by passing property name/property value pairs to the
derivset function.

As an example, consider an Options structure with ConstRate 'off' and Diagnostics
'on'.

Options = derivset('ConstRate', 'off', 'Diagnostics', 'on')

Options = 

  Diagnostics: 'on'
     Warnings: 'on'
    ConstRate: 'off'
BarrierMethod: 'unenhanced'

To obtain the value of a specific property from the Options structure, use derivget.

CR = derivget(Options, 'ConstRate')

CR =
Off

Note Use derivset and derivget to construct the Options structure. These functions
are guaranteed to remain unchanged, while the implementation of the structure itself
may be modified in the future.
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Now observe the effects of setting ConstRate 'off'. Obtain the tree dates from the
HJM tree.

TreeDates = [HJMTree.TimeSpec.ValuationDate;... 
HJMTree.TimeSpec.Maturity]

TreeDates =

     730486
     730852
     731217
     731582
     731947

datedisp(TreeDates)

01-Jan-2000 
01-Jan-2001 
01-Jan-2002 
01-Jan-2003 
01-Jan-2004 

All instruments in HJMInstSet settle on January 1, 2000, and all have cash flows once a
year, except for the second bond, which features a period of 2. This bond has cash flows
twice a year, with every other cash flow consequently falling between tree dates. You can
extract this bond from the portfolio to compare how its price differs by setting
ConstRate to 'on' and 'off'.

BondPort = instselect(HJMInstSet, 'Index', 2);

instdisp(BondPort)

Index Type CouponRate Settle      Maturity     Period Basis... 
1     Bond 0.04       01-Jan-2000 01-Jan-2004  2      NaN...

First price the bond with ConstRate 'on' (default).
format long
[BondPrice, BondPriceTree] = hjmprice(HJMTree, BondPort)
Warning: Not all cash flows are aligned with the tree. Result will 
be approximated.

BondPrice =

  97.52801411736377
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BondPriceTree = 
FinObj: 'HJMPriceTree'
 PBush: {1x5 cell}
AIBush: {[0]  [1x1x2 double] ... [1x4x2 double]  [1x8 double]}
  tObs: [0 1 2 3 4]

Now recalculate the price of the bond setting ConstRate 'off'.

OptionsNoCR = derivset('ConstR', 'off')

OptionsNoCR = 

Diagnostics: 'off'
   Warnings: 'on'
  ConstRate: 'off'

[BondPriceNoCR, BondPriceTreeNoCR] = hjmprice(HJMTree,... 
BondPort, OptionsNoCR)
Warning: Not all cash flows are aligned with the tree. Rebuilding 
tree.

BondPriceNoCR =

  97.53342361674437

BondPriceTreeNoCR = 

FinObj: 'HJMPriceTree'
 PBush: {1x9 cell}
AIBush: {1x9 cell}
  tObs: [0 0.5000 1 1.5000 2 2.5000 3 3.5000 4]

As indicated in the last warning, because the cash flows of the bond did not align with the
tree dates, a new tree was generated for pricing the bond. This pricing method returns
more accurate results since it guarantees that the process is arbitrage-free. It also takes
longer to calculate and requires more memory. The tObs field of the price tree structure
indicates the increased memory usage. BondPriceTree.tObs has only five elements,
while BondPriceTreeNoCR.tObs has nine. While this may not seem like a large
difference, it has a dramatic effect on the number of states in the last node.

size(BondPriceTree.PBush{end})

ans =

     1 8

size(BondPriceTreeNoCR.PBush{end})

ans =
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     1 128

The differences become more obvious by examining the price trees with treeviewer.

treeviewer(BondPriceTree, BondPort)

treeviewer(BondPriceTreeNoCR, BondPort)
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All = [Delta ./ Price, Gamma ./ Price, Vega ./ Price, Price]

All =

         -2.76         10.43          0.00         98.72
         -3.56         16.64         -0.00         97.53
       -166.18      13235.59        700.96          0.05
         -2.76         10.43          0.00         98.72
         -0.01          0.03             0        100.55
         46.95       1090.63         14.91          6.28
       -969.85     173969.77       1926.72          0.05
        -76.39        287.00          0.00          3.690

See Also
instasian | instbarrier | instcompound | instlookback | instoptstock

Related Examples
• “Pricing Equity Derivatives Using Trees” on page 3-128
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• “Pricing Options Structure” on page B-2
• “Pricing European Call Options Using Different Equity Models” on page 3-161
• “Pricing Using the Black-Scholes Model” on page 3-152
• “Compute Option Prices on a Forward” on page 11-1736
• “Compute Forward Option Prices and Delta Sensitivities” on page 11-1805
• “Compute the Option Price on a Future” on page 11-1738
• “Pricing Asian Options” on page 3-111

More About
• “Supported Interest-Rate Instruments” on page 2-2
• “Supported Equity Derivatives” on page 3-24
• “Supported Energy Derivatives” on page 3-43

 See Also
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“Black-Derman-Toy (BDT) Modeling” on page C-2
“Heath-Jarrow-Morton (HJM) Modeling” on page C-2
“Hull-White (HW) and Black-Karasinski (BK) Modeling” on page C-2
“Cox-Ross-Rubinstein (CRR) Modeling” on page C-3
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“Bootstrapping a Swap Curve” on page C-5
“Bond Futures” on page C-5
“Credit Derivatives” on page C-6
“Convertible Bonds” on page C-6

Black-Derman-Toy (BDT) Modeling
A description of the Black-Derman-Toy interest-rate model can be found in:

[1] Black, Fischer, Emanuel Derman, and William Toy. “A One Factor Model of Interest
Rates and its Application to Treasury Bond Options.” Financial Analysts Journal. January -
February 1990.

Heath-Jarrow-Morton (HJM) Modeling
An introduction to Heath-Jarrow-Morton modeling, used extensively in Financial
Instruments Toolbox software, can be found in:

[2] Jarrow, Robert A. Modelling Fixed Income Securities and Interest Rate Options.
McGraw-Hill, 1996, ISBN 0-07-912253-1.

Hull-White (HW) and Black-Karasinski (BK) Modeling
A description of the Hull-White model and its Black-Karasinski modification can be found
in:
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[3] Hull, John C. Options, Futures, and Other Derivatives. Prentice-Hall, 1997, ISBN
0-13-186479-3.

You can find additional information about the Hull-White single-factor model used in this
toolbox in these papers:

[4] Hull, J., and A. White. “Numerical Procedures for Implementing Term Structure
Models I: Single-Factor Models.” Journal of Derivatives. 1994.

[5] Hull, J., and A. White. “Using Hull-White Interest Rate Trees.” Journal of Derivatives.
1996.

Cox-Ross-Rubinstein (CRR) Modeling
To learn about the Cox-Ross-Rubinstein model, see:

[6] Cox, J. C., S. A. Ross, and M. Rubinstein. “Option Pricing: A Simplified Approach.”
Journal of Financial Economics. Number 7, 1979, pp. 229–263.

Implied Trinomial Tree (ITT) Modeling
To learn about the Implied Trinomial Tree model, see:

[7] Chriss, Neil A., E. Derman, and I. Kani. “Implied trinomial trees of the volatility smile.”
Journal of Derivatives. 1996.

Leisen-Reimer Tree (LR) Modeling
To learn about the Leisen-Reimer model, see:

[8] Leisen D.P., M. Reimer. “Binomial Models for Option Valuation – Examining and
Improving Convergence.” Applied Mathematical Finance. Number 3, 1996, pp. 319–346.

Equal Probabilities Tree (EQP) Modeling
To learn about the Equal Probabilities model, see:

[9] Chriss, Neil A. Black Scholes and Beyond: Option Pricing Models. McGraw-Hill, 1996,
ISBN 0-7863-1025-1.
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Closed-Form Solutions Modeling
To learn about the Bjerksund-Stensland 2002 model, see:

[10] Bjerksund, P. and G. Stensland. “Closed-Form Approximation of American Options.”
Scandinavian Journal of Management. Vol. 9, 1993, Suppl., pp. S88–S99.

[11] Bjerksund, P. and G. Stensland. “Closed Form Valuation of American Options.”,
Discussion paper 2002 (https://www.scribd.com/doc/215619796/Closed-form-Valuation-of-
American-Options-by-Bjerksund-and-Stensland#scribd)

Financial Derivatives
You can find information on the creation of financial derivatives and their role in the
marketplace in numerous sources. Among those consulted in the development of
Financial Instruments Toolbox software are:

[12] Chance, Don. M. An Introduction to Derivatives. The Dryden Press, 1998, ISBN
0-030-024483-8.

[13] Fabozzi, Frank J. Treasury Securities and Derivatives. Frank J. Fabozzi Associates,
1998, ISBN 1-883249-23-6.

[14] Wilmott, Paul. Derivatives: The Theory and Practice of Financial Engineering. John
Wiley and Sons, 1998, ISBN 0-471-983-89-6.

Fitting Interest-Rate Curve Functions
[15] Nelson, C.R., Siegel, A.F. "Parsimonious modelling of yield curves." Journal of
Business. Number 60, 1987, pp 473–89.

[16] Svensson, L.E.O. "Estimating and interpreting forward interest rates: Sweden
1992-4." International Monetary Fund, IMF Working Paper, 1994, p. 114.

[17] Fisher, M., Nychka, D., Zervos, D. "Fitting the term structure of interest rates with
smoothing splines.” Board of Governors of the Federal Reserve System, Federal Reserve
Board Working Paper, 1995.

[18] Anderson, N., Sleath, J. "New estimates of the UK real and nominal yield curves."
Bank of England Quarterly Bulletin. November, 1999, pp 384–92.
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Glossary

American option An option that can be exercised any time until its
expiration date. Contrast with European option on page
Glossary-0 .

arbitrary cash flow
instrument

A set of generic cash flow amounts for which a price needs
to be established.

Asian option An option whose payoff depends upon the average price of
the underlying asset over a certain period of time.

asset-or-nothing option A digital option that pays the value of the underlying
security if the option expires in the money.

barrier option An option that is activated or deactivated only if the price
of the underlying asset crosses a barrier. See also knock-
in on page Glossary-0  and knock-out on page Glossary-
0 . If the option fails to execute, the seller may pay to
the purchaser a predetermined rebate on page Glossary-
0 .

barrier option An option that is activated or deactivated only if the price
of the underlying asset crosses a barrier. See also knock-
in on page Glossary-0  and knock-out on page Glossary-
0 . If the option fails to execute, the seller may pay to
the purchaser a predetermined rebate on page Glossary-
0 .

basis Day count basis determines how interest accrues over
time for various instruments and the amount transferred
on interest payment dates. The calculation of accrued
interest for dates between payments also uses day count
basis. Day count basis is a fraction of Number of
interest accrual days / Days in the relevant
coupon period. Supported day count conventions and
basis values are:
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Day Count
Convention

0 actual/actual (default)
— Number of days in
both a period and a
year is the actual
number of days.

1 30/360 SIA — Year
fraction is calculated
based on a 360 day
year with 30-day
months, after applying
the following rules: If
the first date and the
second date are the
last day of February,
the second date is
changed to the 30th. If
the first date falls on
the 31st or is the last
day of February, it is
changed to the 30th. If
after the preceding
test, the first day is the
30th and the second
day is the 31st, then
the second day is
changed to the 30th.
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Day Count
Convention

2 actual/360 — Number
of days in a period is
equal to the actual
number of days,
however the number
of days in a year is
360.

3 actual/365 — Number
of days in a period is
equal to the actual
number of days,
however the number
of days in a year is 365
(even in a leap year).

4 30/360 PSA — Number
of days in every month
is set to 30 (including
February). If the start
date of the period is
either the 31st of a
month or the last day
of February, the start
date is set to the 30th,
while if the start date
is the 30th of a month
and the end date is the
31st, the end date is
set to the 30th. The
number of days in a
year is 360.
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Day Count
Convention

5 30/360 ISDA —
Number of days in
every month is set to
30, except for
February where it is
the actual number of
days. If the start date
of the period is the
31st of a month, the
start date is set to the
30th while if the start
date is the 30th of a
month and the end
date is the 31st, the
end date is set to the
30th. The number of
days in a year is 360.

6 30E /360 — Number of
days in every month is
set to 30 except for
February where it is
equal to the actual
number of days. If the
start date or the end
date of the period is
the 31st of a month,
that date is set to the
30th. The number of
days in a year is 360.
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Day Count
Convention

7 actual/365 Japanese —
Number of days in a
period is equal to the
actual number of days,
except for leap days
(29th February) which
are ignored. The
number of days in a
year is 365 (even in a
leap year).

8 actual/actual ICMA —
Number of days in
both a period and a
year is the actual
number of days and
the compounding
frequency is annual.

9 actual/360 ICMA —
Number of days in a
period is equal to the
actual number of days,
however the number
of days in a year is 360
and the compounding
frequency is annual.
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Day Count
Convention

1
0

actual/365 ICMA —
Number of days in a
period is equal to the
actual number of days,
however the number
of days in a year is 365
(even in a leap year)
and the compounding
frequency is annual.

1
1

30/360 ICMA —
Number of days in
every month is set to
30, except for
February where it is
equal to the actual
number of days. If the
start date or the end
date of the period is
the 31st of a month,
that date is set to the
30th. The number of
days in a year is 360
and the compounding
frequency is annual.
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Day Count
Convention

1
2

actual/365 ISDA — The
day count fraction is
calculated using the
following formula:
(Actual number of
days in period
that fall in a
leap year / 366)
+ (Actual number
of days in period
that fall in a
normal year /
365 ).

1
3

bus/252 — The
number of days in a
period is equal to the
actual number of
business days. The
number of business
days in a year is 252.

basket option An option that provides a payoff dependent on the value of
a portfolio of assets.

beta The price volatility of a financial instrument relative to the
price volatility of a market or index as a whole. Beta is
most commonly used with respect to equities. A high-beta
instrument is riskier than a low-beta instrument.

binomial model A method in which the probability over time of each
possible price or rate follows a binomial distribution. The
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basic assumption is that prices or rates can move to only
two values (one higher and one lower) over any short time
period. See also trinomial model on page Glossary-0 .

Black-Derman-Toy (BDT)
model

A model for pricing interest rate derivatives where all
security prices and rates depend upon the short rate
(annualized one-period interest rate).

bond A long-term debt security with fixed interest payments and
fixed maturity date.

bond option The right to sell a bond back to the issuer (put) or to
redeem a bond from its current owner (call) at a specific
price and on a specific date.

bushy tree A tree of prices or interest rates in which the number of
branches increases exponentially relative to observation
times; branches never recombine. Opposite of a
recombining tree on page Glossary-0 .

call 1. An option to buy a certain quantity of a stock or
commodity for a specified price within a specified time.
See also put on page Glossary-0 .

2. A demand to submit bonds to the issuer for redemption
before the maturity date.

call swaption Allows the option buyer to enter into an interest rate swap
in which the buyer of the option pays the fixed rate and
receives the floating rate.

callable bond A bond that allows the issuer to buy back the bond at a
predetermined price at specified future dates. The bond
contains an embedded call option; that is, the holder has
sold a call option to the issuer. See also puttable bond on
page Glossary-0 .

cap Interest-rate option that guarantees that the rate on a
floating-rate loan will not exceed a certain level.

caplet An interim cap component in a multiperiod interest-rate
cap agreement.
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cash-or-nothing option A digital option that pays some fixed amount of cash if the
option expires in the money.

compound option An option on an option, such as a call on a call, a put on a
put, a call on a put, or a put on a call.

Delta Delta measures the rate of change of the price of a
derivative security relative to the price of the underlying
asset; that is, the first derivative of the curve that relates
the price of the derivative to the price of the underlying
security.

derivative A financial instrument that is based on some underlying
asset. For example, an option is a derivative instrument
based on the right to buy or sell an underlying instrument.

deterministic model An interest rate model in which the values of the rates in
the next time step are determined solely by the values of
the rates in the current time step.

digital option An option whose payout is fixed after the underlying stock
exceeds the predetermined threshold or strike price.

discount factor Coefficient used to compute the present value of future
cash flows.

dollar sensitivity Sensitivity reported as a dollar price change instead of a
percentage price change.

down-and-in A type of barrier option on page Glossary-0  that
becomes active if the barrier is reached from above. See
also knock-in on page Glossary-0 .

down-and-out A type of barrier option on page Glossary-0  that
becomes deactivated if the barrier is reached from above.
See also knock-out on page Glossary-0 .

European option An option that can be exercised only on its expiration date.
Contrast with American option on page Glossary-0 .

ex-dividend date Date when a declared dividend belongs to the seller rather
than the buyer.
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exercise price The price set for buying an asset (call) or selling an asset
(put). The strike price.

exotic option Any nonstandard option. Opposite of vanilla option on
page Glossary-0 .

fixed lookback option Strike price is fixed at purchase. The underlying is priced
at its highest or lowest level, depending whether it is a
call or put, during the life of the option rather than
expiring at market.

fixed-rate note A long-term debt security with preset interest rate and
maturity, by which the interest must be paid. The principal
may or may not be paid at maturity.

floating lookback option Strike price is fixed at maturity. For a call, the price is
fixed at the lowest price during the life of the option; for a
put it is fixed at the highest price.

floating-rate note A security similar to a bond, but in which the note's
interest rate is reset periodically, relative to a reference
index rate, to reflect fluctuations in market interest rates.

floor Interest-rate option that guarantees that the rate on a
floating-rate loan will not fall below a certain level.

floorlet One of the interim period floors in a multiple period floor
agreement.

forward curve The curve of forward interest rates vs. maturity dates for
bonds.

forward rate The future interest rate of a bond inferred from the term
structure, especially from the yield curve of zero-coupon
bonds, calculated from the growth factor of an investment
in a zero held until maturity.

Gamma Gamma measures the rate of change of delta for a
derivative security relative to the price of the underlying
asset; that is, the second derivative of the option price
relative to the security price.
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gap option A digital option in which one strike decides if the option is
in or out of money and another strike decides the size the
size of the payoff.

Heath-Jarrow-Morton
(HJM) model

A model of the interest rate term structure that works
with a type of interest rate tree called a bushy tree on
page Glossary-0 .

hedge A securities transaction that reduces or offsets the risk on
an existing investment position.

instrument set A collection of financial assets. A portfolio.

inverse discount A factor by which the present value of an asset is
multiplied to find its future value. The reciprocal of the
discount factor.

irregular coupon A bond interest payment for more or less than six-months'
interest. The first coupon on many bonds is irregular
because payment is other than six months from the dated
date.

knock-in A barrier option on page Glossary-0  that is activated
when the price of the underlying asset achieves a
designated target. There are two types: up-and-in on
page Glossary-0  and down-and-in on page Glossary-
0 .

knock-out A barrier option on page Glossary-0  that is deactivated
when the price of the underlying asset achieves a
designated target. There are two types: up-and-out on
page Glossary-0  and down-and-out on page Glossary-
0 .

Lambda The percentage change in an option price divided by the
percentage change in an underlying price.

least-squares method A mathematical method of determining the best fit of a
curve to a series of observations by choosing the curve
that minimizes the sum of the squares of all deviations
from the curve.
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long rate The yield on a zero-coupon Treasury bond.

lookback option An option that reduces uncertainties associated with the
timing of market entry. Lookback options can be either
fixed lookback option on page Glossary-0  and
floating lookback option on page Glossary-0 .

mean reversion The tendency of a variable to return to its mean value
after reaching a point of excessive positive or negative
valuation relative to the mean.

option A right to buy or sell specific securities or commodities at
a stated price (exercise or strike price) within a specified
time. An option is a type of derivative.

per-dollar sensitivity The dollar sensitivity on page Glossary-0  divided by
the corresponding instrument price.

portfolio A collection of financial assets. Also called an instrument
set.

price tree structure A MATLAB structure that holds all pricing information.

price vector A vector of instrument prices.

pricing options
structure

A MATLAB structure that defines how the price tree is
used to find the price of instruments in the portfolio, and
how much additional information is displayed in the
command window when the pricing function is called.

put An option to sell a stipulated amount of stock or securities
within a specified time and at a fixed exercise price. See
also call on page Glossary-0 .

put swaption Allows the option buyer to enter into an interest rate swap
in which the buyer of the option receives the fixed rate
and pays the floating rate.

puttable bond A bond that allows the holder to redeem the bond at a
predetermined price at specified future dates. The bond
contains an embedded put option; that is, the holder has
bought a put option. See also callable bond on page
Glossary-0 .
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rainbow option A single option linked to two or more underlying assets. In
order for the option to pay off, all the underlying assets
must move in the intended direction.

rate specification A MATLAB structure that holds all information needed to
identify completely the evolution of interest rates.

rebate A predetermined amount of money paid to the purchaser
of a barrier option on page Glossary-0  if the option
fails to execute.

recombining tree A tree of prices or interest rates whose branches
recombine over time. Opposite of a bushy tree on page
Glossary-0 .

Rho Rho measures sensitivity to the interest rate; it is the
derivative of the option value with respect to the risk-free
interest rate.

self-financing hedge A trading strategy whereby the value of a portfolio after
rebalancing is equal to its value at any previous time.

sensitivity The “what if” relationship between variables; the degree
to which changes in one variable cause changes in another
variable. A specific synonym is volatility. See also dollar
sensitivity on page Glossary-0 .

short rate The annualized one-period interest rate.

sinking fund bond A sinking fund bond is a coupon bond with a sinking fund
provision. This provision obligates the issuer to amortize
portions of the principal prior to maturity, affecting bond
prices since the time of the principal repayment changes.

spot curve, spot yield
curve

See zero curve, zero-coupon yield curve on page
Glossary-0 .

spot rate The current interest rate appropriate for discounting a
cash flow of some given maturity.

spread For options, a combination of call or put options on the
same stock with differing exercise prices or maturity
dates.
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stepped coupon bond A step-up and step-down bond is a debt security with a
predetermined coupon structure over time.

stochastic model Involving or containing a random variable or variables;
involving chance or probability.

strike Exercise a put or call option.

strike price See exercise price on page Glossary-0 .

supershare option A digital option that pays out a proportion of the assets
underlying a portfolio if the asset lies between a lower and
an upper bound at the expiry of the option.

swap A contract between two parties to exchange cash flows in
the future according to some formula.

swaption An option on an interest rate swap. It grants the option
buyer the right to enter into an interest rate swap at a
future date.

Theta Theta measures the sensitivity of the value of the
derivative to the passage of time.

time specification A MATLAB structure that represents the mapping between
times and dates for interest rate quoting.

trinomial model A method in which the basic assumption is that prices or
rates can move to one of three possible values over any
short time period. At any time step the price or rate
direction can be upward, neutral, or downward. See also
binomial model on page Glossary-0 .

under-determined
system

A set of simultaneous equations in which the number of
independent variables exceeds the number of equations in
the set, leading to an infinite number of solutions.

up-and-in A type of barrier option on page Glossary-0  that
becomes active if the barrier is reached from below. See
also knock-in on page Glossary-0 .
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up-and-out A type of barrier option on page Glossary-0  that
becomes deactivated if the barrier is reached from below.
See also knock-out on page Glossary-0 .

vanilla option A common option, such as a put or call. Opposite of exotic
option on page Glossary-0 .

vanilla swap A swap on page Glossary-0  agreement to exchange a
fixed rate for a floating rate.

Vega Vega measures the rate of change in the price of a
derivative security relative to the volatility of the
underlying security. When Vega is large, the security is
sensitive to small changes in volatility.

volatility specification A MATLAB structure that specifies the forward rate
volatility process.

yields The zero coupon rate.

yield curve The zero curve.

yield volatility The zero coupon volatilities.

zero curve, zero-coupon
yield curve

A yield curve for zero-coupon bonds; zero rates versus
maturity dates. Since the maturity and duration (Macaulay
duration) are identical for zeros, the zero curve is a pure
depiction of supply/demand conditions for loanable funds
across a continuum of durations and maturities. Also
known as spot curve or spot yield curve.

zero-coupon bond, or
zero

A bond that, instead of carrying a coupon, is sold at a
discount from its face value, pays no interest during its
life, and pays the principal only at maturity.
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